Information on Organism Prunus armeniaca

TaxTree of Organism Prunus armeniaca
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(-)-maackiain biosynthesis
-
-
(-)-medicarpin biosynthesis
-
-
(1,4)-beta-D-xylan degradation
-
-
(R)-cysteate degradation
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis I
-
-
1,5-anhydrofructose degradation
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
2'-deoxymugineic acid phytosiderophore biosynthesis
-
-
2-deoxy-D-glucose 6-phosphate degradation
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
3-methylbutanol biosynthesis (engineered)
-
-
4-hydroxy-2-nonenal detoxification
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
9-lipoxygenase and 9-allene oxide synthase pathway
-
-
abscisic acid biosynthesis
-
-
acetaldehyde biosynthesis I
-
-
acetaldehyde biosynthesis II
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetylene degradation (anaerobic)
-
-
aerobic respiration (NDH-1 to cytochrome c oxidase via plastocyanin)
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
aerobic respiration in cyanobacteria (NDH-2 to cytochrome c oxidase via plastocyanin)
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
alpha-carotene biosynthesis
-
-
alpha-Linolenic acid metabolism
-
-
alpha-tomatine degradation
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
ammonia oxidation II (anaerobic)
-
-
amygdalin and prunasin degradation
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arsenite oxidation I (respiratory)
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate glutathione cycle
-
-
ascorbate metabolism
-
-
ascorbate recycling (cytosolic)
-
-
aspartate and asparagine metabolism
-
-
Atrazine degradation
-
-
atromentin biosynthesis
-
-
avenanthramide biosynthesis
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
beta-carotene biosynthesis
-
-
Betalain biosynthesis
-
-
betanidin degradation
-
-
Bifidobacterium shunt
-
-
bile acid biosynthesis, neutral pathway
Biosynthesis of ansamycins
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of unsaturated fatty acids
-
-
Bisphenol degradation
-
-
bupropion degradation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C20 prostanoid biosynthesis
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
C5-Branched dibasic acid metabolism
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
capsiconiate biosynthesis
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
carnitine metabolism
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
CDP-6-deoxy-D-gulose biosynthesis
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin biosynthesis
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Chloroalkane and chloroalkene degradation
-
-
chlorobactene biosynthesis
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
cinnamoyl-CoA biosynthesis
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
coenzyme B biosynthesis
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
creatine-phosphate biosynthesis
-
-
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
D-galactose degradation I (Leloir pathway)
-
-
d-mannose degradation
-
-
D-sorbitol biosynthesis I
-
-
D-sorbitol degradation I
-
-
d-xylose degradation
-
-
degradation of hexoses
-
-
degradation of sugar alcohols
-
-
denitrification
-
-
diethylphosphate degradation
-
-
divinyl ether biosynthesis II
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ephedrine biosynthesis
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis I (plants)
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis V (engineered)
-
-
Fatty acid degradation
-
-
Fe(II) oxidation
-
-
FeMo cofactor biosynthesis
-
-
firefly bioluminescence
-
-
Flavonoid biosynthesis
-
-
flexixanthin biosynthesis
-
-
Folate biosynthesis
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
formate to nitrite electron transfer
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
gamma-glutamyl cycle
-
-
GDP-alpha-D-glucose biosynthesis
-
-
ginsenoside metabolism
-
-
gliotoxin biosynthesis
-
-
gluconeogenesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glucosylglycerol biosynthesis
-
-
glutamate and glutamine metabolism
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glutathione-peroxide redox reactions
-
-
glycerol degradation to butanol
-
-
Glycerolipid metabolism
-
-
Glycerophospholipid metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate cycle
-
-
gossypol biosynthesis
-
-
heterolactic fermentation
-
-
homocysteine and cysteine interconversion
-
-
hypoglycin biosynthesis
-
-
incomplete reductive TCA cycle
-
-
indole glucosinolate activation (intact plant cell)
-
-
Inositol phosphate metabolism
-
-
Isoflavonoid biosynthesis
-
-
Isoquinoline alkaloid biosynthesis
-
-
isorenieratene biosynthesis I (actinobacteria)
-
-
jasmonic acid biosynthesis
-
-
justicidin B biosynthesis
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
L-dopa and L-dopachrome biosynthesis
-
-
L-glutamate degradation II
-
-
L-glutamate degradation VI (to pyruvate)
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-lysine biosynthesis IV
-
-
L-lysine biosynthesis V
-
-
L-methionine biosynthesis I
-
-
L-methionine biosynthesis II
-
-
L-methionine degradation I (to L-homocysteine)
-
-
L-methionine degradation III
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation VI (reductive Stickland reaction)
-
-
L-serine biosynthesis II
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation III
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
L-valine degradation II
-
-
lactose degradation II
-
-
leucine metabolism
-
-
leukotriene biosynthesis
-
-
linamarin degradation
-
-
Linoleic acid metabolism
-
-
linustatin bioactivation
-
-
lipid metabolism
-
-
long chain fatty acid ester synthesis (engineered)
-
-
lotaustralin degradation
-
-
lutein biosynthesis
-
-
luteolin triglucuronide degradation
-
-
Lysine biosynthesis
-
-
lysine metabolism
-
-
malate/L-aspartate shuttle pathway
-
-
manganese oxidation I
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
melibiose degradation
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methane metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methylaspartate cycle
methylsalicylate degradation
-
-
Microbial metabolism in diverse environments
-
-
mitochondrial L-carnitine shuttle
-
-
mixed acid fermentation
-
-
monoacylglycerol metabolism (yeast)
-
-
myxol-2' fucoside biosynthesis
-
-
NAD metabolism
-
-
Naphthalene degradation
-
-
neolinustatin bioactivation
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction VII (denitrification)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
nitric oxide biosynthesis II (mammals)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
nitroethane degradation
-
-
Nitrogen metabolism
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
Novobiocin biosynthesis
-
-
o-diquinones biosynthesis
-
-
okenone biosynthesis
-
-
oleandomycin activation/inactivation
-
-
Other glycan degradation
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
partial TCA cycle (obligate autotrophs)
-
-
pectin degradation I
-
-
pectin degradation II
-
-
pentachlorophenol degradation
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) I
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
pentose phosphate pathway (partial)
-
-
phenol degradation
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
pheomelanin biosynthesis
-
-
photosynthesis
-
-
photosynthesis light reactions
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
phytate degradation I
-
-
phytol degradation
-
-
Primary bile acid biosynthesis
-
-
propanol degradation
-
-
propionate fermentation
-
-
protective electron sinks in the thylakoid membrane (PSII to PTOX)
-
-
Purine metabolism
-
-
purine metabolism
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
rosmarinic acid biosynthesis I
-
-
Rubisco shunt
-
-
S-adenosyl-L-methionine biosynthesis
-
-
S-adenosyl-L-methionine salvage I
-
-
S-adenosyl-L-methionine salvage II
-
-
salidroside biosynthesis
-
-
Selenocompound metabolism
-
-
serine metabolism
-
-
serotonin degradation
-
-
sesamin biosynthesis
-
-
sitosterol degradation to androstenedione
-
-
Sphingolipid metabolism
-
-
stachyose degradation
-
-
Starch and sucrose metabolism
-
-
starch biosynthesis
-
-
starch degradation
-
-
starch degradation I
-
-
starch degradation III
-
-
starch degradation V
-
-
Steroid biosynthesis
-
-
Steroid hormone biosynthesis
-
-
sterol:steryl ester interconversion (yeast)
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
streptomycin biosynthesis
-
-
Streptomycin biosynthesis
-
-
Styrene degradation
-
-
suberin monomers biosynthesis
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
sucrose biosynthesis II
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sulfide oxidation IV (mitochondria)
-
-
sulfolactate degradation III
-
-
sulfopterin metabolism
-
-
Sulfur metabolism
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of methylsalicylate metabolism
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VII (acetate-producers)
-
-
teichuronic acid biosynthesis (B. subtilis 168)
-
-
Thiamine metabolism
-
-
thiosulfate disproportionation IV (rhodanese)
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
trehalose degradation V
-
-
triacylglycerol degradation
-
-
tRNA processing
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
ubiquinol-10 biosynthesis (early decarboxylation)
-
-
ubiquinol-10 biosynthesis (late decarboxylation)
-
-
ubiquinol-6 biosynthesis (late decarboxylation)
-
-
ubiquinol-6 biosynthesis from 4-aminobenzoate (yeast)
-
-
ubiquinol-7 biosynthesis (early decarboxylation)
-
-
ubiquinol-7 biosynthesis (late decarboxylation)
-
-
ubiquinol-8 biosynthesis (early decarboxylation)
-
-
ubiquinol-8 biosynthesis (late decarboxylation)
-
-
ubiquinol-9 biosynthesis (early decarboxylation)
-
-
ubiquinol-9 biosynthesis (late decarboxylation)
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
ubiquinone biosynthesis
-
-
UDP-alpha-D-glucose biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis I
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
urea cycle
-
-
urea degradation II
-
-
valine metabolism
-
-
vanillin biosynthesis I
-
-
vicianin bioactivation
-
-
xyloglucan degradation II (exoglucanase)
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
level of enzyme mRNA increases 5 days after the establishment of in vitro callus unions. Enzyme transcription shows a higher level in graft union of incompatible partners and does not result in formation of lignin
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
LINKS TO OTHER DATABASES (specific for Prunus armeniaca)