Information on Organism Macaca fascicularis

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(4R)-carvone biosynthesis
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(5R)-carbapenem carboxylate biosynthesis
(5Z)-dodecenoate biosynthesis II
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
(R)-cysteate degradation
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,4-dichlorobenzene degradation
-
-
1,5-anhydrofructose degradation
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
15-epi-lipoxin biosynthesis
-
-
2,3-dihydroxybenzoate biosynthesis
-
-
2-arachidonoylglycerol biosynthesis
-
-
2-carboxy-1,4-naphthoquinol biosynthesis
-
-
2-methyl-branched fatty acid beta-oxidation
-
-
2-methylpropene degradation
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
3,4,6-trichlorocatechol degradation
-
-
3,5-dichlorocatechol degradation
-
-
3,5-dimethoxytoluene biosynthesis
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
3-chlorocatechol degradation
-
-
3-chlorocatechol degradation I (ortho)
-
-
3-chlorocatechol degradation II (ortho)
-
-
3-dehydroquinate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
3-methylbutanol biosynthesis (engineered)
-
-
3-phosphoinositide biosynthesis
-
-
3-phosphoinositide degradation
-
-
4,5-dichlorocatechol degradation
-
-
4-aminobutanoate degradation V
-
-
4-chlorocatechol degradation
-
-
4-hydroxy-2-nonenal detoxification
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-nitrophenol degradation I
-
-
4-nitrophenol degradation II
-
-
6-gingerol analog biosynthesis (engineered)
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
ABH and Lewis epitopes biosynthesis from type 2 precursor disaccharide
-
-
abscisic acid biosynthesis
-
-
Ac/N-end rule pathway
-
-
acetaldehyde biosynthesis I
-
-
acetaldehyde biosynthesis II
-
-
acetate fermentation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetyl CoA biosynthesis
-
-
acetylene degradation (anaerobic)
-
-
acrylonitrile degradation I
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
adenine and adenosine salvage VI
-
-
adenine salvage
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
adipate degradation
-
-
aerobic respiration (NDH-1 to cytochrome c oxidase via plastocyanin)
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
aerobic respiration in cyanobacteria (NDH-2 to cytochrome c oxidase via plastocyanin)
-
-
Aflatoxin biosynthesis
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
all-trans-farnesol biosynthesis
-
-
allantoin degradation
-
-
allantoin degradation to glyoxylate I
-
-
allantoin degradation to glyoxylate III
-
-
allopregnanolone biosynthesis
-
-
alpha-Linolenic acid metabolism
-
-
alpha-tocopherol degradation
-
-
alpha-tomatine degradation
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminoacyl-tRNA biosynthesis
-
-
Aminobenzoate degradation
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
ammonia oxidation II (anaerobic)
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
anandamide degradation
-
-
anandamide lipoxygenation
-
-
androgen and estrogen metabolism
-
-
androgen biosynthesis
-
-
androsrtendione degradation II (anaerobic)
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arg/N-end rule pathway (eukaryotic)
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arginine metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
arsenate detoxification I (mammalian)
-
-
arsenite oxidation I (respiratory)
-
-
Ascorbate and aldarate metabolism
-
-
aspartate and asparagine metabolism
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
astaxanthin biosynthesis (bacteria, fungi, algae)
-
-
Atrazine degradation
-
-
atromentin biosynthesis
-
-
bacterial bioluminescence
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
beta-(1,4)-mannan degradation
-
-
beta-Alanine metabolism
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
Betalain biosynthesis
-
-
betalamic acid biosynthesis
-
-
betanidin degradation
-
-
betaxanthin biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
Bifidobacterium shunt
-
-
bile acid biosynthesis, neutral pathway
biosynthesis of Lewis epitopes (H. pylori)
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of siderophore group nonribosomal peptides
-
-
Biosynthesis of unsaturated fatty acids
-
-
bisabolene biosynthesis (engineered)
-
-
Bisphenol degradation
-
-
Brassinosteroid biosynthesis
-
-
brassinosteroid biosynthesis I
-
-
brassinosteroid biosynthesis II
-
-
bryostatin biosynthesis
-
-
bupropion degradation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C20 prostanoid biosynthesis
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
canavanine biosynthesis
-
-
canavanine degradation
-
-
Caprolactam degradation
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
carnitine metabolism
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
catecholamine biosynthesis
CDP-6-deoxy-D-gulose biosynthesis
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin biosynthesis
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Chloroalkane and chloroalkene degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
chlorogenic acid degradation
-
-
cholesterol biosynthesis
-
-
cholesterol biosynthesis (plants)
-
-
cholesterol biosynthesis I
-
-
cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
cholesterol degradation to androstenedione III (anaerobic)
-
-
choline biosynthesis III
-
-
chondroitin sulfate degradation I (bacterial)
-
-
chorismate metabolism
-
-
cis-geranyl-CoA degradation
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CO2 fixation in Crenarchaeota
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
complex N-linked glycan biosynthesis (vertebrates)
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
creatine-phosphate biosynthesis
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
cutin biosynthesis
-
-
Cutin, suberine and wax biosynthesis
-
-
cyanate degradation
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
cytosolic NADPH production (yeast)
-
-
D-Arginine and D-ornithine metabolism
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-galactose degradation IV
-
-
D-Glutamine and D-glutamate metabolism
-
-
d-mannose degradation
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
D-myo-inositol (1,4,5)-trisphosphate degradation
-
-
D-myo-inositol-5-phosphate metabolism
-
-
D-sorbitol biosynthesis I
-
-
D-sorbitol degradation I
-
-
d-xylose degradation
-
-
D-xylose degradation I
-
-
D-xylose degradation to ethylene glycol (engineered)
-
-
degradation of aromatic, nitrogen containing compounds
-
-
degradation of hexoses
-
-
degradation of sugar acids
-
-
degradation of sugar alcohols
-
-
denitrification
-
-
dermatan sulfate degradation I (bacterial)
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
diacylglycerol biosynthesis (PUFA enrichment in oilseed)
-
-
diethylphosphate degradation
-
-
digitoxigenin biosynthesis
-
-
dimethyl sulfide biosynthesis from methionine
-
-
divinyl ether biosynthesis II
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
dopamine degradation
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
enterobactin biosynthesis
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
epoxysqualene biosynthesis
-
-
ergosterol biosynthesis II
-
-
Escherichia coli serotype O86 O-antigen biosynthesis
-
-
estradiol biosynthesis I (via estrone)
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis IV (engineered)
-
-
ethene biosynthesis V (engineered)
-
-
Ether lipid metabolism
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
fatty acid biosynthesis initiation (plant mitochondria)
-
-
fatty acid biosynthesis initiation (type I)
-
-
fatty acid biosynthesis initiation (type II)
-
-
Fatty acid degradation
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
Fe(II) oxidation
-
-
firefly bioluminescence
-
-
Flavone and flavonol biosynthesis
-
-
flexixanthin biosynthesis
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
Fluorobenzoate degradation
-
-
Folate biosynthesis
-
-
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation I
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
formate to nitrite electron transfer
-
-
fructose 2,6-bisphosphate biosynthesis
-
-
Fructose and mannose metabolism
-
-
GABA shunt
-
-
Galactose metabolism
-
-
gamma-glutamyl cycle
-
-
GDP-alpha-D-glucose biosynthesis
-
-
GDP-mannose biosynthesis
-
-
Geraniol degradation
-
-
geranyl acetate biosynthesis
-
-
ginsenoside metabolism
-
-
gliotoxin biosynthesis
-
-
glucocorticoid biosynthesis
-
-
gluconeogenesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glucosylglycerol biosynthesis
-
-
glutamate and glutamine metabolism
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glutathione-peroxide redox reactions
-
-
glycerol degradation I
-
-
glycerol degradation to butanol
-
-
glycerol-3-phosphate shuttle
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to fumarate electron transfer
-
-
glycerol-3-phosphate to hydrogen peroxide electron transport
-
-
Glycerolipid metabolism
-
-
glycerophosphodiester degradation
-
-
Glycerophospholipid metabolism
-
-
glycine betaine biosynthesis
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate assimilation
-
-
glyoxylate cycle
-
-
guaiacol biosynthesis
-
-
guanine and guanosine salvage
-
-
guanine and guanosine salvage II
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
heme degradation I
-
-
heme metabolism
-
-
heparan sulfate degradation
-
-
heparin degradation
-
-
heterolactic fermentation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
homocysteine and cysteine interconversion
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
hypoglycin biosynthesis
-
-
IAA biosynthesis
-
-
incomplete reductive TCA cycle
-
-
indole glucosinolate activation (intact plant cell)
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
inosine 5'-phosphate degradation
-
-
Inositol phosphate metabolism
-
-
isoleucine metabolism
-
-
isoprene biosynthesis II (engineered)
-
-
isoprenoid biosynthesis
-
-
Isoquinoline alkaloid biosynthesis
-
-
jadomycin biosynthesis
-
-
jasmonic acid biosynthesis
-
-
justicidin B biosynthesis
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation III
-
-
L-alanine degradation V (oxidative Stickland reaction)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-arabinose degradation II
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis III (via N-acetyl-L-citrulline)
-
-
L-arginine biosynthesis IV (archaebacteria)
-
-
L-arginine degradation I (arginase pathway)
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-arginine degradation VII (arginase 3 pathway)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
L-arginine degradation XIII (reductive Stickland reaction)
-
-
L-arginine degradation XIV (oxidative Stickland reaction)
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-citrulline biosynthesis
-
-
L-citrulline degradation
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
L-dopa and L-dopachrome biosynthesis
-
-
L-dopa degradation I (mammalian)
-
-
L-dopa degradation II (bacterial)
-
-
L-glutamate biosynthesis I
-
-
L-glutamate degradation I
-
-
L-glutamate degradation II
-
-
L-glutamate degradation IV
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
L-glutamine biosynthesis I
-
-
L-glutamine biosynthesis III
-
-
L-glutamine degradation I
-
-
L-histidine degradation I
-
-
L-histidine degradation II
-
-
L-histidine degradation III
-
-
L-histidine degradation V
-
-
L-histidine degradation VI
-
-
L-isoleucine degradation I
-
-
L-isoleucine degradation II
-
-
L-lactaldehyde degradation
-
-
L-leucine degradation III
-
-
L-lysine degradation V
-
-
L-methionine degradation III
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-ornithine biosynthesis II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation I (aerobic)
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation V
-
-
L-phenylalanine degradation VI (reductive Stickland reaction)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
L-proline degradation I
-
-
L-serine biosynthesis I
-
-
L-tryptophan degradation I (via anthranilate)
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine biosynthesis IV
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation III
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
L-valine degradation I
-
-
L-valine degradation II
-
-
lactate fermentation
-
-
lacto-series glycosphingolipids biosynthesis
-
-
lactose degradation II
-
-
lanosterol biosynthesis
-
-
leucine metabolism
-
-
leukotriene biosynthesis
-
-
Limonene and pinene degradation
-
-
linamarin degradation
-
-
Linoleic acid metabolism
-
-
linustatin bioactivation
-
-
lipid metabolism
-
-
lipoxin biosynthesis
-
-
long chain fatty acid ester synthesis (engineered)
-
-
lotaustralin degradation
-
-
luteolin triglucuronide degradation
-
-
Lysine degradation
-
-
lysine metabolism
-
-
malate/L-aspartate shuttle pathway
-
-
mannitol cycle
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
melatonin degradation II
-
-
melibiose degradation
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methyl ketone biosynthesis (engineered)
-
-
methyl phomopsenoate biosynthesis
-
-
methylaspartate cycle
methylerythritol phosphate pathway I
-
-
methylerythritol phosphate pathway II
-
-
methylsalicylate degradation
-
-
mevalonate degradation
-
-
mevalonate metabolism
-
-
mevalonate pathway I (eukaryotes and bacteria)
-
-
mevalonate pathway II (haloarchaea)
-
-
mevalonate pathway III (Thermoplasma)
-
-
mevalonate pathway IV (archaea)
-
-
Microbial metabolism in diverse environments
-
-
mineralocorticoid biosynthesis
-
-
mitochondrial L-carnitine shuttle
-
-
mixed acid fermentation
-
-
mono-trans, poly-cis decaprenyl phosphate biosynthesis
-
-
Monoterpenoid biosynthesis
-
-
mucin core 1 and core 2 O-glycosylation
-
-
Mucin type O-glycan biosynthesis
-
-
mupirocin biosynthesis
-
-
myo-inositol biosynthesis
N-Glycan biosynthesis
-
-
NAD metabolism
-
-
NAD salvage (plants)
-
-
NAD salvage pathway I (PNC VI cycle)
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
NAD(P)/NADPH interconversion
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
Naphthalene degradation
-
-
neolinustatin bioactivation
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
Nicotinate and nicotinamide metabolism
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction IX (dissimilatory)
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
nitrate reduction VII (denitrification)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
nitric oxide biosynthesis II (mammals)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
Nitrogen metabolism
-
-
Nitrotoluene degradation
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
Novobiocin biosynthesis
-
-
nucleoside and nucleotide degradation (archaea)
-
-
O-antigen biosynthesis
-
-
o-diquinones biosynthesis
-
-
octane oxidation
oleandomycin activation/inactivation
-
-
oleate beta-oxidation
-
-
oleate beta-oxidation (isomerase-dependent, yeast)
-
-
oleate biosynthesis II (animals and fungi)
-
-
One carbon pool by folate
-
-
Other glycan degradation
-
-
Other types of O-glycan biosynthesis
-
-
oxidative decarboxylation of pyruvate
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
palmitoyl ethanolamide biosynthesis
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
partial TCA cycle (obligate autotrophs)
-
-
pederin biosynthesis
-
-
Penicillin and cephalosporin biosynthesis
-
-
pentachlorophenol degradation
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) I
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
pentose phosphate pathway (oxidative branch) I
-
-
pentose phosphate pathway (partial)
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
pheomelanin biosynthesis
-
-
phosphate acquisition
-
-
phosphatidate biosynthesis (yeast)
-
-
phosphatidate metabolism, as a signaling molecule
-
-
phosphatidylcholine acyl editing
-
-
phosphatidylcholine biosynthesis I
-
-
phosphatidylcholine biosynthesis II
-
-
phosphatidylcholine resynthesis via glycerophosphocholine
-
-
phosphatidylethanolamine biosynthesis II
-
-
phosphatidylethanolamine bioynthesis
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
Phosphonate and phosphinate metabolism
-
-
phosphopantothenate biosynthesis I
-
-
photosynthesis
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
phytate degradation I
-
-
phytochelatins biosynthesis
-
-
phytol degradation
-
-
phytosterol biosynthesis (plants)
-
-
pinitol biosynthesis I
-
-
plasmalogen biosynthesis
-
-
plasmalogen degradation
-
-
platensimycin biosynthesis
-
-
poly-hydroxy fatty acids biosynthesis
-
-
Porphyrin and chlorophyll metabolism
-
-
Primary bile acid biosynthesis
-
-
procollagen hydroxylation and glycosylation
-
-
progesterone biosynthesis
-
-
proline metabolism
-
-
proline to cytochrome bo oxidase electron transfer
-
-
propanoate fermentation to 2-methylbutanoate
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
propanoyl-CoA degradation II
-
-
propionate fermentation
-
-
protein ubiquitination
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
purine deoxyribonucleosides salvage
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine ribonucleosides degradation
-
-
putrescine biosynthesis III
-
-
putrescine degradation III
-
-
pyrimidine deoxyribonucleosides degradation
-
-
pyrimidine deoxyribonucleosides salvage
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
pyrimidine ribonucleosides degradation
-
-
pyrimidine ribonucleosides salvage I
-
-
pyrimidine ribonucleosides salvage II
-
-
pyruvate decarboxylation to acetyl CoA I
-
-
pyruvate decarboxylation to acetyl CoA II
-
-
pyruvate fermentation to (S)-lactate
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
pyruvate fermentation to butanol I
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
resolvin D biosynthesis
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
ricinoleate biosynthesis
-
-
rosmarinic acid biosynthesis I
-
-
rosmarinic acid biosynthesis II
-
-
Rubisco shunt
-
-
salicylate biosynthesis I
-
-
salidroside biosynthesis
-
-
salinosporamide A biosynthesis
-
-
saponin biosynthesis II
-
-
seleno-amino acid detoxification and volatilization I
-
-
seleno-amino acid detoxification and volatilization III
-
-
Selenocompound metabolism
-
-
serine metabolism
-
-
serotonin and melatonin biosynthesis
-
-
serotonin degradation
-
-
sesamin biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
sitosterol degradation to androstenedione
-
-
sophorolipid biosynthesis
-
-
sorgoleone biosynthesis
-
-
sphingolipid biosynthesis (mammals)
-
-
Sphingolipid metabolism
-
-
sphingomyelin metabolism
-
-
sphingosine metabolism
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
sporopollenin precursors biosynthesis
-
-
stachyose degradation
-
-
Starch and sucrose metabolism
-
-
starch biosynthesis
-
-
starch degradation
-
-
starch degradation III
-
-
starch degradation V
-
-
stellatic acid biosynthesis
-
-
Steroid biosynthesis
-
-
Steroid degradation
-
-
Steroid hormone biosynthesis
-
-
sterol biosynthesis (methylotrophs)
-
-
sterol:steryl ester interconversion (yeast)
-
-
stigma estolide biosynthesis
-
-
streptomycin biosynthesis
-
-
Streptomycin biosynthesis
-
-
Styrene degradation
-
-
suberin monomers biosynthesis
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis III
-
-
sucrose degradation I (sucrose phosphotransferase)
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sucrose degradation VII (sucrose 3-dehydrogenase)
-
-
sulfolactate degradation III
-
-
sulfopterin metabolism
-
-
sulfur volatiles biosynthesis
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of methylsalicylate metabolism
-
-
superpathway of photosynthetic hydrogen production
-
-
Taurine and hypotaurine metabolism
-
-
taurine biosynthesis I
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
terminal O-glycans residues modification (via type 2 precursor disaccharide)
-
-
Terpenoid backbone biosynthesis
-
-
testosterone and androsterone degradation to androstendione (aerobic)
-
-
tetrahydrofolate biosynthesis
-
-
tetrahydrofolate metabolism
-
-
tetrahydropteridine recycling
-
-
tetrapyrrole biosynthesis I (from glutamate)
-
-
tetrapyrrole biosynthesis II (from glycine)
-
-
the visual cycle I (vertebrates)
-
-
theophylline degradation
-
-
Thiamine metabolism
-
-
thymine degradation
-
-
thyroid hormone biosynthesis
-
-
thyroid hormone metabolism I (via deiodination)
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
Toluene degradation
-
-
trans, trans-farnesyl diphosphate biosynthesis
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
triacylglycerol degradation
-
-
trimethylamine degradation
-
-
tRNA charging
-
-
tRNA processing
-
-
tRNA splicing I
-
-
tRNA splicing II
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
tunicamycin biosynthesis
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
UDP-alpha-D-glucose biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
uracil degradation I (reductive)
-
-
urate conversion to allantoin I
-
-
urate conversion to allantoin II
-
-
urate conversion to allantoin III
-
-
urea cycle
urea degradation II
-
-
UTP and CTP dephosphorylation I
-
-
UTP and CTP dephosphorylation II
-
-
valine metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
valproate beta-oxidation
-
-
vancomycin resistance I
-
-
vanillin biosynthesis I
-
-
Various types of N-glycan biosynthesis
-
-
vitamin B1 metabolism
-
-
Vitamin B6 metabolism
-
-
vitamin D3 biosynthesis
-
-
vitamin D3 metabolism
-
-
vitamin K metabolism
-
-
vitamin K-epoxide cycle
-
-
volatile esters biosynthesis (during fruit ripening)
-
-
xanthine and xanthosine salvage
-
-
xylitol degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
zymosterol biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
in addition to gonadotropes the enzyme is observed in a subpopulation of corticotropes and tyrotropes
Manually annotated by BRENDA team
-
beta1-subunit, alpha2-subunit not present
Manually annotated by BRENDA team
-
mRNAs coding for all subunits high and homogeneously distributed
Manually annotated by BRENDA team
-
low expression of all subunit mRNAs in many of the white matter tracts
Manually annotated by BRENDA team
-
low expression
Manually annotated by BRENDA team
-
a subpopulation of
Manually annotated by BRENDA team
-
predominant cell type expressing glucokinase
Manually annotated by BRENDA team
expression of the primary form of PGES, mPGES-1
Manually annotated by BRENDA team
-
alpha1 subunit mRNA with restricted distribution in mesencephalic areas, moderate to high levels in the dorsal aspects of the periaqueductal gray, vestibular lateral and medial nuclei, and in prepositus hypoglossal nuclei, low alpha1 and alpha2 mRNA in the dorsal raphe nucleus, pedunculopontine tegmental nucleus, and oculomotor nuclei. Expression for alpha subunits pronounced in pontine nuclei
Manually annotated by BRENDA team
moderate expression
Manually annotated by BRENDA team
moderate expression
Manually annotated by BRENDA team
moderate expression
Manually annotated by BRENDA team
moderate expression
Manually annotated by BRENDA team
high expression
Manually annotated by BRENDA team
high expression of isoform CHIA-L1, no expression of isoform CHIA
Manually annotated by BRENDA team
-
many of the thalamic nuclei contain the three subunits, alpha1 and beta1 mRNA in both the anterior and posterior ventralis nuclei and in the pulvinar and reticular nuclei, alpha2 subunit mRNA is present at low levels in the pulvinar nucleus and barely detectable in other thalamic nuclei
Manually annotated by BRENDA team
moderate expression, epithelial cells and stromal cells
Manually annotated by BRENDA team
-
in the epithelium from the proximal segment to the distal portion of the vas deferens and ampulla
Manually annotated by BRENDA team
additional information
LINKS TO OTHER DATABASES (specific for Macaca fascicularis)