Information on Organism Cricetulus griseus

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
preliminary BRENDA-supplied EC number
deleted, the activty is included in EC 1.3.5.1, succinate dehydrogenase (quinone)
transferred to EC 1.7.1.1, nitrate reductase (NADH), EC 1.7.1.2, nitrate reductase [NAD(P)H], EC 1.7.1.3, nitrate reductase (NADPH), EC 1.7.5.1, nitrate reductase (quinone), EC 1.7.7.2, nitrate reductase (ferredoxin) and EC 1.9.6.1, nitrate reductase (cytochrome)
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
deleted 2008. Now divided into EC 4.3.1.23 (tyrosine ammonia-lyase), EC 4.3.1.24 (phenylalanine ammonia-lyase) and EC 4.3.1.25 (phenylalanine/tyrosine ammonia-lyase)
transferred to EC 5.4.2.11, EC 5.4.2.12. Now recognized as two separate enzymes EC 5.4.2.11, phosphoglycerate mutase (2,3-diphosphoglycerate-dependent) and EC 5.4.2.12, phosphoglycerate mutase (2,3-diphosphoglycerate-independent)
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
Caprolactam degradation
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
ethylene glycol biosynthesis (engineered)
-
-
Glycerolipid metabolism
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
lipid metabolism
-
-
Pentose and glucuronate interconversions
-
-
pyruvate fermentation to butanol I
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
Cysteine and methionine metabolism
-
-
L-homoserine biosynthesis
-
-
Lysine biosynthesis
-
-
threonine metabolism
-
-
(R,R)-butanediol biosynthesis
-
-
(R,R)-butanediol degradation
-
-
acetoin degradation
-
-
Butanoate metabolism
-
-
1,3-propanediol biosynthesis (engineered)
-
-
glycerol-3-phosphate shuttle
-
-
Glycerophospholipid metabolism
-
-
phosphatidate biosynthesis (yeast)
-
-
D-sorbitol degradation I
-
-
degradation of sugar alcohols
-
-
Fructose and mannose metabolism
-
-
D-galactose degradation IV
-
-
Folate biosynthesis
-
-
Galactose metabolism
-
-
L-arabinose degradation II
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Ascorbate and aldarate metabolism
-
-
non-pathway related
-
-
teichuronic acid biosynthesis (B. subtilis 168)
-
-
UDP-alpha-D-glucuronate biosynthesis (from UDP-glucose)
-
-
D-xylose degradation IV
-
-
glycolate and glyoxylate degradation
-
-
Glyoxylate and dicarboxylate metabolism
-
-
L-arabinose degradation IV
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
Bifidobacterium shunt
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
Propanoate metabolism
-
-
pyruvate fermentation to (S)-lactate
-
-
Pyruvate metabolism
-
-
superpathway of glucose and xylose degradation
-
-
alanine metabolism
-
-
L-alanine degradation II (to D-lactate)
-
-
vancomycin resistance I
-
-
isoprene biosynthesis II (engineered)
-
-
mevalonate metabolism
-
-
mevalonate pathway I
-
-
mevalonate pathway II (archaea)
-
-
mevalonate pathway III (archaea)
-
-
Terpenoid backbone biosynthesis
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
formaldehyde assimilation I (serine pathway)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glyoxylate cycle
-
-
incomplete reductive TCA cycle
-
-
malate/L-aspartate shuttle pathway
-
-
Methane metabolism
-
-
methylaspartate cycle
-
-
partial TCA cycle (obligate autotrophs)
-
-
pyruvate fermentation to propanoate I
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
gluconeogenesis
-
-
L-carnitine degradation III
-
-
L-malate degradation II
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
photosynthesis
-
-
L-glutamine biosynthesis III
-
-
ethylene biosynthesis V (engineered)
-
-
Glutathione metabolism
-
-
NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
glucose degradation (oxidative)
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde oxidation I
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
androgen and estrogen metabolism
-
-
Steroid degradation
-
-
Steroid hormone biosynthesis
-
-
testosterone and androsterone degradation to androstendione
-
-
estradiol biosynthesis I (via estrone)
-
-
methylglyoxal degradation VI
-
-
mevalonate degradation
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
adenosine nucleotides degradation I
-
-
Drug metabolism - other enzymes
-
-
guanosine ribonucleotides de novo biosynthesis
-
-
inosine 5'-phosphate degradation
-
-
Purine metabolism
-
-
purine metabolism
-
-
allopregnanolone biosynthesis
-
-
bile acid biosynthesis, neutral pathway
mannitol biosynthesis
-
-
cholesterol biosynthesis
-
-
cholesterol biosynthesis (plants)
-
-
cholesterol biosynthesis I
-
-
cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
-
-
phytosterol biosynthesis (plants)
-
-
Steroid biosynthesis
-
-
sterol biosynthesis (methylotrophs)
-
-
zymosterol biosynthesis
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
protein S-nitrosylation and denitrosylation
-
-
(1'S,5'S)-averufin biosynthesis
-
-
Aflatoxin biosynthesis
-
-
methylglyoxal degradation V
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
methane metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
glycine metabolism
-
-
photorespiration
-
-
glycerol degradation I
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to fumarate electron transfer
-
-
glycerol-3-phosphate to hydrogen peroxide electron transport
-
-
glycerophosphodiester degradation
-
-
nitrate reduction IX (dissimilatory)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
alkane oxidation
-
-
Arginine and proline metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
beta-Alanine metabolism
-
-
beta-methyl-branched fatty acid alpha-oxidation
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide degradation by alpha-oxidation
-
-
dimethylsulfoniopropanoate biosynthesis I (Wollastonia)
-
-
dimethylsulfoniopropanoate biosynthesis II (Spartina)
-
-
dopamine degradation
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
fatty acid alpha-oxidation I (plants)
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
hypotaurine degradation
-
-
Insect hormone biosynthesis
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
Lysine degradation
-
-
NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast)
-
-
octane oxidation
putrescine degradation III
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
Tryptophan metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
1,2-dichloroethane degradation
-
-
acetate fermentation
-
-
pyruvate fermentation to acetate VIII
-
-
Phenylalanine metabolism
-
-
tryptophan metabolism
-
-
2,4-dinitrotoluene degradation
-
-
L-valine degradation I
-
-
L-lysine degradation XI (mammalian)
-
-
lysine metabolism
-
-
arginine metabolism
-
-
Carbapenem biosynthesis
-
-
L-citrulline biosynthesis
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-ornithine biosynthesis II
-
-
L-proline biosynthesis I (from L-glutamate)
-
-
proline metabolism
-
-
bacterial bioluminescence
-
-
Cutin, suberine and wax biosynthesis
-
-
acetyl-CoA biosynthesis II (NADP-dependent pyruvate dehydrogenase)
-
-
oxidative decarboxylation of pyruvate
-
-
plasmalogen biosynthesis
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
sporopollenin precursors biosynthesis
-
-
wax esters biosynthesis I
-
-
Alanine, aspartate and glutamate metabolism
-
-
ethylene biosynthesis II (microbes)
-
-
L-arginine degradation I (arginase pathway)
-
-
L-proline degradation
-
-
Nicotinate and nicotinamide metabolism
-
-
Vitamin B6 metabolism
-
-
acetyl CoA biosynthesis
-
-
pyruvate decarboxylation to acetyl CoA
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
vitamin B1 metabolism
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
isoleucine metabolism
-
-
pantothenate biosynthesis
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
UMP biosynthesis III
-
-
androgen biosynthesis
-
-
Brassinosteroid biosynthesis
-
-
digitoxigenin biosynthesis
-
-
ergosterol biosynthesis II
-
-
cholesterol biosynthesis III (via desmosterol)
-
-
dolichol and dolichyl phosphate biosynthesis
N-Glycan biosynthesis
-
-
Porphyrin and chlorophyll metabolism
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(5Z)-dodecenoate biosynthesis II
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
6-gingerol analog biosynthesis (engineered)
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
Biosynthesis of unsaturated fatty acids
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
jasmonic acid biosynthesis
-
-
methyl ketone biosynthesis (engineered)
-
-
oleate beta-oxidation (isomerase-dependent, yeast)
-
-
propanoyl-CoA degradation II
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Oxidative phosphorylation
-
-
propionate fermentation
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
UMP biosynthesis I
-
-
Benzoate degradation
-
-
fatty acid salvage
-
-
oleate beta-oxidation
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
UMP biosynthesis II
-
-
4-aminobutanoate degradation V
-
-
Arginine biosynthesis
-
-
ethylene biosynthesis IV (engineered)
-
-
glutamate and glutamine metabolism
-
-
L-glutamate degradation I
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
Nitrogen metabolism
-
-
Taurine and hypotaurine metabolism
-
-
D-Glutamine and D-glutamate metabolism
-
-
GABA shunt
-
-
L-glutamate biosynthesis II
-
-
L-glutamate degradation X
-
-
D-Arginine and D-ornithine metabolism
-
-
L-lysine degradation V
-
-
Penicillin and cephalosporin biosynthesis
-
-
Isoquinoline alkaloid biosynthesis
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
melatonin degradation II
-
-
4-amino-2-methyl-5-phosphomethylpyrimidine biosynthesis
-
-
pyridoxal 5'-phosphate biosynthesis I
-
-
pyridoxal 5'-phosphate salvage I
-
-
pyridoxal 5'-phosphate salvage II (plants)
-
-
vitamin B6 metabolism
-
-
L-threonine degradation III (to methylglyoxal)
-
-
phenylethylamine degradation I
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
beta-alanine biosynthesis I
-
-
N-methyl-Delta1-pyrrolinium cation biosynthesis
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-ornithine degradation II (Stickland reaction)
-
-
L-proline biosynthesis II (from arginine)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
One carbon pool by folate
-
-
tetrahydrofolate biosynthesis
-
-
tetrahydrofolate metabolism
-
-
folate transformations I
-
-
formaldehyde oxidation VII (THF pathway)
-
-
formate assimilation into 5,10-methylenetetrahydrofolate
-
-
purine nucleobases degradation II (anaerobic)
-
-
reductive acetyl coenzyme A pathway
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
creatinine degradation
-
-
creatinine degradation I
-
-
creatinine degradation II
-
-
glycine betaine degradation I
-
-
polyamine pathway
-
-
spermine and spermidine degradation I
-
-
beta-alanine biosynthesis IV
-
-
spermine and spermidine degradation III
-
-
superpathway of photosynthetic hydrogen production
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
vitamin K-epoxide cycle
-
-
4-nitrophenol degradation I
-
-
Aminobenzoate degradation
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
allantoin degradation
-
-
Caffeine metabolism
-
-
urate conversion to allantoin I
-
-
nitrate assimilation
-
-
glutathione metabolism
-
-
glutathione-peroxide redox reactions
-
-
Selenocompound metabolism
-
-
thioredoxin pathway
-
-
gliotoxin biosynthesis
-
-
ascorbate glutathione cycle
-
-
ascorbate recycling (cytosolic)
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
dissimilatory sulfate reduction II (to thiosulfate)
-
-
sulfate reduction
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
Sulfur metabolism
-
-
o-diquinones biosynthesis
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
sesamin biosynthesis
-
-
photosynthesis light reactions
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
luteolin triglucuronide degradation
-
-
Phenylpropanoid biosynthesis
-
-
thyroid hormone biosynthesis
-
-
2-nitrotoluene degradation
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
phenol degradation
-
-
Styrene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
Xylene degradation
-
-
L-tyrosine degradation I
-
-
divinyl ether biosynthesis II
-
-
Linoleic acid metabolism
-
-
plastoquinol-9 biosynthesis I
-
-
vitamin E biosynthesis (tocopherols)
-
-
anandamide lipoxygenation
-
-
15-epi-lipoxin biosynthesis
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
leukotriene biosynthesis
-
-
lipoxin biosynthesis
-
-
resolvin D biosynthesis
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
L-tryptophan degradation I (via anthranilate)
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
procollagen hydroxylation and glycosylation
-
-
nicotine degradation IV
-
-
nitric oxide biosynthesis II (mammals)
-
-
1,5-anhydrofructose degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
Amaryllidacea alkaloids biosynthesis
-
-
bupropion degradation
-
-
melatonin degradation I
-
-
nicotine degradation V
-
-
vanillin biosynthesis I
-
-
epoxysqualene biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
heme degradation I
-
-
heme metabolism
-
-
Primary bile acid biosynthesis
-
-
Cyanoamino acid metabolism
-
-
Diterpenoid biosynthesis
-
-
glucocorticoid biosynthesis
-
-
mineralocorticoid biosynthesis
-
-
astaxanthin biosynthesis (bacteria, fungi, algae)
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
flexixanthin biosynthesis
-
-
L-phenylalanine degradation I (aerobic)
-
-
L-phenylalanine degradation V
-
-
L-tyrosine biosynthesis IV
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
betalamic acid biosynthesis
-
-
catecholamine biosynthesis
rosmarinic acid biosynthesis II
-
-
Betalain biosynthesis
-
-
firefly bioluminescence
-
-
L-dopa and L-dopachrome biosynthesis
-
-
pheomelanin biosynthesis
-
-
CMP-N-glycoloylneuraminate biosynthesis
-
-
oleate biosynthesis II (animals and fungi)
-
-
sorgoleone biosynthesis
-
-
gamma-linolenate biosynthesis II (animals)
-
-
icosapentaenoate biosynthesis II (6-desaturase, mammals)
-
-
arachidonate biosynthesis
-
-
arachidonate biosynthesis I (6-desaturase, lower eukaryotes)
-
-
arachidonate biosynthesis IV (8-detaturase, lower eukaryotes)
-
-
icosapentaenoate biosynthesis I (lower eukaryotes)
-
-
icosapentaenoate biosynthesis V (8-desaturase, lower eukaryotes)
-
-
C20 prostanoid biosynthesis
-
-
Ether lipid metabolism
-
-
hypusine biosynthesis
-
-
ethylene biosynthesis III (microbes)
-
-
adenosine nucleotides degradation II
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
purine nucleobases degradation I (anaerobic)
-
-
theophylline degradation
-
-
adenosine deoxyribonucleotides de novo biosynthesis
-
-
adenosine deoxyribonucleotides de novo biosynthesis II
-
-
guanosine deoxyribonucleotides de novo biosynthesis I
-
-
guanosine deoxyribonucleotides de novo biosynthesis II
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis I
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis III
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis IV
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
Photosynthesis
-
-
nitrogen fixation I (ferredoxin)
-
-
thyroid hormone metabolism I (via deiodination)
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
serotonin and melatonin biosynthesis
-
-
glycine betaine degradation II (mammalian)
-
-
L-methionine salvage from L-homocysteine
-
-
3,5-dimethoxytoluene biosynthesis
-
-
betaxanthin biosynthesis
-
-
guaiacol biosynthesis
-
-
L-dopa degradation
-
-
glutathione-mediated detoxification II
-
-
sulfur volatiles biosynthesis
-
-
phosphatidylcholine biosynthesis V
-
-
phosphatidylethanolamine bioynthesis
-
-
glycine betaine biosynthesis
-
-
glycine betaine biosynthesis IV (from glycine)
-
-
glycine betaine biosynthesis V (from glycine)
-
-
pyrimidine deoxyribonucleosides salvage
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
pinitol biosynthesis I
-
-
caffeine biosynthesis I
-
-
caffeine biosynthesis II (via paraxanthine)
-
-
theobromine biosynthesis I
-
-
diphthamide biosynthesis II (eukaryotes)
-
-
folate polyglutamylation
glycine biosynthesis I
-
-
5-aminoimidazole ribonucleotide biosynthesis I
-
-
tetrahydrofolate salvage from 5,10-methenyltetrahydrofolate
-
-
inosine-5'-phosphate biosynthesis I
-
-
inosine-5'-phosphate biosynthesis II
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaebacteria)
-
-
L-citrulline degradation
-
-
urea cycle
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
pentose phosphate pathway (non-oxidative branch)
-
-
Rubisco shunt
-
-
isoprenoid biosynthesis
-
-
methylerythritol phosphate pathway I
-
-
methylerythritol phosphate pathway II
-
-
Thiamine metabolism
-
-
thiazole biosynthesis I (facultative anaerobic bacteria)
-
-
thiazole biosynthesis II (aerobic bacteria)
-
-
3-dehydroquinate biosynthesis II (archaea)
-
-
chorismate metabolism
-
-
Nitrotoluene degradation
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
2-deoxy-D-ribose degradation II
-
-
2-methylpropene degradation
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
acetoacetate degradation (to acetyl CoA)
-
-
acetyl-CoA fermentation to butanoate II
-
-
butanoate fermentation
-
-
CO2 fixation in Crenarchaeota
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
ethylmalonyl-CoA pathway
-
-
glutaryl-CoA degradation
-
-
isopropanol biosynthesis (engineered)
-
-
ketogenesis
-
-
ketolysis
-
-
L-lysine fermentation to acetate and butanoate
-
-
methyl tert-butyl ether degradation
-
-
polyhydroxybutanoate biosynthesis
-
-
pyruvate fermentation to acetone
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to hexanol (engineered)
-
-
Synthesis and degradation of ketone bodies
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
CDP-diacylglycerol biosynthesis
-
-
CDP-diacylglycerol biosynthesis I
-
-
CDP-diacylglycerol biosynthesis II
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
oleate biosynthesis III (cyanobacteria)
-
-
palmitoyl ethanolamide biosynthesis
-
-
stigma estolide biosynthesis
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
4-ethylphenol degradation (anaerobic)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
4-oxopentanoate degradation
-
-
androstenedione degradation
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
Ethylbenzene degradation
-
-
fatty acid beta-oxidation I (generic)
-
-
Fatty acid elongation
-
-
fermentation to 2-methylbutanoate
-
-
Geraniol degradation
-
-
L-isoleucine degradation I
-
-
sitosterol degradation to androstenedione
-
-
monoacylglycerol metabolism (yeast)
-
-
dimorphecolate biosynthesis
-
-
docosahexaenoate biosynthesis I (lower eukaryotes)
-
-
hydroxylated fatty acid biosynthesis (plants)
-
-
linoleate biosynthesis I (plants)
-
-
phosphatidylcholine acyl editing
-
-
phosphatidylcholine biosynthesis VII
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
ricinoleate biosynthesis
-
-
ceramide biosynthesis
-
-
ceramide de novo biosynthesis
-
-
sphingolipid biosynthesis (plants)
-
-
Sphingolipid metabolism
-
-
sterol:steryl ester interconversion (yeast)
-
-
Biosynthesis of various secondary metabolites - part 3
-
-
cysteine metabolism
-
-
D-cycloserine biosynthesis
-
-
L-cysteine biosynthesis I
-
-
L-cysteine biosynthesis VII (from S-sulfo-L-cysteine)
-
-
N-3-oxalyl-L-2,3-diaminopropanoate biosynthesis
-
-
seleno-amino acid biosynthesis (plants)
-
-
sphingolipid biosynthesis (yeast)
-
-
CDP-diacylglycerol biosynthesis III
-
-
palmitoleate biosynthesis III (cyanobacteria)
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (animals and fungi, cytoplasm)
-
-
palmitate biosynthesis (animals and fungi, cytoplasm)
-
-
methanogenesis from CO2
-
-
methanogenesis from H2 and CO2
-
-
reductive acetyl coenzyme A pathway II (autotrophic methanogens)
-
-
NAD salvage pathway V (PNC V cycle)
-
-
gamma-glutamyl cycle
-
-
hypoglycin biosynthesis
-
-
Arg/N-end rule pathway (eukaryotic)
-
-
protein ubiquitination
-
-
acetyl-CoA biosynthesis III (from citrate)
-
-
ferrichrome A biosynthesis
-
-
coenzyme B biosynthesis
-
-
FeMo cofactor biosynthesis
-
-
L-lysine biosynthesis IV
-
-
L-lysine biosynthesis V
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
Starch and sucrose metabolism
-
-
starch degradation III
-
-
starch degradation V
-
-
sucrose biosynthesis II
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis II (from UDP-D-Glucose)
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis III
-
-
chitin biosynthesis
-
-
saponin biosynthesis II
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
starch biosynthesis
-
-
starch degradation
-
-
starch degradation II
-
-
ABH and Lewis epitopes biosynthesis from type 2 precursor disaccharide
-
-
biosynthesis of Lewis epitopes (H. pylori)
-
-
complex N-linked glycan biosynthesis (vertebrates)
-
-
Glycosaminoglycan biosynthesis - keratan sulfate
-
-
i antigen and I antigen biosynthesis
-
-
terminal O-glycans residues modification (via type 2 precursor disaccharide)
-
-
Various types of N-glycan biosynthesis
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
mucin core 1 and core 2 O-glycosylation
-
-
mucin core 3 and core 4 O-glycosylation
-
-
Mucin type O-glycan biosynthesis
-
-
Other types of O-glycan biosynthesis
-
-
gala-series glycosphingolipids biosynthesis
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
ganglio-series glycosphingolipids biosynthesis
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
complex N-linked glycan biosynthesis (plants)
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
lacto-series glycosphingolipids biosynthesis
-
-
globo-series glycosphingolipids biosynthesis
-
-
neolacto-series glycosphingolipids biosynthesis
-
-
dolichyl-diphosphooligosaccharide biosynthesis
-
-
protein N-glycosylation (Haloferax volcanii)
-
-
protein N-glycosylation initial phase (eukaryotic)
-
-
protein O-mannosylation I (yeast)
-
-
protein O-mannosylation II (mammals, core M1 and core M2)
-
-
protein O-mannosylation III (mammals, core M3)
-
-
Escherichia coli serotype O86 O-antigen biosynthesis
-
-
O-antigen biosynthesis
-
-
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate
-
-
Glycosaminoglycan biosynthesis - heparan sulfate / heparin
-
-
glycosaminoglycan-protein linkage region biosynthesis
-
-
Mannose type O-glycan biosynthesis
-
-
chondroitin biosynthesis
-
-
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis
-
-
heparan sulfate biosynthesis (late stages)
-
-
protein O-[N-acetyl]-glucosylation
-
-
beta-(1,4)-mannan degradation
-
-
Arabinogalactan biosynthesis - Mycobacterium
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
arsenate detoxification I (mammalian)
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
guanine and guanosine salvage
-
-
nucleoside and nucleotide degradation (archaea)
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
purine ribonucleosides degradation
-
-
salinosporamide A biosynthesis
-
-
xanthine and xanthosine salvage
-
-
pyrimidine deoxyribonucleosides degradation
-
-
pyrimidine ribonucleosides degradation
-
-
(aminomethyl)phosphonate degradation
-
-
adenine and adenosine salvage II
-
-
adenine salvage
-
-
glyphosate degradation III
-
-
guanine and guanosine salvage II
-
-
5-aminoimidazole ribonucleotide biosynthesis II
-
-
superpathway of 5-aminoimidazole ribonucleotide biosynthesis
-
-
NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde
-
-
NAD de novo biosynthesis I (from aspartate)
-
-
NAD metabolism
-
-
nicotine biosynthesis
-
-
superpathway of nicotine biosynthesis
-
-
S-methyl-5'-thioadenosine degradation II
-
-
queuosine biosynthesis I (de novo)
-
-
queuosine biosynthesis III (queuosine salvage)
-
-
Flavone and flavonol biosynthesis
-
-
2'-deoxymugineic acid phytosiderophore biosynthesis
-
-
ethylene biosynthesis I (plants)
-
-
L-methionine degradation I (to L-homocysteine)
-
-
S-adenosyl-L-methionine biosynthesis
-
-
S-adenosyl-L-methionine cycle II
-
-
all-trans-farnesol biosynthesis
-
-
bisabolene biosynthesis (engineered)
-
-
methyl phomopsenoate biosynthesis
-
-
stellatic acid biosynthesis
-
-
trans, trans-farnesyl diphosphate biosynthesis
-
-
spermidine biosynthesis I
-
-
4-hydroxy-2-nonenal detoxification
-
-
camalexin biosynthesis
-
-
glutathione-mediated detoxification I
-
-
indole glucosinolate activation (intact plant cell)
-
-
pentachlorophenol degradation
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
rubber biosynthesis
-
-
L-nicotianamine biosynthesis
-
-
tetrapyrrole biosynthesis I (from glutamate)
-
-
tetrapyrrole biosynthesis II (from glycine)
-
-
cis-zeatin biosynthesis
-
-
Zeatin biosynthesis
-
-
(R)-cysteate degradation
-
-
aspartate and asparagine metabolism
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-glutamate degradation II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation VI (Stickland reaction)
-
-
Novobiocin biosynthesis
-
-
sulfolactate degradation III
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation III
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-hydroxyphenylpyruvate biosynthesis
-
-
atromentin biosynthesis
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (Stickland reaction)
-
-
rosmarinic acid biosynthesis I
-
-
CMP-legionaminate biosynthesis I
-
-
UDP-GlcNAc biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
Glucosinolate biosynthesis
-
-
L-alanine biosynthesis I
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis III
-
-
L-isoleucine biosynthesis IV
-
-
L-isoleucine biosynthesis V
-
-
L-leucine biosynthesis
-
-
L-leucine degradation I
-
-
L-leucine degradation IV (Stickland reaction)
-
-
L-valine biosynthesis
-
-
Pantothenate and CoA biosynthesis
-
-
Valine, leucine and isoleucine biosynthesis
-
-
L-serine biosynthesis II
-
-
serine metabolism
-
-
L-arginine degradation II (AST pathway)
-
-
GDP-glucose biosynthesis
-
-
glucose and glucose-1-phosphate degradation
-
-
glycolysis
-
-
glycolysis III (from glucose)
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
Streptomycin biosynthesis
-
-
sucrose degradation III (sucrose invertase)
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
mannitol cycle
-
-
metabolism of disaccharids
-
-
sucrose degradation I (sucrose phosphotransferase)
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation VII (sucrose 3-dehydrogenase)
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-galactose detoxification
-
-
degradation of hexoses
-
-
stachyose degradation
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis IV (plant cytosol)
-
-
degradation of pentoses
-
-
ribose phosphorylation
-
-
adenine and adenosine salvage VI
-
-
NAD salvage pathway IV (from nicotinamide riboside)
-
-
NAD phosphorylation and dephosphorylation
-
-
NAD phosphorylation and transhydrogenation
-
-
NAD/NADH phosphorylation and dephosphorylation
-
-
sulfate activation for sulfonation
-
-
cell-surface glycoconjugate-linked phosphocholine biosynthesis
-
-
phosphatidylcholine biosynthesis I
-
-
type IV lipoteichoic acid biosynthesis (S. pneumoniae)
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
glycerol degradation to butanol
-
-
glycolysis V (Pyrococcus)
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
pyrimidine ribonucleosides salvage I
-
-
1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza)
-
-
1D-myo-inositol hexakisphosphate biosynthesis IV (Dictyostelium)
-
-
Inositol phosphate metabolism
-
-
3-phosphoinositide biosynthesis
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
streptomycin biosynthesis
-
-
guanine and guanosine salvage III
-
-
purine deoxyribonucleosides salvage
-
-
ceramide degradation (generic)
-
-
sphingosine metabolism
-
-
phosphatidate metabolism, as a signaling molecule
-
-
type I lipoteichoic acid biosynthesis (S. aureus)
-
-
1D-myo-inositol hexakisphosphate biosynthesis I (from Ins(1,4,5)P3)
-
-
1D-myo-inositol hexakisphosphate biosynthesis II (mammalian)
-
-
D-myo-inositol (1,3,4)-trisphosphate biosynthesis
-
-
D-myo-inositol-5-phosphate metabolism
-
-
1D-myo-inositol hexakisphosphate biosynthesis V (from Ins(1,3,4)P3)
-
-
D-myo-inositol (1,4,5,6)-tetrakisphosphate biosynthesis
-
-
ascorbate metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
dipicolinate biosynthesis
-
-
ectoine biosynthesis
-
-
grixazone biosynthesis
-
-
L-lysine biosynthesis I
-
-
L-lysine biosynthesis II
-
-
L-lysine biosynthesis III
-
-
L-lysine biosynthesis VI
-
-
L-methionine biosynthesis IV (archaea)
-
-
Monobactam biosynthesis
-
-
norspermidine biosynthesis
-
-
spermidine biosynthesis II
-
-
creatine-phosphate biosynthesis
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
CMP phosphorylation
-
-
ppGpp metabolism
-
-
pyrimidine deoxyribonucleotide phosphorylation
-
-
UTP and CTP de novo biosynthesis
-
-
inositol diphosphates biosynthesis
-
-
PRPP biosynthesis
-
-
assimilatory sulfate reduction II
-
-
assimilatory sulfate reduction III
-
-
selenate reduction
-
-
UDP-alpha-D-glucose biosynthesis I
-
-
phosphatidylethanolamine biosynthesis II
-
-
Phosphonate and phosphinate metabolism
-
-
choline biosynthesis III
-
-
phosphatidylcholine biosynthesis II
-
-
GDP-L-fucose biosynthesis II (from L-fucose)
-
-
CMP-N-acetylneuraminate biosynthesis I (eukaryotes)
-
-
CMP-N-acetylneuraminate biosynthesis II (bacteria)
-
-
metabolism of amino sugars and derivatives
-
-
mRNA capping I
-
-
diacylglycerol biosynthesis (PUFA enrichment in oilseed)
-
-
phosphatidylcholine resynthesis via glycerophosphocholine
-
-
cardiolipin biosynthesis
-
-
cardiolipin biosynthesis I
-
-
cardiolipin biosynthesis II
-
-
cardiolipin biosynthesis III
-
-
phosphatidylglycerol biosynthesis I (plastidic)
-
-
phosphatidylglycerol biosynthesis II (non-plastidic)
-
-
phosphatidylserine and phosphatidylethanolamine biosynthesis I
-
-
superpathway of phospholipid biosynthesis II (plants)
-
-
sphingolipid biosynthesis (mammals)
-
-
sphingomyelin metabolism
-
-
phosphatidylethanolamine biosynthesis III
-
-
phosphatidylserine biosynthesis I
-
-
phosphatidylserine biosynthesis II
-
-
cardiolipin and phosphatidylethanolamine biosynthesis (Xanthomonas)
-
-
sulfide oxidation IV (mitochondria)
-
-
thiosulfate disproportionation IV (rhodanese)
-
-
quercetin sulfate biosynthesis
-
-
methyl indole-3-acetate interconversion
-
-
methylsalicylate degradation
-
-
retinol biosynthesis
-
-
superpathway of methylsalicylate metabolism
-
-
Bisphenol degradation
-
-
triacylglycerol degradation
-
-
phospholipases
-
-
plasmalogen degradation
-
-
chlorogenic acid degradation
-
-
acyl-CoA hydrolysis
-
-
cutin biosynthesis
-
-
stearate biosynthesis I (animals)
-
-
stearate biosynthesis III (fungi)
-
-
suberin monomers biosynthesis
-
-
methylglyoxal degradation
-
-
methylglyoxal degradation I
-
-
2-oxobutanoate degradation II
-
-
3-phenylpropionate degradation
-
-
diethylphosphate degradation
-
-
sulfopterin metabolism
-
-
phosphate acquisition
-
-
Riboflavin metabolism
-
-
L-serine biosynthesis I
-
-
2-arachidonoylglycerol biosynthesis
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
pyridine nucleotide cycling (plants)
-
-
tunicamycin biosynthesis
-
-
UTP and CTP dephosphorylation I
-
-
D-myo-inositol (1,4,5)-trisphosphate degradation
-
-
myo-inositol biosynthesis
phytate degradation I
-
-
3-phosphoinositide degradation
-
-
fructose 2,6-bisphosphate biosynthesis
-
-
Glycosaminoglycan degradation
-
-
heparin degradation
-
-
juvenile hormone III biosynthesis II
-
-
chlorpyrifos degradation
-
-
degradation of aromatic, nitrogen containing compounds
-
-
methyl parathion degradation
-
-
paraoxon degradation
-
-
parathion degradation
-
-
tRNA processing
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Other glycan degradation
-
-
starch degradation I
-
-
alpha-tomatine degradation
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
ginsenoside metabolism
-
-
linamarin degradation
-
-
linustatin bioactivation
-
-
lotaustralin degradation
-
-
neolinustatin bioactivation
-
-
melibiose degradation
-
-
lactose degradation II
-
-
xyloglucan degradation II (exoglucanase)
-
-
d-mannose degradation
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
degradation of sugar acids
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
starch degradation IV
-
-
agarose degradation
-
-
porphyran degradation
-
-
protein N-glycosylation processing phase (plants and animals)
-
-
protein N-glycosylation processing phase (yeast)
-
-
amygdalin and prunasin degradation
-
-
aromatic glucosinolate activation
-
-
glucosinolate activation
-
-
indole glucosinolate activation (herbivore attack)
-
-
tea aroma glycosidic precursor bioactivation
-
-
NAD salvage pathway I (PNC VI cycle)
-
-
poly-hydroxy fatty acids biosynthesis
-
-
alliin metabolism
-
-
methiin metabolism
-
-
propanethial S-oxide biosynthesis
-
-
Ac/N-end rule pathway
-
-
glutathione degradation (DUG pathway - yeast)
-
-
muropeptide degradation
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis II (staphylococci)
-
-
peptidoglycan biosynthesis IV (Enterococcus faecium)
-
-
peptidoglycan maturation (meso-diaminopimelate containing)
-
-
glutamate removal from folates
-
-
nocardicin A biosynthesis
-
-
L-asparagine degradation I
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
L-glutamine degradation I
-
-
acrylonitrile degradation I
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
anandamide degradation
-
-
lipid IVA biosynthesis (E. coli)
-
-
lipid IVA biosynthesis (P. putida)
-
-
Lipopolysaccharide biosynthesis
-
-
thymine degradation
-
-
uracil degradation I (reductive)
-
-
5-oxo-L-proline metabolism
-
-
urate conversion to allantoin II
-
-
urate conversion to allantoin III
-
-
canavanine degradation
-
-
L-arginine degradation VII (arginase 3 pathway)
-
-
putrescine biosynthesis III
-
-
pyrimidine ribonucleosides salvage II
-
-
L-histidine degradation III
-
-
inosine-5'-phosphate biosynthesis III
-
-
6-hydroxymethyl-dihydropterin diphosphate biosynthesis I
-
-
6-hydroxymethyl-dihydropterin diphosphate biosynthesis IV (Plasmodium)
-
-
drosopterin and aurodrosopterin biosynthesis
-
-
erythro-tetrahydrobiopterin biosynthesis I
-
-
erythro-tetrahydrobiopterin biosynthesis II
-
-
preQ0 biosynthesis
-
-
tetrahydromonapterin biosynthesis
-
-
threo-tetrahydrobiopterin biosynthesis
-
-
UTP and CTP dephosphorylation II
-
-
heparan sulfate degradation
-
-
acetaldehyde biosynthesis II
-
-
long chain fatty acid ester synthesis (engineered)
-
-
pyruvate fermentation to acetoin III
-
-
L-glutamate degradation IV
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
superpathway of ornithine degradation
-
-
arginine dependent acid resistance
-
-
L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
-
-
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway)
-
-
putrescine biosynthesis I
-
-
putrescine biosynthesis II
-
-
spermidine biosynthesis III
-
-
histamine biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
-
-
3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
-
-
3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
-
-
heme b biosynthesis I (aerobic)
-
-
heme b biosynthesis II (oxygen-independent)
-
-
heme b biosynthesis IV (Gram-positive bacteria)
-
-
superpathway of heme b biosynthesis from uroporphyrinogen-III
-
-
spermine biosynthesis
-
-
N-acetylneuraminate and N-acetylmannosamine degradation I
-
-
N-acetylneuraminate and N-acetylmannosamine degradation II
-
-
trans-4-hydroxy-L-proline degradation I
-
-
flavin biosynthesis
-
-
flavin biosynthesis I (bacteria and plants)
-
-
flavin biosynthesis II (archaea)
-
-
flavin biosynthesis III (fungi)
-
-
3-hydroxypropanoate cycle
-
-
cyanate degradation
glyoxylate assimilation
-
-
homocysteine and cysteine interconversion
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
GDP-6-deoxy-D-talose biosynthesis
-
-
GDP-D-perosamine biosynthesis
-
-
GDP-D-rhamnose biosynthesis
-
-
GDP-L-colitose biosynthesis
-
-
GDP-L-fucose biosynthesis I (from GDP-D-mannose)
-
-
GDP-mycosamine biosynthesis
-
-
hyaluronan degradation
-
-
chondroitin sulfate degradation I (bacterial)
-
-
glycogen degradation III (via anhydrofructose)
-
-
dermatan sulfate degradation I (bacterial)
-
-
Monoterpenoid biosynthesis
-
-
oleoresin monoterpene volatiles biosynthesis
-
-
C5-Branched dibasic acid metabolism
-
-
L-glutamate degradation VI (to pyruvate)
-
-
L-histidine degradation I
-
-
L-histidine degradation II
-
-
L-histidine degradation VI
-
-
canavanine biosynthesis
-
-
L-arginine biosynthesis III (via N-acetyl-L-citrulline)
-
-
allantoin degradation to glyoxylate I
-
-
allantoin degradation to glyoxylate III
-
-
dimethyl sulfide biosynthesis from methionine
-
-
pentose phosphate pathway (partial)
-
-
colanic acid building blocks biosynthesis
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
UDP-alpha-D-galactose biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis I
-
-
dTDP-4-O-demethyl-beta-L-noviose biosynthesis
-
-
dTDP-L-daunosamine biosynthesis
-
-
dTDP-L-rhamnose biosynthesis
-
-
dTDPLrhamnose biosynthesis
-
-
Polyketide sugar unit biosynthesis
-
-
poly(3-O-beta-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate) wall teichoic acid biosynthesis
-
-
poly(glycerol phosphate) wall teichoic acid biosynthesis
-
-
poly(ribitol phosphate) wall teichoic acid biosynthesis I (B. subtilis)
-
-
poly(ribitol phosphate) wall teichoic acid biosynthesis II (S. aureus)
-
-
UDP-N-acetyl-alpha-D-mannosaminouronate biosynthesis
-
-
beta-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation
-
-
D-mannose degradation
-
-
GDP-mannose biosynthesis
-
-
L-ascorbate biosynthesis I (L-galactose pathway)
-
-
mannitol degradation II
-
-
D-sorbitol biosynthesis I
-
-
eumelanin biosynthesis
-
-
glucosylglycerol biosynthesis
-
-
2,3-dihydroxybenzoate biosynthesis
-
-
2-carboxy-1,4-naphthoquinol biosynthesis
-
-
Biosynthesis of siderophore group nonribosomal peptides
-
-
enterobactin biosynthesis
-
-
salicylate biosynthesis I
-
-
vitamin K metabolism
-
-
lanosterol biosynthesis
-
-
trehalose biosynthesis IV
-
-
Aminoacyl-tRNA biosynthesis
-
-
tRNA charging
-
-
L-selenocysteine biosynthesis I (bacteria)
-
-
L-selenocysteine biosynthesis II (archaea and eukaryotes)
-
-
selenocysteine biosynthesis
-
-
acetate conversion to acetyl-CoA
-
-
adlupulone and adhumulone biosynthesis
-
-
cis-genanyl-CoA degradation
-
-
colupulone and cohumulone biosynthesis
-
-
lupulone and humulone biosynthesis
-
-
itaconate degradation
-
-
pyruvate fermentation to acetate V
-
-
pyruvate fermentation to acetate VI
-
-
L-asparagine biosynthesis II
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
L-glutamine biosynthesis I
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
diphthamide biosynthesis I (archaea)
-
-
phosphopantothenate biosynthesis I
-
-
ergothioneine biosynthesis I (bacteria)
-
-
glutathione biosynthesis
-
-
homoglutathione biosynthesis
-
-
ophthalmate biosynthesis
-
-
biotin biosynthesis
-
-
Biotin metabolism
-
-
biotin-carboxyl carrier protein assembly
-
-
L-asparagine biosynthesis I
-
-
anapleurotic synthesis of oxalacetate
-
-
Fe(II) oxidation
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
oxidative phosphorylation
-
-
arsenite oxidation I (respiratory)
-
-
ATP biosynthesis
-
-
oleandomycin activation/inactivation
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
range of enzyme activity differs up to 4fold among mink, mice, chinese hamster, rat and guinea pig
Manually annotated by BRENDA team
-
cell culture
Manually annotated by BRENDA team
-
humeral epiphyseal from 14-days-old hamsters
Manually annotated by BRENDA team
-
isoenzyme PI-PLC-beta1
Manually annotated by BRENDA team
-
morphologically macrophage-like cells cloned from bone marrow cells by coculturing bone marrow cells with chondrocytes, the CCP-2 cells are similar to osteoclast but not the same
Manually annotated by BRENDA team
-
hypertrophic
Manually annotated by BRENDA team
-
ovary cells expressing the LT antigen
Manually annotated by BRENDA team
-
multidrug-resistant Chinese hamster ovary cells
Manually annotated by BRENDA team
-
selected from spontaneously transformed Chinese hamster lung fibroblast DC-3F on the basis of resistance to actinomycin D
Manually annotated by BRENDA team
-
chinese hamster cell line DON
Manually annotated by BRENDA team
-
Lec15.1 cell have a single point mutation within the coding region of DPM2 gene. The cDNA of the mutant DPM2 subunit is expressed at a drastically reduced amount of DPM2 protein
Manually annotated by BRENDA team
-
cell surface
Manually annotated by BRENDA team
-
Pex5pM mutant CHO cells
Manually annotated by BRENDA team
-
CHO cell line
Manually annotated by BRENDA team
-
peroxisome/plasmalogen-deficient variant of the CHO-K1 cell line
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
DPM1, the catalytic subunit of dolichol-phosphate mannose synthase, is tethered to and stabilized on the endoplasmic reticulum membrane by the small membrane protein DPM3
Manually annotated by BRENDA team
-
normally a lysosomal glycoprotein, released by secretion and/or cell lysis
-
Manually annotated by BRENDA team
-
associated only with cold-labile microtubules
Manually annotated by BRENDA team
-
in CHO cells, CCTalpha is nucleoplasmic and colocalized with GFP-progerin in nuclear folds and invaginations
Manually annotated by BRENDA team
-
associated with
-
Manually annotated by BRENDA team
-
associated with
Manually annotated by BRENDA team
additional information