Information on Organism Carica papaya

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
transferred to EC 1.1.5.3
preliminary BRENDA-supplied EC number
deleted 2008. Now divided into EC 4.3.1.23 (tyrosine ammonia-lyase), EC 4.3.1.24 (phenylalanine ammonia-lyase) and EC 4.3.1.25 (phenylalanine/tyrosine ammonia-lyase)
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
Bifidobacterium shunt
-
-
Cysteine and methionine metabolism
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
Propanoate metabolism
-
-
pyruvate fermentation to (S)-lactate
-
-
Pyruvate metabolism
-
-
superpathway of glucose and xylose degradation
-
-
alanine metabolism
-
-
L-alanine degradation II (to D-lactate)
-
-
vancomycin resistance I
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde oxidation I
-
-
Glutathione metabolism
-
-
NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
glycine metabolism
-
-
Glyoxylate and dicarboxylate metabolism
-
-
photorespiration
-
-
choline degradation I
-
-
choline degradation IV
-
-
glycine betaine biosynthesis
-
-
glycine betaine biosynthesis I (Gram-negative bacteria)
-
-
glycine betaine biosynthesis II (Gram-positive bacteria)
-
-
glycine betaine biosynthesis III (plants)
-
-
Carbon fixation in photosynthetic organisms
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glycerol degradation to butanol
-
-
glycolysis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV (plant cytosol)
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
photosynthesis
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Butanoate metabolism
-
-
Carbon fixation pathways in prokaryotes
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
methylaspartate cycle
-
-
Oxidative phosphorylation
-
-
propionate fermentation
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
TCA cycle VII (acetate-producers)
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate recycling (cytosolic)
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
Nitrogen metabolism
-
-
glutathione metabolism
-
-
glutathione-peroxide redox reactions
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
dissimilatory sulfate reduction II (to thiosulfate)
-
-
sulfate reduction
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
Sulfur metabolism
-
-
Isoquinoline alkaloid biosynthesis
-
-
o-diquinones biosynthesis
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
sesamin biosynthesis
-
-
photosynthesis light reactions
-
-
ethanol degradation IV
-
-
methanol oxidation to formaldehyde IV
-
-
non-pathway related
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
Tryptophan metabolism
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
luteolin triglucuronide degradation
-
-
Phenylpropanoid biosynthesis
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
hydrogen production
-
-
hydrogen production III
-
-
hydrogen production VI
-
-
hydrogen production VIII
-
-
L-glutamate degradation VII (to butanoate)
-
-
2-nitrotoluene degradation
-
-
Benzoate degradation
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
phenol degradation
-
-
Styrene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
Xylene degradation
-
-
anandamide lipoxygenation
-
-
15-epi-lipoxin biosynthesis
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
leukotriene biosynthesis
-
-
lipoxin biosynthesis
-
-
resolvin D biosynthesis
-
-
abscisic acid biosynthesis
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
nitric oxide biosynthesis II (mammals)
-
-
1,5-anhydrofructose degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Aminobenzoate degradation
-
-
bupropion degradation
-
-
Caffeine metabolism
-
-
Linoleic acid metabolism
-
-
melatonin degradation I
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
Steroid hormone biosynthesis
-
-
vanillin biosynthesis I
-
-
heme degradation I
-
-
heme metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
Cyanoamino acid metabolism
-
-
Glucosinolate biosynthesis
-
-
cholesterol biosynthesis
-
-
cholesterol biosynthesis (plants)
-
-
ergosterol biosynthesis II
-
-
Steroid biosynthesis
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
betalamic acid biosynthesis
-
-
catecholamine biosynthesis
Folate biosynthesis
-
-
rosmarinic acid biosynthesis II
-
-
ethylene biosynthesis I (plants)
-
-
Betalain biosynthesis
-
-
firefly bioluminescence
-
-
L-dopa and L-dopachrome biosynthesis
-
-
pheomelanin biosynthesis
-
-
Biosynthesis of unsaturated fatty acids
-
-
lipid metabolism
-
-
oleate biosynthesis II (animals and fungi)
-
-
sorgoleone biosynthesis
-
-
sphingolipid biosynthesis (plants)
-
-
C20 prostanoid biosynthesis
-
-
Primary bile acid biosynthesis
-
-
ethylene biosynthesis III (microbes)
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
Drug metabolism - other enzymes
-
-
Purine metabolism
-
-
theophylline degradation
-
-
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
L-methionine biosynthesis I
-
-
L-methionine biosynthesis III
-
-
L-methionine biosynthesis IV (archaea)
-
-
L-methionine salvage from L-homocysteine
-
-
One carbon pool by folate
-
-
Selenocompound metabolism
-
-
methylsalicylate biosynthesis
-
-
volatile benzenoid biosynthesis I (ester formation)
-
-
sterol:steryl ester interconversion (yeast)
-
-
aromatic polyketides biosynthesis
-
-
flavonoid biosynthesis
-
-
Flavonoid biosynthesis
-
-
flavonoid biosynthesis (in equisetum)
-
-
flavonoid di-C-glucosylation
-
-
naringenin biosynthesis (engineered)
-
-
phloridzin biosynthesis
-
-
xanthohumol biosynthesis
-
-
resveratrol biosynthesis
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
gamma-glutamyl cycle
-
-
hypoglycin biosynthesis
-
-
Taurine and hypotaurine metabolism
-
-
5-oxo-L-proline metabolism
-
-
ethylene biosynthesis V (engineered)
-
-
glyoxylate cycle
-
-
L-glutamine biosynthesis III
-
-
partial TCA cycle (obligate autotrophs)
-
-
TCA cycle VI (Helicobacter)
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
Starch and sucrose metabolism
-
-
starch degradation III
-
-
starch degradation V
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis III
-
-
phenolic malonylglucosides biosynthesis
-
-
Escherichia coli serotype O86 O-antigen biosynthesis
-
-
mucin core 1 and core 2 O-glycosylation
-
-
Mucin type O-glycan biosynthesis
-
-
O-antigen biosynthesis
-
-
Other types of O-glycan biosynthesis
-
-
NAD metabolism
-
-
4-hydroxy-2-nonenal detoxification
-
-
camalexin biosynthesis
-
-
gliotoxin biosynthesis
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
indole glucosinolate activation (intact plant cell)
-
-
pentachlorophenol degradation
-
-
isoprenoid biosynthesis
-
-
(R)-cysteate degradation
-
-
Alanine, aspartate and glutamate metabolism
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
aspartate and asparagine metabolism
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
cysteine metabolism
-
-
gluconeogenesis
-
-
glutamate and glutamine metabolism
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-glutamate degradation II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation VI (Stickland reaction)
-
-
malate/L-aspartate shuttle pathway
-
-
Novobiocin biosynthesis
-
-
Phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
sulfolactate degradation III
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation III
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
tryptophan metabolism
-
-
L-serine biosynthesis II
-
-
serine metabolism
-
-
3-phosphoinositide biosynthesis
-
-
Inositol phosphate metabolism
-
-
Amino sugar and nucleotide sugar metabolism
-
-
creatine-phosphate biosynthesis
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
purine metabolism
-
-
Thiamine metabolism
-
-
assimilatory sulfate reduction II
-
-
assimilatory sulfate reduction III
-
-
Monobactam biosynthesis
-
-
selenate reduction
-
-
sulfate activation for sulfonation
-
-
methyl indole-3-acetate interconversion
-
-
methylsalicylate degradation
-
-
retinol biosynthesis
-
-
superpathway of methylsalicylate metabolism
-
-
Glycerolipid metabolism
-
-
triacylglycerol degradation
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
Ether lipid metabolism
-
-
Glycerophospholipid metabolism
-
-
phosphatidylcholine acyl editing
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
plasmalogen degradation
-
-
pectin degradation I
-
-
pectin degradation II
-
-
Pentose and glucuronate interconversions
-
-
diethylphosphate degradation
-
-
sulfopterin metabolism
-
-
phosphate acquisition
-
-
Riboflavin metabolism
-
-
vitamin B1 metabolism
-
-
2-arachidonoylglycerol biosynthesis
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
palmitoyl ethanolamide biosynthesis
-
-
plasmalogen biosynthesis
-
-
Sphingolipid metabolism
-
-
sphingosine metabolism
-
-
stigma estolide biosynthesis
-
-
choline biosynthesis III
-
-
phosphatidate metabolism, as a signaling molecule
-
-
tRNA processing
-
-
starch degradation
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
(1,4)-beta-D-xylan degradation
-
-
cellulose and hemicellulose degradation (cellulolosome)
-
-
d-xylose degradation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Other glycan degradation
-
-
Galactose metabolism
-
-
starch degradation I
-
-
alpha-tomatine degradation
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
ginsenoside metabolism
-
-
linamarin degradation
-
-
linustatin bioactivation
-
-
lotaustralin degradation
-
-
neolinustatin bioactivation
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
melibiose degradation
-
-
metabolism of disaccharids
-
-
stachyose degradation
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
lactose degradation II
-
-
xyloglucan degradation II (exoglucanase)
-
-
d-mannose degradation
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation VI (periplasmic)
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
degradation of sugar acids
-
-
Flavone and flavonol biosynthesis
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
Various types of N-glycan biosynthesis
-
-
aromatic glucosinolate activation
-
-
glucosinolate activation
-
-
indole glucosinolate activation (herbivore attack)
-
-
2-methylpropene degradation
-
-
poly-hydroxy fatty acids biosynthesis
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis II (staphylococci)
-
-
peptidoglycan biosynthesis IV (Enterococcus faecium)
-
-
peptidoglycan maturation (meso-diaminopimelate containing)
-
-
nocardicin A biosynthesis
-
-
acrylonitrile degradation I
-
-
arginine metabolism
-
-
degradation of aromatic, nitrogen containing compounds
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
cyanide detoxification I
-
-
polyamine pathway
-
-
putrescine biosynthesis III
-
-
superpathway of ornithine degradation
-
-
Calvin-Benson-Bassham cycle
-
-
nucleoside and nucleotide degradation (archaea)
-
-
Rubisco shunt
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
vitamin K-epoxide cycle
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
formaldehyde assimilation I (serine pathway)
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
glycolysis V (Pyrococcus)
-
-
Methane metabolism
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
homocysteine and cysteine interconversion
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
(3S)-linalool biosynthesis
-
-
Monoterpenoid biosynthesis
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
cinnamoyl-CoA biosynthesis
-
-
ephedrine biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
rosmarinic acid biosynthesis I
-
-
suberin monomers biosynthesis
L-methionine salvage cycle II (plants)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
pentose phosphate pathway (non-oxidative branch)
-
-
pentose phosphate pathway (partial)
-
-
teichuronic acid biosynthesis (B. subtilis 168)
-
-
UDP-N-acetyl-D-galactosamine biosynthesis I
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
capsanthin and capsorubin biosynthesis
-
-
lanosterol biosynthesis
-
-
beta-carotene biosynthesis
-
-
chlorobactene biosynthesis
-
-
flexixanthin biosynthesis
-
-
isorenieratene biosynthesis I (actinobacteria)
-
-
lutein biosynthesis
-
-
myxol-2' fucoside biosynthesis
-
-
okenone biosynthesis
-
-
protein ubiquitination
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
L-glutamine biosynthesis I
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
beta-Alanine metabolism
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
phosphopantothenate biosynthesis I
-
-
anapleurotic synthesis of oxalacetate
-
-
incomplete reductive TCA cycle
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
Fe(II) oxidation
-
-
NAD/NADH phosphorylation and dephosphorylation
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
oxidative phosphorylation
-
-
arsenite oxidation I (respiratory)
-
-
ATP biosynthesis
-
-
Photosynthesis
-
-
oleandomycin activation/inactivation
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
maximal concentration is reached early in the development of the fruit
Manually annotated by BRENDA team
additional information
LINKS TO OTHER DATABASES (specific for Carica papaya)