Information on Organism Bacillus halodurans

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
Caprolactam degradation
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
ethylene glycol biosynthesis (engineered)
-
-
Glycerolipid metabolism
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
lipid metabolism
-
-
Pentose and glucuronate interconversions
-
-
pyruvate fermentation to butanol I
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
L-glutamine biosynthesis III
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
Alanine, aspartate and glutamate metabolism
-
-
Arginine and proline metabolism
-
-
ethylene biosynthesis II (microbes)
-
-
L-arginine degradation I (arginase pathway)
-
-
L-proline degradation
-
-
proline metabolism
-
-
acetyl CoA biosynthesis
-
-
oxidative decarboxylation of pyruvate
-
-
pyruvate decarboxylation to acetyl CoA
-
-
Pyruvate metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
Phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
Folate biosynthesis
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
One carbon pool by folate
-
-
tetrahydrofolate biosynthesis
-
-
tetrahydrofolate metabolism
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
sesamin biosynthesis
-
-
ethanol degradation IV
-
-
Glyoxylate and dicarboxylate metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
non-pathway related
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
Tryptophan metabolism
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
luteolin triglucuronide degradation
-
-
Phenylpropanoid biosynthesis
-
-
1,4-dihydroxy-6-naphthoate biosynthesis
-
-
1,4-dihydroxy-6-naphthoate biosynthesis I
-
-
1,4-dihydroxy-6-naphthoate biosynthesis II
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
Flavone and flavonol biosynthesis
-
-
phenylpropanoids methylation (ice plant)
-
-
polymethylated myricetin biosynthesis (tomato)
-
-
syringetin biosynthesis
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
Butanoate metabolism
-
-
Propanoate metabolism
-
-
pyruvate fermentation to acetate IV
-
-
reductive monocarboxylic acid cycle
-
-
threonine metabolism
-
-
Biosynthesis of 12-, 14- and 16-membered macrolides
-
-
erythromycin D biosynthesis
-
-
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
adenosine nucleotides degradation II
-
-
arsenate detoxification I (mammalian)
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
guanine and guanosine salvage
-
-
guanosine nucleotides degradation III
-
-
inosine 5'-phosphate degradation
-
-
Nicotinate and nicotinamide metabolism
-
-
nucleoside and nucleotide degradation (archaea)
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine ribonucleosides degradation
-
-
Pyrimidine metabolism
-
-
salinosporamide A biosynthesis
-
-
xanthine and xanthosine salvage
-
-
Drug metabolism - other enzymes
-
-
pyrimidine deoxyribonucleosides degradation
-
-
pyrimidine metabolism
-
-
pyrimidine ribonucleosides degradation
-
-
flavin biosynthesis
-
-
flavin biosynthesis I (bacteria and plants)
-
-
flavin biosynthesis II (archaea)
-
-
flavin biosynthesis III (fungi)
-
-
Riboflavin metabolism
-
-
alanine metabolism
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
Arginine biosynthesis
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
Carbon fixation in photosynthetic organisms
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation III
-
-
degradation of pentoses
-
-
L-arabinose degradation I
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Fructose and mannose metabolism
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate metabolism
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
Thiamine metabolism
-
-
1,2-propanediol biosynthesis from lactate (engineered)
-
-
4-aminobutanoate degradation V
-
-
acetyl-CoA fermentation to butanoate II
-
-
CO2 fixation in Crenarchaeota
-
-
fermentation to 2-methylbutanoate
-
-
gallate degradation III (anaerobic)
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
pyruvate fermentation to propanoate II (acrylate pathway)
-
-
Styrene degradation
-
-
succinate fermentation to butanoate
-
-
glutamate and glutamine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methylsalicylate degradation
-
-
retinol biosynthesis
-
-
superpathway of methylsalicylate metabolism
-
-
triacylglycerol degradation
-
-
degradation of sugar alcohols
-
-
Glycerophospholipid metabolism
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
sophorosyloxydocosanoate deacetylation
-
-
acyl-CoA hydrolysis
-
-
bacterial bioluminescence
-
-
Biosynthesis of unsaturated fatty acids
-
-
cutin biosynthesis
-
-
Fatty acid elongation
-
-
oleate biosynthesis II (animals and fungi)
-
-
palmitate biosynthesis (animals and fungi, cytoplasm)
-
-
sporopollenin precursors biosynthesis
-
-
stearate biosynthesis I (animals)
-
-
stearate biosynthesis III (fungi)
-
-
suberin monomers biosynthesis
-
-
2-oxobutanoate degradation II
-
-
4-chlorobenzoate degradation
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
Benzoate degradation
-
-
NAD metabolism
-
-
phosphate acquisition
-
-
vitamin B1 metabolism
-
-
adenosine nucleotides degradation I
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
pyridine nucleotide cycling (plants)
-
-
tunicamycin biosynthesis
-
-
UTP and CTP dephosphorylation I
-
-
tRNA processing
-
-
glycogen metabolism
-
-
Starch and sucrose metabolism
-
-
starch degradation
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
(1,4)-beta-D-xylan degradation
-
-
cellulose and hemicellulose degradation (cellulolosome)
-
-
d-xylose degradation
-
-
Other glycan degradation
-
-
Sphingolipid metabolism
-
-
alpha-tomatine degradation
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
Cyanoamino acid metabolism
-
-
firefly bioluminescence
-
-
ginsenoside metabolism
-
-
linamarin degradation
-
-
linustatin bioactivation
-
-
lotaustralin degradation
-
-
neolinustatin bioactivation
-
-
Galactose metabolism
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
melibiose degradation
-
-
metabolism of disaccharids
-
-
stachyose degradation
-
-
d-mannose degradation
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
degradation of sugar acids
-
-
Glycosaminoglycan degradation
-
-
fructan degradation
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
4-hydroxy-2-nonenal detoxification
-
-
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis
-
-
glutathione degradation (DUG pathway - yeast)
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
indole glucosinolate activation (intact plant cell)
-
-
nocardicin A biosynthesis
-
-
acrylonitrile degradation I
-
-
Aminobenzoate degradation
-
-
arginine metabolism
-
-
degradation of aromatic, nitrogen containing compounds
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
Atrazine degradation
-
-
urea cycle
-
-
urea degradation II
-
-
Penicillin and cephalosporin biosynthesis
-
-
adenosylcobinamideGDP salvage from cobinamide II
-
-
superpathway of adenosylcobalamin salvage from cobinamide II
-
-
vitamin B12 metabolism
-
-
lipid A biosynthesis
-
-
lipid IVA biosynthesis (E. coli)
-
-
lipid IVA biosynthesis (P. putida)
-
-
Lipopolysaccharide biosynthesis
-
-
pyrimidine deoxyribonucleosides salvage
-
-
pyrimidine ribonucleosides salvage I
-
-
pyrimidine ribonucleosides salvage II
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis IV
-
-
beta-alanine biosynthesis III
-
-
beta-Alanine metabolism
-
-
Pantothenate and CoA biosynthesis
-
-
4-hydroxy-2(1H)-quinolone biosynthesis
-
-
acridone alkaloid biosynthesis
-
-
L-tryptophan biosynthesis
-
-
Phenazine biosynthesis
-
-
tryptophan metabolism
-
-
4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
cyanate degradation
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
glyoxylate assimilation
-
-
Nitrogen metabolism
-
-
Carbon fixation pathways in prokaryotes
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
Bifidobacterium shunt
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ethylene biosynthesis V (engineered)
-
-
formaldehyde assimilation I (serine pathway)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glycerol degradation to butanol
-
-
glycolysis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV (plant cytosol)
-
-
glycolysis V (Pyrococcus)
-
-
Methane metabolism
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
Rubisco shunt
-
-
superpathway of glucose and xylose degradation
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
homocysteine and cysteine interconversion
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
ectoine biosynthesis
-
-
D-galacturonate degradation I
-
-
pectin degradation II
-
-
degradation of hexoses
-
-
L-rhamnose degradation I
-
-
kojibiose degradation
-
-
maltose degradation
-
-
trehalose degradation III
-
-
trehalose degradation IV
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
conversion of succinate to propanoate
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
methylaspartate cycle
-
-
propanoyl CoA degradation I
-
-
propionate fermentation
-
-
pyruvate fermentation to propanoate I
-
-
Valine, leucine and isoleucine degradation
-
-
Aminoacyl-tRNA biosynthesis
-
-
aspartate and asparagine metabolism
-
-
tRNA charging
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
pantothenate biosynthesis
-
-
phosphopantothenate biosynthesis I
-
-
D-Alanine metabolism
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-diaminopimelate containing)
-
-
D-lactate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer II
-
-
oxidative phosphorylation
-
-
proline to cytochrome bo oxidase electron transfer
-
-
pyruvate to cytochrome bo oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
arsenite oxidation I (respiratory)
-
-
Fe(II) oxidation
-
-
Oxidative phosphorylation
-
-
ATP biosynthesis
-
-
Photosynthesis
-
-
oleandomycin activation/inactivation
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
LINKS TO OTHER DATABASES (specific for Bacillus halodurans)