Information on Organism Bombyx mori

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(5R)-carbapenem carboxylate biosynthesis
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
(R)-cysteate degradation
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,5-anhydrofructose degradation
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
2-arachidonoylglycerol biosynthesis
-
-
2-deoxy-D-glucose 6-phosphate degradation
-
-
2-deoxy-D-ribose degradation II
-
-
2-methyl-branched fatty acid beta-oxidation
-
-
2-methylpropene degradation
-
-
2-nitrotoluene degradation
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
3-dehydroquinate biosynthesis II (archaea)
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
3-methyl-branched fatty acid alpha-oxidation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
3-phosphoinositide biosynthesis
-
-
3-phosphoinositide degradation
-
-
4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis II
-
-
4-aminobutanoate degradation V
-
-
4-ethylphenol degradation (anaerobic)
-
-
4-hydroxy-2-nonenal detoxification
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
4-nitrophenol degradation I
-
-
4-oxopentanoate degradation
-
-
6-gingerol analog biosynthesis (engineered)
-
-
6-hydroxymethyl-dihydropterin diphosphate biosynthesis
-
-
6-hydroxymethyl-dihydropterin diphosphate biosynthesis I
-
-
6-hydroxymethyl-dihydropterin diphosphate biosynthesis IV (Plasmodium)
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
Ac/N-end rule pathway
-
-
acetaldehyde biosynthesis I
-
-
acetoacetate degradation (to acetyl CoA)
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetyl CoA biosynthesis
-
-
acetyl-CoA fermentation to butanoate II
-
-
acetylene degradation (anaerobic)
-
-
acrylonitrile degradation I
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
adenine and adenosine salvage VI
-
-
adenosine deoxyribonucleotides de novo biosynthesis
-
-
adenosine deoxyribonucleotides de novo biosynthesis II
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
adipate degradation
-
-
aerobic respiration (NDH-1 to cytochrome c oxidase via plastocyanin)
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
aerobic respiration in cyanobacteria (NDH-2 to cytochrome c oxidase via plastocyanin)
-
-
Aflatoxin biosynthesis
-
-
alanine metabolism
-
-
alanine racemization
-
-
Alanine, aspartate and glutamate metabolism
-
-
alkane biosynthesis II
-
-
alkane oxidation
-
-
all-trans-farnesol biosynthesis
-
-
allantoin degradation to glyoxylate I
-
-
allantoin degradation to glyoxylate III
-
-
alliin metabolism
-
-
alpha-Linolenic acid metabolism
-
-
alpha-tomatine degradation
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminoacyl-tRNA biosynthesis
-
-
Aminobenzoate degradation
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
ammonia oxidation II (anaerobic)
-
-
amygdalin and prunasin degradation
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
anapleurotic synthesis of oxalacetate
-
-
androgen and estrogen metabolism
-
-
androsrtendione degradation II (anaerobic)
-
-
androstenedione degradation I (aerobic)
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
ansatrienin biosynthesis
-
-
arachidonate biosynthesis
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arg/N-end rule pathway (eukaryotic)
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arginine metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
arsenate detoxification I (mammalian)
-
-
arsenite oxidation I (respiratory)
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate metabolism
-
-
ascorbate recycling (cytosolic)
-
-
aspartate and asparagine metabolism
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
ATP biosynthesis
-
-
Atrazine degradation
-
-
atromentin biosynthesis
-
-
avenanthramide biosynthesis
-
-
bacilysin biosynthesis
-
-
bacterial bioluminescence
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
base-degraded thiamine salvage
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
beta-(1,4)-mannan degradation
-
-
beta-alanine biosynthesis III
-
-
beta-Alanine metabolism
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
Betalain biosynthesis
-
-
betalamic acid biosynthesis
-
-
betanidin degradation
-
-
betaxanthin biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
Bifidobacterium shunt
-
-
bile acid biosynthesis, neutral pathway
biosynthesis of Lewis epitopes (H. pylori)
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of unsaturated fatty acids
-
-
biotin biosynthesis
-
-
Biotin metabolism
-
-
biotin-carboxyl carrier protein assembly
-
-
bisabolene biosynthesis (engineered)
-
-
Bisphenol degradation
-
-
bombykol biosynthesis
-
-
brassicicene C biosynthesis
-
-
bryostatin biosynthesis
-
-
bupropion degradation
-
-
butanoate fermentation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C20 prostanoid biosynthesis
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
caffeine biosynthesis I
-
-
caffeine biosynthesis II (via paraxanthine)
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
canavanine degradation
-
-
cannabinoid biosynthesis
-
-
Caprolactam degradation
-
-
capsaicin biosynthesis
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
cardiolipin biosynthesis
-
-
cardiolipin biosynthesis I
-
-
cardiolipin biosynthesis II
-
-
cardiolipin biosynthesis III
-
-
carnitine metabolism
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
catecholamine biosynthesis
CDP-6-deoxy-D-gulose biosynthesis
-
-
CDP-diacylglycerol biosynthesis
-
-
CDP-diacylglycerol biosynthesis I
-
-
CDP-diacylglycerol biosynthesis II
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide biosynthesis
-
-
ceramide degradation (generic)
-
-
ceramide degradation by alpha-oxidation
-
-
chitin biosynthesis
-
-
chitin deacetylation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Chloroalkane and chloroalkene degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
chlorogenic acid biosynthesis I
-
-
chlorogenic acid degradation
-
-
chlorpyrifos degradation
-
-
cholesterol biosynthesis
-
-
cholesterol biosynthesis (algae, late side-chain reductase)
-
-
cholesterol biosynthesis (plants, early side-chain reductase)
-
-
cholesterol biosynthesis I
-
-
cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
-
-
cholesterol biosynthesis III (via desmosterol)
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
choline biosynthesis III
-
-
chorismate metabolism
-
-
cis-zeatin biosynthesis
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CMP phosphorylation
-
-
CO2 fixation in Crenarchaeota
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
coenzyme B biosynthesis
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
complex N-linked glycan biosynthesis (plants)
-
-
complex N-linked glycan biosynthesis (vertebrates)
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
coumarins biosynthesis (engineered)
-
-
creatine-phosphate biosynthesis
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
curcuminoid biosynthesis
-
-
cutin biosynthesis
-
-
Cutin, suberine and wax biosynthesis
-
-
cyanate degradation
cyanide degradation
-
-
cyanide detoxification I
-
-
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
cytosolic NADPH production (yeast)
-
-
D-Alanine metabolism
-
-
D-Arginine and D-ornithine metabolism
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-galactose degradation IV
-
-
D-Glutamine and D-glutamate metabolism
-
-
d-mannose degradation
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
D-myo-inositol-5-phosphate metabolism
-
-
D-sorbitol biosynthesis I
-
-
D-sorbitol degradation I
-
-
d-xylose degradation
-
-
D-xylose degradation I
-
-
D-xylose degradation to ethylene glycol (engineered)
-
-
degradation of aromatic, nitrogen containing compounds
-
-
degradation of hexoses
-
-
degradation of sugar acids
-
-
degradation of sugar alcohols
-
-
denitrification
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
diethylphosphate degradation
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
divinyl ether biosynthesis II
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
dopamine degradation
-
-
drosopterin and aurodrosopterin biosynthesis
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
dTMP de novo biosynthesis (mitochondrial)
-
-
ecdysone and 20-hydroxyecdysone biosynthesis
-
-
ecdysteroid metabolism (arthropods)
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
erythro-tetrahydrobiopterin biosynthesis I
-
-
Escherichia coli serotype O86 O-antigen biosynthesis
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis IV (engineered)
-
-
ethene biosynthesis V (engineered)
-
-
Ether lipid metabolism
-
-
Ethylbenzene degradation
-
-
ethylmalonyl-CoA pathway
-
-
fatty acid alpha-oxidation I (plants)
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
fatty acid biosynthesis initiation (plant mitochondria)
-
-
fatty acid biosynthesis initiation (type I)
-
-
fatty acid biosynthesis initiation (type II)
-
-
Fatty acid degradation
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
Fe(II) oxidation
-
-
FeMo cofactor biosynthesis
-
-
firefly bioluminescence
-
-
Flavone and flavonol biosynthesis
-
-
Flavonoid biosynthesis
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
Folate biosynthesis
-
-
folate polyglutamylation
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation I
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
formaldehyde oxidation VII (THF pathway)
-
-
formate assimilation into 5,10-methylenetetrahydrofolate
-
-
fructan degradation
-
-
Fructose and mannose metabolism
-
-
fusicoccin A biosynthesis
-
-
GABA shunt
-
-
Galactose metabolism
-
-
gamma-glutamyl cycle
-
-
gamma-linolenate biosynthesis II (animals)
-
-
ganglio-series glycosphingolipids biosynthesis
-
-
GDP-alpha-D-glucose biosynthesis
-
-
GDP-mannose biosynthesis
-
-
Geraniol degradation
-
-
geranylgeranyl diphosphate biosynthesis
-
-
ginkgotoxin biosynthesis
-
-
ginsenoside metabolism
-
-
ginsenosides biosynthesis
-
-
gliotoxin biosynthesis
-
-
glucocorticoid biosynthesis
-
-
gluconeogenesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glucose degradation (oxidative)
-
-
glucosylglycerol biosynthesis
-
-
glutamate and glutamine metabolism
-
-
glutaryl-CoA degradation
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glutathione-peroxide redox reactions
-
-
glycerol degradation I
-
-
glycerol degradation to butanol
-
-
glycerol-3-phosphate shuttle
-
-
Glycerolipid metabolism
-
-
Glycerophospholipid metabolism
-
-
glycine betaine biosynthesis
-
-
glycine betaine degradation I
-
-
glycine betaine degradation II (mammalian)
-
-
glycine biosynthesis I
-
-
glycine biosynthesis II
-
-
glycine biosynthesis III
-
-
glycine biosynthesis IV
-
-
glycine cleavage
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate
-
-
Glycosaminoglycan biosynthesis - heparan sulfate / heparin
-
-
Glycosaminoglycan biosynthesis - keratan sulfate
-
-
Glycosaminoglycan degradation
-
-
glycosaminoglycan-protein linkage region biosynthesis
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate assimilation
-
-
glyoxylate cycle
-
-
gossypol biosynthesis
-
-
guanine and guanosine salvage
-
-
guanosine deoxyribonucleotides de novo biosynthesis I
-
-
guanosine deoxyribonucleotides de novo biosynthesis II
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
guanosine ribonucleotides de novo biosynthesis
-
-
heme b biosynthesis II (oxygen-independent)
-
-
heme degradation I
-
-
heme metabolism
-
-
heterolactic fermentation
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
hydroxymethylpyrimidine salvage
-
-
hypoglycin biosynthesis
-
-
hypotaurine degradation
-
-
IAA biosynthesis
-
-
icosapentaenoate biosynthesis II (6-desaturase, mammals)
-
-
icosapentaenoate biosynthesis III (8-desaturase, mammals)
-
-
incomplete reductive TCA cycle
-
-
indole glucosinolate activation (intact plant cell)
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
inosine 5'-phosphate degradation
-
-
inosine-5'-phosphate biosynthesis II
-
-
Inositol phosphate metabolism
-
-
Insect hormone biosynthesis
-
-
isoprene biosynthesis II (engineered)
-
-
isoprenoid biosynthesis
-
-
isopropanol biosynthesis (engineered)
-
-
Isoquinoline alkaloid biosynthesis
-
-
jadomycin biosynthesis
-
-
jasmonic acid biosynthesis
-
-
justicidin B biosynthesis
-
-
juvenile hormone III biosynthesis I
-
-
juvenile hormone III biosynthesis II
-
-
ketogenesis
-
-
ketolysis
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation I
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation III
-
-
L-alanine degradation V (oxidative Stickland reaction)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-arabinose degradation II
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis III (via N-acetyl-L-citrulline)
-
-
L-arginine biosynthesis IV (archaea)
-
-
L-arginine degradation I (arginase pathway)
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-arginine degradation VII (arginase 3 pathway)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
L-arginine degradation XIII (reductive Stickland reaction)
-
-
L-arginine degradation XIV (oxidative Stickland reaction)
-
-
L-ascorbate biosynthesis IV (animals, D-glucuronate pathway)
-
-
L-ascorbate biosynthesis VI (plants, myo-inositol pathway)
-
-
L-ascorbate biosynthesis VIII (engineered pathway)
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
L-asparagine biosynthesis I
-
-
L-asparagine biosynthesis II
-
-
L-asparagine degradation I
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-carnitine degradation III
-
-
L-citrulline biosynthesis
-
-
L-citrulline degradation
-
-
L-cysteine biosynthesis IX (Trichomonas vaginalis)
-
-
L-dopa and L-dopachrome biosynthesis
-
-
L-dopa degradation II (bacterial)
-
-
L-glutamate biosynthesis IV
-
-
L-glutamate degradation I
-
-
L-glutamate degradation II
-
-
L-glutamate degradation IV
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
L-glutamine biosynthesis I
-
-
L-glutamine biosynthesis III
-
-
L-glutamine degradation II
-
-
L-histidine degradation V
-
-
L-isoleucine degradation I
-
-
L-isoleucine degradation II
-
-
L-lactaldehyde degradation
-
-
L-leucine degradation I
-
-
L-leucine degradation III
-
-
L-lysine biosynthesis IV
-
-
L-lysine biosynthesis V
-
-
L-lysine fermentation to acetate and butanoate
-
-
L-malate degradation II
-
-
L-methionine degradation III
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-ornithine degradation I (L-proline biosynthesis)
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine biosynthesis II
-
-
L-phenylalanine degradation I (aerobic)
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation V
-
-
L-phenylalanine degradation VI (reductive Stickland reaction)
-
-
L-proline biosynthesis I (from L-glutamate)
-
-
L-proline biosynthesis II (from arginine)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
L-proline degradation I
-
-
L-selenocysteine biosynthesis I (bacteria)
-
-
L-selenocysteine biosynthesis II (archaea and eukaryotes)
-
-
L-serine biosynthesis I
-
-
L-threonine degradation IV
-
-
L-threonine degradation V
-
-
L-tryptophan degradation I (via anthranilate)
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine biosynthesis II
-
-
L-tyrosine biosynthesis III
-
-
L-tyrosine biosynthesis IV
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation III
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
L-valine degradation I
-
-
L-valine degradation II
-
-
lactate fermentation
-
-
lacto-series glycosphingolipids biosynthesis
-
-
lactose degradation II
-
-
lanosterol biosynthesis
-
-
leucine metabolism
-
-
leukotriene biosynthesis
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
linamarin degradation
-
-
linoleate biosynthesis II (animals)
-
-
Linoleic acid metabolism
-
-
linustatin bioactivation
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
lipid IVA biosynthesis (E. coli)
-
-
lipid IVA biosynthesis (P. putida)
-
-
lipid metabolism
-
-
Lipopolysaccharide biosynthesis
-
-
long chain fatty acid ester synthesis (engineered)
-
-
long-chain fatty acid activation
-
-
lotaustralin degradation
-
-
luteolin triglucuronide degradation
-
-
Lysine biosynthesis
-
-
Lysine degradation
-
-
lysine metabolism
-
-
malate/L-aspartate shuttle pathway
-
-
mannitol cycle
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
melatonin degradation II
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methane metabolism
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
methanol oxidation to carbon dioxide
-
-
methanol oxidation to formaldehyde II
-
-
methanol oxidation to formaldehyde IV
-
-
methiin metabolism
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methyl ketone biosynthesis (engineered)
-
-
methyl parathion degradation
-
-
methyl phomopsenoate biosynthesis
-
-
methyl tert-butyl ether degradation
-
-
methylaspartate cycle
methylerythritol phosphate pathway I
-
-
methylerythritol phosphate pathway II
-
-
methylsalicylate degradation
-
-
mevalonate degradation
-
-
mevalonate metabolism
-
-
mevalonate pathway I (eukaryotes and bacteria)
-
-
mevalonate pathway II (haloarchaea)
-
-
mevalonate pathway III (Thermoplasma)
-
-
mevalonate pathway IV (archaea)
-
-
Microbial metabolism in diverse environments
-
-
mineralocorticoid biosynthesis
-
-
mitochondrial NADPH production (yeast)
-
-
mixed acid fermentation
-
-
molybdenum cofactor biosynthesis
-
-
molybdenum cofactor sulfulylation (eukaryotes)
-
-
molybdopterin biosynthesis
-
-
mono-trans, poly-cis decaprenyl phosphate biosynthesis
-
-
mRNA capping I
-
-
mucin core 1 and core 2 O-glycosylation
-
-
mucin core 3 and core 4 O-glycosylation
-
-
Mucin type O-glycan biosynthesis
-
-
mupirocin biosynthesis
-
-
mycolate biosynthesis
-
-
N-Glycan biosynthesis
-
-
NAD metabolism
-
-
NAD phosphorylation and dephosphorylation
-
-
NAD phosphorylation and transhydrogenation
-
-
NAD salvage (plants)
-
-
NAD salvage pathway I (PNC VI cycle)
-
-
NAD salvage pathway II (PNC IV cycle)
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
NAD salvage pathway V (PNC V cycle)
-
-
NAD(P)/NADPH interconversion
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
NADP biosynthesis
-
-
Naphthalene degradation
-
-
neolacto-series glycosphingolipids biosynthesis
-
-
neolinustatin bioactivation
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
Nicotinate and nicotinamide metabolism
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
nitrate reduction VII (denitrification)
-
-
nitric oxide biosynthesis II (mammals)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
Nitrogen metabolism
-
-
Nitrotoluene degradation
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
Novobiocin biosynthesis
-
-
nucleoside and nucleotide degradation (archaea)
-
-
O-antigen biosynthesis
-
-
O-Antigen nucleotide sugar biosynthesis
-
-
o-diquinones biosynthesis
-
-
octane oxidation
oleandomycin activation/inactivation
-
-
oleate beta-oxidation
-
-
oleate biosynthesis I (plants)
-
-
oleate biosynthesis II (animals and fungi)
-
-
oleate biosynthesis III (cyanobacteria)
-
-
One carbon pool by folate
-
-
ophiobolin F biosynthesis
-
-
ornithine metabolism
-
-
Other glycan degradation
-
-
Other types of O-glycan biosynthesis
-
-
oxidative decarboxylation of pyruvate
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
palmitate biosynthesis (type I fatty acid synthase)
-
-
palmitate biosynthesis (type II fatty acid synthase)
-
-
palmitoleate biosynthesis
-
-
palmitoyl ethanolamide biosynthesis
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
paraoxon degradation
-
-
parathion degradation
-
-
partial TCA cycle (obligate autotrophs)
-
-
paspaline biosynthesis
-
-
pederin biosynthesis
-
-
Penicillin and cephalosporin biosynthesis
-
-
pentachlorophenol degradation
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) I
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
pentose phosphate pathway (partial)
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis II (staphylococci)
-
-
peptidoglycan biosynthesis IV (Enterococcus faecium)
-
-
peptidoglycan maturation (meso-diaminopimelate containing)
-
-
phenol degradation
-
-
phenolic malonylglucosides biosynthesis
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
phenylpropanoids methylation (ice plant)
-
-
pheomelanin biosynthesis
-
-
phosphate acquisition
-
-
phosphatidate biosynthesis (yeast)
-
-
phosphatidate metabolism, as a signaling molecule
-
-
phosphatidylcholine acyl editing
-
-
phosphatidylglycerol biosynthesis I (plastidic)
-
-
phosphatidylglycerol biosynthesis II (non-plastidic)
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
phosphopantothenate biosynthesis I
-
-
photorespiration
-
-
Photosynthesis
-
-
photosynthesis
-
-
photosynthesis light reactions
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
phytate degradation I
-
-
phytol degradation
-
-
phytosterol biosynthesis (plants)
-
-
plasmalogen biosynthesis
-
-
plasmalogen degradation
-
-
plastoquinol-9 biosynthesis I
-
-
platensimycin biosynthesis
-
-
plaunotol biosynthesis
-
-
polyamine pathway
-
-
polyhydroxybutanoate biosynthesis
-
-
Porphyrin and chlorophyll metabolism
-
-
ppGpp metabolism
-
-
preQ0 biosynthesis
-
-
Primary bile acid biosynthesis
-
-
procollagen hydroxylation and glycosylation
-
-
proline metabolism
-
-
proline to cytochrome bo oxidase electron transfer
-
-
propanethial S-oxide biosynthesis
-
-
propanoate fermentation to 2-methylbutanoate
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
propionate fermentation
-
-
protective electron sinks in the thylakoid membrane (PSII to PTOX)
-
-
protein N-glycosylation processing phase (plants and animals)
-
-
protein N-glycosylation processing phase (yeast)
-
-
protein NEDDylation
-
-
protein ubiquitination
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
purine deoxyribonucleosides salvage
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine nucleobases degradation II (anaerobic)
-
-
purine ribonucleosides degradation
-
-
putrescine biosynthesis III
-
-
putrescine degradation III
-
-
pyridoxal 5'-phosphate biosynthesis I
-
-
pyridoxal 5'-phosphate salvage I
-
-
pyridoxal 5'-phosphate salvage II (plants)
-
-
pyrimidine deoxyribonucleosides salvage
-
-
pyrimidine deoxyribonucleotide phosphorylation
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis I
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis III
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis IV
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
pyrimidine ribonucleosides salvage II
-
-
pyrimidine ribonucleosides salvage III
-
-
pyruvate decarboxylation to acetyl CoA I
-
-
pyruvate fermentation to (S)-lactate
-
-
pyruvate fermentation to acetone
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol I
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to hexanol (engineered)
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive acetyl coenzyme A pathway
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
resolvin D biosynthesis
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
rosmarinic acid biosynthesis I
-
-
rosmarinic acid biosynthesis II
-
-
Rubisco shunt
-
-
salidroside biosynthesis
-
-
salinosporamide A biosynthesis
-
-
scopoletin biosynthesis
-
-
sedoheptulose bisphosphate bypass
-
-
Selenocompound metabolism
-
-
selenocysteine biosynthesis
-
-
senecionine N-oxide biosynthesis
-
-
serine metabolism
-
-
serine racemization
-
-
serotonin and melatonin biosynthesis
-
-
serotonin degradation
-
-
sesamin biosynthesis
-
-
sitosterol degradation to androstenedione
-
-
sophorosyloxydocosanoate deacetylation
-
-
sorbitol biosynthesis II
-
-
sorgoleone biosynthesis
-
-
spermidine biosynthesis I
-
-
sphingolipid biosynthesis (mammals)
-
-
Sphingolipid metabolism
-
-
sphingomyelin metabolism
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
sphingosine metabolism
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
sporopollenin precursors biosynthesis
-
-
stachyose degradation
-
-
Starch and sucrose metabolism
-
-
starch biosynthesis
-
-
starch degradation
-
-
starch degradation I
-
-
starch degradation III
-
-
starch degradation V
-
-
stearate biosynthesis I (animals)
-
-
stearate biosynthesis II (bacteria and plants)
-
-
stearate biosynthesis III (fungi)
-
-
stellatic acid biosynthesis
-
-
Steroid biosynthesis
-
-
Steroid degradation
-
-
Steroid hormone biosynthesis
-
-
sterol biosynthesis (methylotrophs)
-
-
sterol:steryl ester interconversion (yeast)
-
-
stigma estolide biosynthesis
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
streptomycin biosynthesis
-
-
Streptomycin biosynthesis
-
-
Styrene degradation
-
-
suberin monomers biosynthesis
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis III
-
-
sucrose degradation I (sucrose phosphotransferase)
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sucrose degradation VII (sucrose 3-dehydrogenase)
-
-
sulfate reduction
-
-
sulfide oxidation IV (mitochondria)
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
sulfolactate degradation III
-
-
sulfopterin metabolism
-
-
Sulfur metabolism
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
superpathway of methylsalicylate metabolism
-
-
superpathway of ornithine degradation
-
-
superpathway of photosynthetic hydrogen production
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
Synthesis and degradation of ketone bodies
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
terminal O-glycans residues modification (via type 2 precursor disaccharide)
-
-
Terpenoid backbone biosynthesis
-
-
testosterone and androsterone degradation to androstendione (aerobic)
-
-
tetracenomycin C biosynthesis
-
-
tetrahydrofolate biosynthesis
-
-
tetrahydrofolate metabolism
-
-
tetrahydromonapterin biosynthesis
-
-
tetrahydropteridine recycling
-
-
the visual cycle I (vertebrates)
-
-
theobromine biosynthesis I
-
-
theophylline degradation
-
-
thiamine diphosphate biosynthesis III (Staphylococcus)
-
-
thiamine diphosphate biosynthesis IV (eukaryotes)
-
-
thiamine diphosphate salvage III
-
-
thiamine diphosphate salvage IV (yeast)
-
-
Thiamine metabolism
-
-
thiamine phosphate formation from pyrithiamine and oxythiamine (yeast)
-
-
thioredoxin pathway
-
-
thiosulfate disproportionation IV (rhodanese)
-
-
threo-tetrahydrobiopterin biosynthesis
-
-
threonine metabolism
-
-
thymine degradation
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
Toluene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
trans, trans-farnesyl diphosphate biosynthesis
-
-
trans-zeatin biosynthesis
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
trehalose biosynthesis I
-
-
trehalose biosynthesis II
-
-
trehalose biosynthesis III
-
-
trehalose biosynthesis IV
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
trehalose degradation VI (periplasmic)
-
-
triacylglycerol degradation
-
-
tRNA charging
-
-
tRNA processing
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
tunicamycin biosynthesis
-
-
type I lipoteichoic acid biosynthesis (S. aureus)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
UDP-alpha-D-glucose biosynthesis
-
-
UDP-GlcNAc biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
uracil degradation I (reductive)
-
-
urea cycle
urea degradation II
-
-
UTP and CTP de novo biosynthesis
-
-
UTP and CTP dephosphorylation I
-
-
valine metabolism
-
-
Valine, leucine and isoleucine biosynthesis
-
-
Valine, leucine and isoleucine degradation
-
-
valproate beta-oxidation
-
-
vancomycin resistance I
-
-
vancomycin resistance II
-
-
vanillin biosynthesis I
-
-
Various types of N-glycan biosynthesis
-
-
vitamin B1 metabolism
-
-
Vitamin B6 metabolism
-
-
vitamin B6 metabolism
-
-
vitamin E biosynthesis (tocopherols)
-
-
vitamin K-epoxide cycle
-
-
wax esters biosynthesis II
-
-
xanthine and xanthosine salvage
-
-
Xylene degradation
-
-
xylitol degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
Zeatin biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
-
Manually annotated by BRENDA team
the cell line expresses a Caenorhabditis elegans SID-1 (CeSID-1) transmembrane protein with the ability to uptake double-stranded RNA into the cells
Manually annotated by BRENDA team
-
BmCHI-h is rapidly secreted from virus-infected BmN cells
Manually annotated by BRENDA team
-
pupal cuticle
Manually annotated by BRENDA team
-
-
Manually annotated by BRENDA team
-
-
Manually annotated by BRENDA team
-
enzyme form GP3'
Manually annotated by BRENDA team
cathepsin D of the silkworm Bombyx mori (BmCatD) is ecdysone-induced, differentially and spatially expressed in the larval fat body of the final instar and in the larval gut of pupal stage, and its expression leads to programmed cell death. Furthermore, BmCatD is highly induced in the fat body of baculovirus-infected Bombyx mori larvae
Manually annotated by BRENDA team
-
presence of Na+/K+-ATPAse
Manually annotated by BRENDA team
an acellular structure secreted by midgut cells lines the digestive tract in most insects that has important roles in facilitating food digestion and providing protection to the gut epithelium
Manually annotated by BRENDA team
-
isozyme type 2
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
apical, anchored by a glycosylphosphatidylinositol-anchor, isozyme type 2
Manually annotated by BRENDA team
additional information
LINKS TO OTHER DATABASES (specific for Bombyx mori)