Information on Organism Caenorhabditis elegans

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
Fatty acid elongation
-
-
lipid metabolism
-
-
Metabolic pathways
-
-
Arginine and proline metabolism
-
-
Biosynthesis of secondary metabolites
-
-
Glutathione metabolism
-
-
polyamine pathway
-
-
putrescine biosynthesis III
-
-
superpathway of ornithine degradation
-
-
(S)-reticuline biosynthesis
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
Amaryllidacea alkaloids biosynthesis
-
-
beta-carboline biosynthesis
-
-
Betalain biosynthesis
-
-
betaxanthin biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
catecholamine biosynthesis
hydroxycinnamic acid serotonin amides biosynthesis
-
-
hydroxycinnamic acid tyramine amides biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
Isoquinoline alkaloid biosynthesis
-
-
L-dopa degradation II (bacterial)
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
methanofuran biosynthesis
-
-
octopamine biosynthesis
-
-
Phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
psilocybin biosynthesis
-
-
salidroside biosynthesis
-
-
secologanin and strictosidine biosynthesis
-
-
serotonin and melatonin biosynthesis
-
-
serotonin metabolism
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Tyrosine metabolism
-
-
2-amino-3-carboxymuconate semialdehyde degradation to 2-hydroxypentadienoate
-
-
2-amino-3-carboxymuconate semialdehyde degradation to glutaryl-CoA
-
-
2-nitrobenzoate degradation I
-
-
Cysteine and methionine metabolism
-
-
methionine metabolism
-
-
spermidine biosynthesis I
-
-
spermidine biosynthesis III
-
-
spermine biosynthesis
-
-
Glycerophospholipid metabolism
-
-
phosphatidylethanolamine bioynthesis
-
-
phosphatidylserine and phosphatidylethanolamine biosynthesis I
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
Sphingolipid metabolism
-
-
sphingosine metabolism
-
-
pseudouridine degradation
-
-
Pyrimidine metabolism
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
Carbon fixation pathways in prokaryotes
-
-
CO2 fixation in Crenarchaeota
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
ethylmalonyl-CoA pathway
Glyoxylate and dicarboxylate metabolism
-
-
methylaspartate cycle
Microbial metabolism in diverse environments
-
-
Propanoate metabolism
-
-
propanoyl CoA degradation I
-
-
propionate fermentation
-
-
pyruvate fermentation to propanoate I
-
-
Valine, leucine and isoleucine degradation
-
-
conversion of succinate to propanoate
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Galactose metabolism
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
O-antigen building blocks biosynthesis (E. coli)
-
-
O-Antigen nucleotide sugar biosynthesis
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
UDP-alpha-D-galactofuranose biosynthesis
-
-
Aminoacyl-tRNA biosynthesis
-
-
Selenocompound metabolism
-
-
tRNA charging
-
-
histidine metabolism
-
-
3-methyl-branched fatty acid alpha-oxidation
-
-
6-gingerol analog biosynthesis (engineered)
-
-
alkane biosynthesis II
-
-
arachidonate biosynthesis
-
-
capsaicin biosynthesis
-
-
ceramide biosynthesis
-
-
ceramide degradation by alpha-oxidation
-
-
cutin biosynthesis
-
-
Fatty acid biosynthesis
-
-
Fatty acid degradation
-
-
fatty acid salvage
-
-
gamma-linolenate biosynthesis II (animals)
-
-
icosapentaenoate biosynthesis II (6-desaturase, mammals)
-
-
icosapentaenoate biosynthesis III (8-desaturase, mammals)
-
-
linoleate biosynthesis II (animals)
-
-
long chain fatty acid ester synthesis (engineered)
-
-
long-chain fatty acid activation
-
-
octane oxidation
oleate beta-oxidation
-
-
oleate biosynthesis I (plants)
-
-
palmitate biosynthesis II (type II fatty acid synthase)
-
-
palmitate biosynthesis III
-
-
phosphatidylcholine acyl editing
-
-
phytol degradation
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
sporopollenin precursors biosynthesis
-
-
stearate biosynthesis I (animals)
-
-
stearate biosynthesis II (bacteria and plants)
-
-
stearate biosynthesis IV
-
-
suberin monomers biosynthesis
-
-
wax esters biosynthesis II
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
cyanate degradation
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
glyoxylate assimilation
-
-
Nitrogen metabolism
-
-
Purine metabolism
-
-
purine metabolism
-
-
glutathione metabolism
-
-
methylglyoxal degradation
-
-
methylglyoxal degradation I
-
-
methylglyoxal degradation VIII
-
-
Pyruvate metabolism
-
-
Aflatoxin biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
fatty acid biosynthesis initiation (type I)
-
-
jadomycin biosynthesis
-
-
Ether lipid metabolism
-
-
alpha-Linolenic acid metabolism
-
-
anandamide biosynthesis I
-
-
phospholipases
-
-
D-myo-inositol (1,4,5)-trisphosphate degradation
-
-
Inositol phosphate metabolism
-
-
myo-inositol biosynthesis
phytate degradation I
-
-
Streptomycin biosynthesis
-
-
anandamide biosynthesis II
-
-
Arachidonic acid metabolism
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
Linoleic acid metabolism
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
plasmalogen degradation
-
-
resolvin D biosynthesis
-
-
tRNA processing
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
metabolism of disaccharids
-
-
mycolate biosynthesis
-
-
Starch and sucrose metabolism
-
-
trehalose biosynthesis I
-
-
trehalose biosynthesis II
-
-
trehalose biosynthesis III
-
-
3-phosphoinositide degradation
-
-
2-arachidonoylglycerol biosynthesis
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
Glycerolipid metabolism
-
-
palmitoyl ethanolamide biosynthesis
-
-
plasmalogen biosynthesis
-
-
stigma estolide biosynthesis
-
-
choline biosynthesis III
-
-
glycine betaine biosynthesis
-
-
phosphatidate metabolism, as a signaling molecule
-
-
Drug metabolism - other enzymes
-
-
methyl indole-3-acetate interconversion
-
-
methylsalicylate degradation
-
-
non-pathway related
-
-
retinol biosynthesis
-
-
superpathway of methylsalicylate metabolism
-
-
Glycosaminoglycan degradation
-
-
alanine metabolism
-
-
beta-Alanine metabolism
-
-
Pantothenate and CoA biosynthesis
-
-
pyrimidine metabolism
-
-
thymine degradation
-
-
uracil degradation I (reductive)
-
-
Histidine metabolism
-
-
L-histidine degradation I
-
-
L-histidine degradation II
-
-
L-histidine degradation III
-
-
L-histidine degradation VI
-
-
pyrimidine deoxyribonucleosides degradation
-
-
pyrimidine deoxyribonucleosides salvage
-
-
pyrimidine ribonucleosides degradation
-
-
pyrimidine ribonucleosides salvage I
-
-
pyrimidine ribonucleosides salvage II
-
-
oxidative phosphorylation
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis I
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis III
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis IV
-
-
Thiamine metabolism
-
-
UTP and CTP dephosphorylation I
-
-
NAD metabolism
-
-
NAD salvage (plants)
-
-
NAD salvage pathway I (PNC VI cycle)
-
-
NAD salvage pathway II (PNC IV cycle)
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
Nicotinate and nicotinamide metabolism
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
pyrimidine deoxyribonucleotides dephosphorylation
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
ATP biosynthesis
-
-
Oxidative phosphorylation
-
-
Photosynthesis
-
-
oleandomycin activation/inactivation
-
-
aldoxime degradation
-
-
NAD salvage pathway V (PNC V cycle)
-
-
(5Z)-dodecenoate biosynthesis I
-
-
(5Z)-dodecenoate biosynthesis II
-
-
8-amino-7-oxononanoate biosynthesis I
-
-
8-amino-7-oxononanoate biosynthesis IV
-
-
anteiso-branched-chain fatty acid biosynthesis
-
-
Biotin metabolism
-
-
cis-vaccenate biosynthesis
even iso-branched-chain fatty acid biosynthesis
-
-
fatty acid elongation -- saturated
-
-
gondoate biosynthesis (anaerobic)
-
-
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast)
-
-
odd iso-branched-chain fatty acid biosynthesis
-
-
oleate biosynthesis IV (anaerobic)
-
-
palmitate biosynthesis
-
-
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)
-
-
petroselinate biosynthesis
-
-
streptorubin B biosynthesis
-
-
tetradecanoate biosynthesis (mitochondria)
-
-
Bifidobacterium shunt
-
-
Carbon fixation in photosynthetic organisms
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glycerol degradation to butanol
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
heterolactic fermentation
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
superpathway of glucose and xylose degradation
-
-
Calvin-Benson-Bassham cycle
-
-
photosynthesis
-
-
adenosine nucleotides degradation I
-
-
guanine and guanosine salvage II
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
complex N-linked glycan biosynthesis (plants)
-
-
Various types of N-glycan biosynthesis
-
-
linoleate biosynthesis I (plants)
-
-
phospholipid desaturation
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Butanoate metabolism
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
partial TCA cycle (obligate autotrophs)
-
-
succinate to chytochrome c oxidase via cytochrome c6
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
succinate to cytochrome c oxidase via plastocyanin
-
-
succinate to plastoquinol oxidase
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VII (acetate-producers)
-
-
TCA cycle VIII (Chlamydia)
-
-
L-leucine degradation I
-
-
leucine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
ammonia assimilation cycle I
-
-
glutamate and glutamine metabolism
-
-
L-glutamate biosynthesis IV
-
-
D-Amino acid metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
L-lysine degradation V
-
-
lysine metabolism
-
-
Penicillin and cephalosporin biosynthesis
-
-
flavin biosynthesis
-
-
Riboflavin metabolism
-
-
NAD(P)/NADPH interconversion
-
-
Fe(II) oxidation
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
3-phosphoinositide biosynthesis
-
-
glycogen degradation I
-
-
glycogen metabolism
-
-
starch degradation
-
-
starch degradation I
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
2-methyl-branched fatty acid beta-oxidation
-
-
thioredoxin pathway
-
-
ethene biosynthesis III (microbes)
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
hypusine biosynthesis
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
Biosynthesis of unsaturated fatty acids
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
betalamic acid biosynthesis
-
-
Folate biosynthesis
-
-
rosmarinic acid biosynthesis II
-
-
L-phenylalanine degradation I (aerobic)
-
-
L-phenylalanine degradation V
-
-
L-tyrosine biosynthesis IV
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
Lysine degradation
-
-
procollagen hydroxylation and glycosylation
-
-
Cyanoamino acid metabolism
-
-
dTMP de novo biosynthesis (mitochondrial)
-
-
folate polyglutamylation
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
formaldehyde assimilation I (serine pathway)
-
-
glycine betaine degradation I
-
-
glycine betaine degradation II (mammalian)
-
-
glycine biosynthesis I
-
-
Methane metabolism
-
-
One carbon pool by folate
-
-
photorespiration
-
-
purine nucleobases degradation II (anaerobic)
-
-
choline biosynthesis I
-
-
phosphatidylcholine biosynthesis II
-
-
phosphatidylcholine biosynthesis III
-
-
phosphatidylcholine biosynthesis IV
-
-
ubiquinol-10 biosynthesis (late decarboxylation)
-
-
ubiquinol-6 biosynthesis (late decarboxylation)
-
-
ubiquinol-6 biosynthesis from 4-aminobenzoate (yeast)
-
-
ubiquinol-7 biosynthesis (late decarboxylation)
-
-
ubiquinol-8 biosynthesis (late decarboxylation)
-
-
ubiquinol-9 biosynthesis (late decarboxylation)
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
inosine-5'-phosphate biosynthesis I
-
-
inosine-5'-phosphate biosynthesis II
-
-
Cutin, suberine and wax biosynthesis
-
-
palmitate biosynthesis I (type I fatty acid synthase)
-
-
phytochelatins biosynthesis
-
-
complex N-linked glycan biosynthesis (vertebrates)
-
-
N-Glycan biosynthesis
-
-
chitin biosynthesis
-
-
Glycosaminoglycan biosynthesis - heparan sulfate / heparin
-
-
heparan sulfate biosynthesis
-
-
mucin core 1 and core 2 O-glycosylation
-
-
mucin core 3 and core 4 O-glycosylation
-
-
Mucin type O-glycan biosynthesis
-
-
Other types of O-glycan biosynthesis
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
biosynthesis of Lewis epitopes (H. pylori)
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
lacto-series glycosphingolipids biosynthesis
-
-
ganglio-series glycosphingolipids biosynthesis
-
-
globo-series glycosphingolipids biosynthesis
-
-
neolacto-series glycosphingolipids biosynthesis
-
-
sphingolipid biosynthesis (plants)
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
cis-zeatin biosynthesis
-
-
Zeatin biosynthesis
-
-
ceramide degradation (generic)
-
-
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate
-
-
glycosaminoglycan-protein linkage region biosynthesis
-
-
Glycosylphosphatidylinositol (GPI)-anchor biosynthesis
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis II (from UDP-D-Glucose)
-
-
chitin deacetylation
-
-
D-xylose degradation IV
-
-
glycolate and glyoxylate degradation II
-
-
glyoxylate cycle
-
-
L-arabinose degradation IV
-
-
ABH and Lewis epitopes biosynthesis from type 2 precursor disaccharide
-
-
H. pylori 26695 O-antigen biosynthesis
-
-
Mannose type O-glycan biosynthesis
-
-
type I lipoteichoic acid biosynthesis (S. aureus)
-
-
adenine and adenosine salvage VI
-
-
assimilatory sulfate reduction IV
-
-
sulfate activation for sulfonation
-
-
sulfate reduction
-
-
Sulfur metabolism
-
-
cell-surface glycoconjugate-linked phosphocholine biosynthesis
-
-
phosphatidylcholine biosynthesis I
-
-
type IV lipoteichoic acid biosynthesis (S. pneumoniae)
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
Phosphonate and phosphinate metabolism
-
-
sulfite oxidation II
-
-
queuosine biosynthesis I (de novo)
-
-
queuosine biosynthesis III (queuosine salvage)
-
-
L-selenocysteine biosynthesis I (bacteria)
-
-
L-selenocysteine biosynthesis II (archaea and eukaryotes)
-
-
selenocysteine biosynthesis
-
-
bacterial bioluminescence
-
-
oleate biosynthesis II (animals and fungi)
-
-
stearate biosynthesis III (fungi)
-
-
3-phenylpropionate degradation
-
-
acetate fermentation
-
-
acyl-CoA hydrolysis
-
-
firefly bioluminescence
-
-
jasmonic acid biosynthesis
-
-
palmitoleate biosynthesis IV (fungi and animals)
-
-
phosphatidylinositol biosynthesis I (bacteria)
-
-
protein N-glycosylation processing phase (plants and animals)
-
-
leukotriene biosynthesis
-
-
sorgoleone biosynthesis
-
-
protein O-[N-acetyl]-glucosylation
-
-
8-oxo-(d)GTP detoxification II
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
protein ubiquitination
-
-
cholesterol biosynthesis
-
-
ecdysone and 20-hydroxyecdysone biosynthesis
-
-
Insect hormone biosynthesis
-
-
arachidonate biosynthesis I (6-desaturase, lower eukaryotes)
-
-
arachidonate biosynthesis IV (8-detaturase, lower eukaryotes)
-
-
icosapentaenoate biosynthesis I (lower eukaryotes)
-
-
icosapentaenoate biosynthesis V (8-desaturase, lower eukaryotes)
-
-
Ac/N-end rule pathway
-
-
Arg/N-end rule pathway (eukaryotic)
-
-
tRNA splicing II
-
-
protein NEDDylation
-
-
carnitine metabolism
-
-
queuosine biosynthesis II (queuine salvage)
-
-
ceramide de novo biosynthesis
-
-
Fructose and mannose metabolism
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ethene biosynthesis V (engineered)
-
-
glycolysis V (Pyrococcus)
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
Rubisco shunt
-
-
crepenynate biosynthesis
-
-
cardiolipin and phosphatidylethanolamine biosynthesis (Xanthomonas)
-
-
cardiolipin biosynthesis
-
-
cardiolipin biosynthesis I
-
-
cardiolipin biosynthesis II
-
-
cardiolipin biosynthesis III
-
-
dimorphecolate biosynthesis
-
-
docosahexaenoate biosynthesis I (lower eukaryotes)
-
-
hydroxylated fatty acid biosynthesis (plants)
-
-
phosphatidylcholine biosynthesis VII
-
-
ricinoleate biosynthesis
-
-
anapleurotic synthesis of oxalacetate
-
-
incomplete reductive TCA cycle
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
reductive TCA cycle I
-
-
cysteine metabolism
-
-
L-cysteine biosynthesis I
-
-
seleno-amino acid biosynthesis (plants)
-
-
Drug metabolism - cytochrome P450
-
-
Retinol metabolism
-
-
Vitamin B6 metabolism
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
methyl ketone biosynthesis (engineered)
-
-
oleate beta-oxidation (isomerase-dependent, yeast)
-
-
propanoyl-CoA degradation II
-
-
arsenate detoxification I
-
-
arsenate detoxification II
-
-
arsenate detoxification IV (mycothiol)
-
-
roxarsone degradation I
-
-
thiamine diphosphate biosynthesis III (Staphylococcus)
-
-
thiamine diphosphate biosynthesis IV (eukaryotes)
-
-
thiamine diphosphate salvage III
-
-
thiamine diphosphate salvage IV (yeast)
-
-
vitamin B1 metabolism
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
2-methylpropene degradation
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
adipate degradation
-
-
androstenedione degradation I (aerobic)
-
-
androstenedione degradation II (anaerobic)
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
Caprolactam degradation
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
fatty acid beta-oxidation I (generic)
-
-
Geraniol degradation
-
-
glutaryl-CoA degradation
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
methyl tert-butyl ether degradation
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
platensimycin biosynthesis
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol I
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to hexanol (engineered)
-
-
Toluene degradation
-
-
valproate beta-oxidation
-
-
ubiquinol-10 biosynthesis (early decarboxylation)
-
-
ubiquinol-7 biosynthesis (early decarboxylation)
-
-
ubiquinol-8 biosynthesis (early decarboxylation)
-
-
ubiquinol-9 biosynthesis (early decarboxylation)
-
-
ubiquinone biosynthesis
-
-
degradation of hexoses
-
-
Other glycan degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
ferrichrome A biosynthesis
-
-
isoprene biosynthesis II (engineered)
-
-
ketogenesis
-
-
mevalonate metabolism
-
-
mevalonate pathway I (eukaryotes and bacteria)
-
-
mevalonate pathway II (haloarchaea)
-
-
mevalonate pathway III (Thermoplasma)
-
-
mevalonate pathway IV (archaea)
-
-
Terpenoid backbone biosynthesis
-
-
chondroitin sulfate biosynthesis
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
L-tryptophan degradation I (via anthranilate)
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
tetrahydrofolate metabolism
-
-
24-epi-campesterol, fucosterol, and clionasterol biosynthesis (diatoms)
-
-
cholesterol biosynthesis (algae, late side-chain reductase)
-
-
cholesterol biosynthesis (diatoms)
-
-
cholesterol biosynthesis (plants, early side-chain reductase)
-
-
cholesterol biosynthesis I
-
-
cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
-
-
cholesterol biosynthesis III (via desmosterol)
-
-
phytosterol biosynthesis (plants)
-
-
Steroid biosynthesis
-
-
dTDP-4-O-demethyl-beta-L-noviose biosynthesis
-
-
dTDP-beta-L-rhamnose biosynthesis
-
-
dTDP-L-daunosamine biosynthesis
-
-
dTDPLrhamnose biosynthesis
-
-
Polyketide sugar unit biosynthesis
-
-
Escherichia coli serotype O:127 O antigen biosynthesis
-
-
Escherichia coli serotype O:86 O antigen biosynthesis
-
-
O-antigen biosynthesis
-
-
Salmonella enterica serotype O:13 O antigen biosynthesis
-
-
(aminomethyl)phosphonate degradation
-
-
glyphosate degradation III
-
-
Pentose and glucuronate interconversions
-
-
stachyose degradation
-
-
sucrose biosynthesis II
-
-
sucrose degradation II (sucrose synthase)
-
-
UDP-alpha-D-glucose biosynthesis
-
-
arginine metabolism
-
-
Ascorbate and aldarate metabolism
-
-
teichuronic acid biosynthesis (B. subtilis 168)
-
-
UDP-alpha-D-glucuronate biosynthesis (from UDP-glucose)
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
Acarbose and validamycin biosynthesis
-
-
Biosynthesis of vancomycin group antibiotics
-
-
dTDP-3-acetamido-3,6-dideoxy-alpha-D-glucose biosynthesis
-
-
dTDP-3-acetamido-alpha-D-fucose biosynthesis
-
-
dTDP-6-deoxy-alpha-D-allose biosynthesis
-
-
dTDP-alpha-D-forosamine biosynthesis
-
-
dTDP-alpha-D-mycaminose biosynthesis
-
-
dTDP-alpha-D-olivose, dTDP-alpha-D-oliose and dTDP-alpha-D-mycarose biosynthesis
-
-
dTDP-alpha-D-ravidosamine and dTDP-4-acetyl-alpha-D-ravidosamine biosynthesis
-
-
dTDP-beta-D-fucofuranose biosynthesis
-
-
dTDP-beta-L-4-epi-vancosamine biosynthesis
-
-
dTDP-beta-L-digitoxose biosynthesis
-
-
dTDP-beta-L-megosamine biosynthesis
-
-
dTDP-beta-L-mycarose biosynthesis
-
-
dTDP-beta-L-olivose biosynthesis
-
-
dTDP-D-desosamine biosynthesis
-
-
dTDP-N-acetylthomosamine biosynthesis
-
-
dTDP-N-acetylviosamine biosynthesis
-
-
macrolide antibiotic biosynthesis
-
-
sphingolipid biosynthesis (mammals)
-
-
sphingomyelin metabolism
-
-
D-glucuronate degradation I
-
-
L-arabinose degradation II
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
2-deoxy-D-ribose degradation II
-
-
4-ethylphenol degradation (anaerobic)
-
-
4-oxopentanoate degradation
-
-
acetoacetate degradation (to acetyl CoA)
-
-
acetyl-CoA fermentation to butanoate
-
-
Ethylbenzene degradation
-
-
isopropanol biosynthesis (engineered)
-
-
ketolysis
-
-
L-isoleucine degradation I
-
-
L-lysine fermentation to acetate and butanoate
-
-
polyhydroxybutanoate biosynthesis
-
-
propanoate fermentation to 2-methylbutanoate
-
-
pyruvate fermentation to acetone
-
-
sitosterol degradation to androstenedione
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
tRNA methylation (yeast)
-
-
glutathione-peroxide redox reactions
-
-
serine metabolism
-
-
serine racemization
-
-
vancomycin resistance II
-
-
L-tyrosine degradation I
-
-
Styrene degradation
-
-
tyrosine metabolism
-
-
inosine-5'-phosphate biosynthesis III
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation VI (periplasmic)
-
-
valine metabolism
-
-
dolichyl-diphosphooligosaccharide biosynthesis
-
-
protein N-glycosylation initial phase (eukaryotic)
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
degradation of sugar acids
-
-
Flavone and flavonol biosynthesis
-
-
luteolin triglucuronide degradation
-
-
Porphyrin and chlorophyll metabolism
-
-
GABA shunt
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
Taurine and hypotaurine metabolism
-
-
gluconeogenesis
-
-
isoleucine metabolism
-
-
methylgallate degradation
-
-
protocatechuate degradation I (meta-cleavage pathway)
-
-
syringate degradation
-
-
C4 and CAM-carbon fixation
-
-
mixed acid fermentation
-
-
nitrogen remobilization from senescing leaves
-
-
UDP-alpha-D-xylose biosynthesis
-
-
1,3-propanediol biosynthesis (engineered)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
sedoheptulose bisphosphate bypass
-
-
homocysteine and cysteine interconversion
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
lanosterol biosynthesis
-
-
acetate conversion to acetyl-CoA
-
-
adlupulone and adhumulone biosynthesis
-
-
cis-geranyl-CoA degradation
-
-
colupulone and cohumulone biosynthesis
-
-
ethanol degradation II
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
L-isoleucine biosynthesis V
-
-
lupulone and humulone biosynthesis
-
-
propanol degradation
-
-
reductive glycine pathway
-
-
pantothenate biosynthesis
-
-
phosphopantothenate biosynthesis I
-
-
alginate degradation
-
-
heme metabolism
-
-
triacylglycerol degradation
-
-
diethylphosphate degradation
-
-
sulfopterin metabolism
-
-
nocardicin A biosynthesis
-
-
phosphate acquisition
-
-
D-myo-inositol-5-phosphate metabolism
-
-
d-mannose degradation
-
-
L-methionine degradation I (to L-homocysteine)
-
-
S-adenosyl-L-methionine salvage II
-
-
protein N-glycosylation processing phase (yeast)
-
-
melibiose degradation
-
-
acrylonitrile degradation I
-
-
Aminobenzoate degradation
-
-
degradation of aromatic, nitrogen containing compounds
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
indole glucosinolate activation (herbivore attack)
-
-
indole-3-acetate biosynthesis V (bacteria and fungi)
-
-
UTP and CTP dephosphorylation II
-
-
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
Chloroalkane and chloroalkene degradation
-
-
ethanol degradation I
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
L-histidine degradation V
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
pyruvate fermentation to (S)-lactate
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
pyruvate fermentation to (R)-lactate
-
-
vancomycin resistance I
-
-
butanoate fermentation
-
-
cytosolic NADPH production (yeast)
-
-
formaldehyde oxidation I
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
nicotine degradation IV
-
-
1,5-anhydrofructose degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
arachidonic acid metabolism
-
-
bupropion degradation
-
-
Caffeine metabolism
-
-
melatonin degradation I
-
-
nicotine degradation V
-
-
Steroid hormone biosynthesis
-
-
vanillin biosynthesis I
-
-
1D-myo-inositol hexakisphosphate biosynthesis I (from Ins(1,4,5)P3)
-
-
1D-myo-inositol hexakisphosphate biosynthesis V (from Ins(1,3,4)P3)
-
-
D-myo-inositol (1,4,5,6)-tetrakisphosphate biosynthesis
-
-
berberine biosynthesis
-
-
chelerythrine biosynthesis
-
-
noscapine biosynthesis
-
-
chitin degradation I (archaea)
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
acetyl CoA biosynthesis
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
oxidative decarboxylation of pyruvate
-
-
pyruvate decarboxylation to acetyl CoA I
-
-
cyclic electron flow
-
-
NADPH to cytochrome c oxidase via plastocyanin
-
-
photosynthesis light reactions
-
-
arsenite to oxygen electron transfer
-
-
arsenite to oxygen electron transfer (via azurin)
-
-
2-nitrotoluene degradation
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
phenol degradation
-
-
toluene degradation II (aerobic) (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
Xylene degradation
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
sesamin biosynthesis
-
-
xanthommatin biosynthesis
-
-
methanol oxidation to formaldehyde IV
-
-
formate to nitrite electron transfer
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
Arginine biosynthesis
-
-
nitric oxide biosynthesis II (mammals)
-
-
L-methionine biosynthesis I
-
-
L-methionine biosynthesis III
-
-
L-methionine salvage from L-homocysteine
-
-
3,5-dimethoxytoluene biosynthesis
-
-
dopamine degradation
-
-
guaiacol biosynthesis
-
-
L-dopa degradation I (mammalian)
-
-
tetrahydropteridine recycling
-
-
pentose phosphate pathway (non-oxidative branch) I
-
-
aromatic polyketides biosynthesis
-
-
flavonoid biosynthesis
-
-
Flavonoid biosynthesis
-
-
flavonoid biosynthesis (in equisetum)
-
-
flavonoid di-C-glucosylation
-
-
naringenin biosynthesis (engineered)
-
-
phloridzin biosynthesis
-
-
xanthohumol biosynthesis
-
-
heme degradation I
-
-
saponin biosynthesis II
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza)
-
-
1D-myo-inositol hexakisphosphate biosynthesis IV (Dictyostelium)
-
-
4-hydroxy-2-nonenal detoxification
-
-
camalexin biosynthesis
-
-
gliotoxin biosynthesis
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
indole glucosinolate activation (intact plant cell)
-
-
pentachlorophenol degradation
-
-
3-(imidazol-5-yl)lactate salvage
-
-
L-histidine degradation IV
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
atromentin biosynthesis
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
Novobiocin biosynthesis
-
-
rosmarinic acid biosynthesis I
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-galactose detoxification
-
-
dZTP biosynthesis
-
-
guanosine ribonucleotides de novo biosynthesis
-
-
flavin biosynthesis I (bacteria and plants)
-
-
flavin biosynthesis II (archaea)
-
-
flavin biosynthesis III (fungi)
-
-
flavin salvage
-
-
mRNA capping I
-
-
allantoin degradation
-
-
urate conversion to allantoin I
-
-
urate conversion to allantoin II
-
-
urate conversion to allantoin III
-
-
bile acid biosynthesis, neutral pathway
Primary bile acid biosynthesis
-
-
lipid IVA biosynthesis (2,3-diamino-2,3-dideoxy-D-glucopyranose-containing)
-
-
lipid IVA biosynthesis (E. coli)
-
-
lipid IVA biosynthesis (generic)
-
-
lipid IVA biosynthesis (H. pylori)
-
-
lipid IVA biosynthesis (P. gingivalis)
-
-
lipid IVA biosynthesis (P. putida)
-
-
Lipopolysaccharide biosynthesis
-
-
(5Z)-icosenoate biosynthesis
-
-
arsenic detoxification (plants)
-
-
arsenic detoxification (yeast)
-
-
S-(6-hydroxy-4-methylhexan-4-yl)-L-cysteinylglycine biosynthesis
-
-
superpathway of photosynthetic hydrogen production
-
-
vitamin K-epoxide cycle
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
nucleoside and nucleotide degradation (archaea)
-
-
GDP-6-deoxy-D-talose biosynthesis
-
-
GDP-D-perosamine biosynthesis
-
-
GDP-D-rhamnose biosynthesis
-
-
GDP-L-colitose biosynthesis
-
-
GDP-L-fucose biosynthesis I (from GDP-D-mannose)
-
-
GDP-mycosamine biosynthesis
-
-
GDP-N-acetyl-alpha-D-perosamine biosynthesis
-
-
GDP-N-formyl-alpha-D-perosamine biosynthesis
-
-
colanic acid building blocks biosynthesis
-
-
UDP-alpha-D-galactose biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis I
-
-
11-oxyandrogens biosynthesis
-
-
androgen and estrogen metabolism
-
-
androgen biosynthesis
-
-
backdoor pathway of androgen biosynthesis
-
-
brassinosteroid biosynthesis I
-
-
brassinosteroid biosynthesis II
-
-
cholesterol degradation to androstenedione III (anaerobic)
-
-
progesterone biosynthesis
-
-
Steroid degradation
-
-
all-trans-farnesol biosynthesis
-
-
bisabolene biosynthesis (engineered)
-
-
methylerythritol phosphate pathway I
-
-
methylerythritol phosphate pathway II
-
-
mono-trans, poly-cis decaprenyl phosphate biosynthesis
-
-
C20 prostanoid biosynthesis
-
-
tetrapyrrole biosynthesis I (from glutamate)
-
-
cannabinoid biosynthesis
-
-
itaconate degradation
-
-
ergothioneine biosynthesis I (bacteria)
-
-
glutathione biosynthesis
-
-
homoglutathione biosynthesis
-
-
ophthalmate biosynthesis
-
-
biotin biosynthesis
-
-
biotin-carboxyl carrier protein assembly
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
Limonene and pinene degradation
-
-
reductive TCA cycle II
-
-
TCA cycle VI (Helicobacter)
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine biosynthesis III (cytosolic, plants)
-
-
L-cysteine biosynthesis VI (reverse transsulfuration)
-
-
dimethyl sulfide biosynthesis from methionine
-
-
seleno-amino acid detoxification and volatilization I
-
-
seleno-amino acid detoxification and volatilization III
-
-
ethene biosynthesis I (plants)
-
-
L-methionine salvage cycle II (plants)
-
-
cyanide degradation
-
-
cyanide detoxification I
-
-
Bisphenol degradation
-
-
aminopropylcadaverine biosynthesis
-
-
bisucaberin biosynthesis
-
-
cadaverine biosynthesis
-
-
desferrioxamine B biosynthesis
-
-
desferrioxamine E biosynthesis
-
-
L-lysine degradation I
-
-
L-lysine degradation X
-
-
lupanine biosynthesis
-
-
heparan sulfate degradation
-
-
ammonia assimilation cycle II
-
-
ammonia assimilation cycle III
-
-
L-aspartate degradation II (aerobic)
-
-
L-aspartate degradation III (anaerobic)
-
-
L-glutamine biosynthesis I
-
-
L-serine biosynthesis I
-
-
5-oxo-L-proline metabolism
-
-
acetaldehyde biosynthesis II
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
sterol:steryl ester interconversion (yeast)
-
-
glycogen degradation II
-
-
pectin degradation II
-
-
lactose degradation II
-
-
canavanine degradation
-
-
L-arginine degradation I (arginase pathway)
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-arginine degradation VII (arginase 3 pathway)
-
-
L-citrulline biosynthesis
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
urea cycle
methylglyoxal degradation VI
-
-
aromatic glucosinolate activation
-
-
glucosinolate activation
-
-
fructan degradation
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
L-glutamate biosynthesis I
-
-
L-glutamine degradation I
-
-
tunicamycin biosynthesis
-
-
malate/L-aspartate shuttle pathway
-
-
testosterone and androsterone degradation to androstendione (aerobic)
-
-
estradiol biosynthesis I (via estrone)
-
-
glycerol-3-phosphate shuttle
-
-
phosphatidate biosynthesis (yeast)
-
-
pyruvate decarboxylation to acetyl CoA II
-
-
tea aroma glycosidic precursor bioactivation
-
-
alpha-tomatine degradation
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
ginsenoside metabolism
-
-
linamarin degradation
-
-
linustatin bioactivation
-
-
lotaustralin degradation
-
-
neolinustatin bioactivation
-
-
inosine 5'-phosphate degradation
-
-
methylglyoxal degradation V
-
-
2-oxobutanoate degradation I
-
-
L-threonine degradation V
-
-
L-valine degradation I
-
-
4-aminobutanoate degradation V
-
-
ethene biosynthesis IV (engineered)
-
-
L-glutamate degradation I
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
tetrahydrofolate biosynthesis I
-
-
formaldehyde oxidation VII (THF pathway)
-
-
formate assimilation into 5,10-methylenetetrahydrofolate
-
-
reductive acetyl coenzyme A pathway
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
ascorbate recycling (cytosolic)
-
-
ascorbate glutathione cycle
-
-
aromatic biogenic amine degradation (bacteria)
-
-
melatonin degradation II
-
-
phenylethylamine degradation I
-
-
putrescine degradation III
-
-
phosphatidylcholine biosynthesis VI
-
-
dimethyl sulfide degradation I
-
-
gossypol biosynthesis
-
-
15-epi-lipoxin biosynthesis
-
-
anandamide lipoxygenation
-
-
lipoxin biosynthesis
-
-
ascorbate metabolism
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
cobalamin salvage (eukaryotic)
-
-
phosphatidylcholine biosynthesis V
-
-
Biosynthesis of enediyne antibiotics
-
-
patulin biosynthesis
-
-
mitochondrial L-carnitine shuttle
-
-
monoacylglycerol metabolism (yeast)
-
-
bryostatin biosynthesis
-
-
fatty acid biosynthesis initiation (plant mitochondria)
-
-
fatty acid biosynthesis initiation (type II)
-
-
mupirocin biosynthesis
-
-
pederin biosynthesis
-
-
sphingolipid biosynthesis (yeast)
-
-
spermine and spermidine degradation I
-
-
Biosynthesis of 12-, 14- and 16-membered macrolides
-
-
erythromycin D biosynthesis
-
-
coenzyme B biosynthesis
-
-
FeMo cofactor biosynthesis
-
-
L-lysine biosynthesis IV
-
-
L-lysine biosynthesis V
-
-
Lysine biosynthesis
-
-
starch degradation III
-
-
starch degradation V
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis II (staphylococci)
-
-
peptidoglycan biosynthesis III (mycobacteria)
-
-
peptidoglycan biosynthesis IV (Enterococcus faecium)
-
-
peptidoglycan biosynthesis V (beta-lactam resistance)
-
-
peptidoglycan maturation (meso-diaminopimelate containing)
-
-
chondroitin biosynthesis
-
-
lipid A-core biosynthesis (Salmonella)
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
L-dopa and L-dopachrome biosynthesis
-
-
pheomelanin biosynthesis
-
-
L-serine biosynthesis II
-
-
purine deoxyribonucleosides salvage
-
-
vitamin B12 metabolism
-
-
4-aminobutanoate degradation I
-
-
4-aminobutanoate degradation II
-
-
4-aminobutanoate degradation III
-
-
nicotine degradation I (pyridine pathway)
-
-
2'-deoxymugineic acid phytosiderophore biosynthesis
-
-
S-adenosyl-L-methionine biosynthesis
-
-
S-adenosyl-L-methionine salvage I
-
-
L-nicotianamine biosynthesis
-
-
(R)-cysteate degradation
-
-
aspartate and asparagine metabolism
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
indole-3-acetate biosynthesis VI (bacteria)
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-glutamate degradation II
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation VI (reductive Stickland reaction)
-
-
L-tryptophan degradation IV (via indole-3-lactate)
-
-
L-tryptophan degradation VIII (to tryptophol)
-
-
L-tryptophan degradation XIII (reductive Stickland reaction)
-
-
sulfolactate degradation III
-
-
Glucosinolate biosynthesis
-
-
L-alanine biosynthesis I
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis III
-
-
L-isoleucine biosynthesis IV
-
-
L-isoleucine degradation III (oxidative Stickland reaction)
-
-
L-leucine biosynthesis
-
-
L-leucine degradation IV (reductive Stickland reaction)
-
-
L-leucine degradation V (oxidative Stickland reaction)
-
-
L-valine biosynthesis
-
-
L-valine degradation III (oxidative Stickland reaction)
-
-
Valine, leucine and isoleucine biosynthesis
-
-
GDP-alpha-D-glucose biosynthesis
-
-
glucose and glucose-1-phosphate degradation
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
sucrose degradation III (sucrose invertase)
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
acetate and ATP formation from acetyl-CoA I
-
-
gallate degradation III (anaerobic)
-
-
glycine degradation (reductive Stickland reaction)
-
-
L-threonine degradation I
-
-
methanogenesis from acetate
-
-
ornithine metabolism
-
-
purine nucleobases degradation I (anaerobic)
-
-
pyruvate fermentation to acetate II
-
-
pyruvate fermentation to acetate IV
-
-
creatine phosphate biosynthesis
-
-
adenosine deoxyribonucleotides de novo biosynthesis I
-
-
adenosine deoxyribonucleotides de novo biosynthesis II
-
-
CMP phosphorylation
-
-
guanosine deoxyribonucleotides de novo biosynthesis I
-
-
guanosine deoxyribonucleotides de novo biosynthesis II
-
-
ppGpp metabolism
-
-
pyrimidine deoxyribonucleotide phosphorylation
-
-
UTP and CTP de novo biosynthesis
-
-
GDP-mannose biosynthesis
-
-
assimilatory sulfate reduction II
-
-
assimilatory sulfate reduction III
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
Monobactam biosynthesis
-
-
selenate reduction
-
-
sulfite oxidation III
-
-
phosphatidylglycerol biosynthesis I (plastidic)
-
-
phosphatidylglycerol biosynthesis II (non-plastidic)
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
theophylline degradation
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
D-arabitol degradation
-
-
D-xylose degradation I
-
-
degradation of sugar alcohols
-
-
xylitol degradation
-
-
drosopterin and aurodrosopterin biosynthesis
-
-
erythro-tetrahydrobiopterin biosynthesis I
-
-
threo-tetrahydrobiopterin biosynthesis
-
-
eumelanin biosynthesis
-
-
lipoate biosynthesis
-
-
lipoate biosynthesis and incorporation I
-
-
lipoate biosynthesis and incorporation II
-
-
lipoate biosynthesis and incorporation III (Bacillus)
-
-
lipoate biosynthesis and incorporation IV (yeast)
-
-
Lipoic acid metabolism
-
-
poly-hydroxy fatty acids biosynthesis
-
-
autoinducer AI-1 biosynthesis
-
-
chondroitin sulfate degradation I (bacterial)
-
-
dermatan sulfate degradation I (bacterial)
-
-
caffeine biosynthesis I
-
-
caffeine biosynthesis II (via paraxanthine)
-
-
theobromine biosynthesis I
-
-
extended VTC2 cycle
-
-
L-ascorbate biosynthesis I (plants, L-galactose pathway)
-
-
VTC2 cycle
-
-
polyhydroxydecanoate biosynthesis
-
-
glycerol degradation I
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to fumarate electron transfer
-
-
glycerol-3-phosphate to hydrogen peroxide electron transport
-
-
glycerophosphodiester degradation
-
-
nitrate reduction IX (dissimilatory)
-
-
anandamide degradation
-
-
ADP-L-glycero-beta-D-manno-heptose biosynthesis
-
-
GDP-D-glycero-alpha-D-manno-heptose biosynthesis
-
-
vernolate biosynthesis III
-
-
astaxanthin biosynthesis (bacteria, fungi, algae)
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
flexixanthin biosynthesis
-
-
7-(3-amino-3-carboxypropyl)-wyosine biosynthesis
-
-
methylwyosine biosynthesis
-
-
3-dehydroquinate biosynthesis II (archaea)
-
-
chorismate metabolism
-
-
(9Z)-tricosene biosynthesis
-
-
arachidonate biosynthesis V (8-detaturase, mammals)
-
-
juniperonate biosynthesis
-
-
sciadonate biosynthesis
-
-
ultra-long-chain fatty acid biosynthesis
-
-
very long chain fatty acid biosynthesis I
-
-
very long chain fatty acid biosynthesis II
-
-
11-cis-3-hydroxyretinal biosynthesis
-
-
NAD phosphorylation and dephosphorylation
-
-
NAD phosphorylation and transhydrogenation
-
-
pyruvate fermentation to acetate V
-
-
superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
-
-
arginine dependent acid resistance
-
-
L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
-
-
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway)
-
-
putrescine biosynthesis I
-
-
putrescine biosynthesis II
-
-
heparin degradation
-
-
D-sorbitol biosynthesis I
-
-
starch biosynthesis
-
-
sucrose biosynthesis III
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
catechol degradation to beta-ketoadipate
-
-
Fluorobenzoate degradation
-
-
L-asparagine biosynthesis I
-
-
glucose degradation (oxidative)
-
-
L-ascorbate biosynthesis IV (animals, D-glucuronate pathway)
-
-
L-ascorbate biosynthesis VI (plants, myo-inositol pathway)
-
-
L-ascorbate biosynthesis VIII (engineered pathway)
-
-
sorbitol biosynthesis II
-
-
chlorogenic acid degradation
-
-
starch degradation II
-
-
trehalose biosynthesis V
-
-
L-asparagine degradation I
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
Atrazine degradation
-
-
urea degradation II
-
-
sterol biosynthesis (methylotrophs)
-
-
zymosterol biosynthesis
-
-
alkane oxidation
-
-
fatty acid alpha-oxidation I (plants)
-
-
histamine degradation
-
-
hypotaurine degradation
-
-
limonene degradation IV (anaerobic)
-
-
mitochondrial NADPH production (yeast)
-
-
o-diquinones biosynthesis
-
-
L-threonine degradation II
-
-
threonine metabolism
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
adenosine nucleotides degradation II
-
-
arsenic detoxification (mammals)
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
guanine and guanosine salvage I
-
-
guanosine nucleotides degradation III
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
purine ribonucleosides degradation
-
-
salinosporamide A biosynthesis
-
-
xanthine and xanthosine salvage
-
-
di-trans,poly-cis-undecaprenyl phosphate biosynthesis
-
-
pyrimidine nucleobases salvage I
-
-
5,6-dimethylbenzimidazole biosynthesis I (aerobic)
-
-
roseoflavin biosynthesis
-
-
NAD biosynthesis III (from nicotinamide)
-
-
NAD salvage pathway IV (from nicotinamide riboside)
-
-
polyphosphate metabolism
-
-
1D-myo-inositol hexakisphosphate biosynthesis II (mammalian)
-
-
D-myo-inositol (1,3,4)-trisphosphate biosynthesis
-
-
chlorpyrifos degradation
-
-
methyl parathion degradation
-
-
paraoxon degradation
-
-
parathion degradation
-
-
sulfide oxidation I (to sulfur globules)
-
-
sulfide oxidation III (to sulfite)
-
-
alpha-linolenate biosynthesis I (plants and red algae)
-
-
icosapentaenoate biosynthesis VI (fungi)
-
-
(7Z,10Z,13Z)-hexadecatrienoate biosynthesis
-
-
glycolipid desaturation
-
-
linoleate biosynthesis III (cyanobacteria)
-
-
ginsenosides biosynthesis
-
-
histamine biosynthesis
-
-
C5-Branched dibasic acid metabolism
-
-
L-glutamate degradation VI (to pyruvate)
-
-
CMP-3-deoxy-D-manno-octulosonate biosynthesis
-
-
CMP-8-amino-3,8-dideoxy-D-manno-octulosonate biosynthesis
-
-
CMP-KDO biosynthesis
-
-
d-xylose degradation
-
-
trehalose biosynthesis IV
-
-
proline metabolism
-
-
L-asparagine biosynthesis II
-
-
glucosinolate biosynthesis from dihomomethionine
-
-
glucosinolate biosynthesis from hexahomomethionine
-
-
glucosinolate biosynthesis from homomethionine
-
-
glucosinolate biosynthesis from pentahomomethionine
-
-
glucosinolate biosynthesis from phenylalanine
-
-
glucosinolate biosynthesis from tetrahomomethionine
-
-
glucosinolate biosynthesis from trihomomethionine
-
-
glucosinolate biosynthesis from tryptophan
-
-
glucosinolate biosynthesis from tyrosine
-
-
S-(6-hydroxy-4-methylhexan-4-yl)-L-cysteinylglycine degradation
-
-
alliin metabolism
-
-
methiin metabolism
-
-
propanethial S-oxide biosynthesis
-
-
D-galactose degradation II
-
-
fructose 2,6-bisphosphate biosynthesis
-
-
phosphatidylcholine resynthesis via glycerophosphocholine
-
-
inulin degradation
-
-
bile acids deconjugation
-
-
Secondary bile acid biosynthesis
-
-
6-hydroxymethyl-dihydropterin diphosphate biosynthesis
-
-
6-hydroxymethyl-dihydropterin diphosphate biosynthesis I
-
-
6-hydroxymethyl-dihydropterin diphosphate biosynthesis IV (Plasmodium)
-
-
preQ0 biosynthesis
-
-
tetrahydromonapterin biosynthesis
-
-
ergosterol biosynthesis II
-
-
glucocorticoid biosynthesis
-
-
mineralocorticoid biosynthesis
-
-
aminopropanol phosphate biosynthesis II
-
-
L-threonine degradation III (to methylglyoxal)
-
-
D-xylose degradation to ethylene glycol (engineered)
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
D-galactose degradation IV
-
-
methylglyoxal degradation III
-
-
L-lysine degradation XI (mammalian)
-
-
4-nitrophenol degradation I
-
-
pinitol biosynthesis I
-
-
homospermidine biosynthesis I
-
-
homospermidine biosynthesis II
-
-
lactose degradation III
-
-
dolichol and dolichyl phosphate biosynthesis
-
-
2-deoxy-D-glucose 6-phosphate degradation
-
-
L-lysine degradation II (L-pipecolate pathway)
-
-
L-lysine degradation VII
-
-
ethene biosynthesis II (microbes)
-
-
L-proline degradation I
-
-
nitrate reduction II (assimilatory)
-
-
sulfide oxidation IV (mitochondria)
-
-
sulfite oxidation IV (sulfite oxidase)
-
-
nitrate assimilation
-
-
nitrate reduction VI (assimilatory)
-
-
divinyl ether biosynthesis II
-
-
palmitoleate biosynthesis II (plants and bacteria)
-
-
methane oxidation to methanol I
-
-
L-cysteine degradation I
-
-
taurine biosynthesis I
-
-
thyroid hormone biosynthesis
S-methyl-L-methionine cycle
-
-
sulfur volatiles biosynthesis
-
-
methane metabolism
-
-
avenanthramide biosynthesis
-
-
chlorogenic acid biosynthesis I
-
-
coumarins biosynthesis (engineered)
-
-
curcuminoid biosynthesis
-
-
phenylpropanoid biosynthesis
phenylpropanoids methylation (ice plant)
-
-
scopoletin biosynthesis
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
suberin monomers biosynthesis
-
-
glycine betaine biosynthesis IV (from glycine)
-
-
glycine betaine biosynthesis V (from glycine)
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaea)
-
-
L-arginine degradation XIII (reductive Stickland reaction)
-
-
L-arginine degradation XIV (oxidative Stickland reaction)
-
-
L-citrulline degradation
-
-
CDP-diacylglycerol biosynthesis
-
-
CDP-diacylglycerol biosynthesis I
-
-
CDP-diacylglycerol biosynthesis II
-
-
oleate biosynthesis III (cyanobacteria)
-
-
superpathway of fatty acid biosynthesis initiation (E. coli)
-
-
Nitrotoluene degradation
-
-
CDP-diacylglycerol biosynthesis III
-
-
palmitoleate biosynthesis III (cyanobacteria)
-
-
gamma-glutamyl cycle
-
-
hypoglycin biosynthesis
-
-
acetyl-CoA biosynthesis from citrate
-
-
phenolic malonylglucosides biosynthesis
-
-
Glycosaminoglycan biosynthesis - keratan sulfate
-
-
protein N-glycosylation (Haloferax volcanii)
-
-
protein O-mannosylation I (yeast)
-
-
protein O-mannosylation II (mammals, core M1 and core M2)
-
-
protein O-mannosylation III (mammals, core M3)
-
-
2,3-dihydroxybenzoate biosynthesis
-
-
2-carboxy-1,4-naphthoquinol biosynthesis
-
-
Biosynthesis of siderophore group nonribosomal peptides
-
-
enterobactin biosynthesis
-
-
salicylate biosynthesis I
-
-
vitamin K metabolism
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation III
-
-
L-alanine degradation V (oxidative Stickland reaction)
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
L-methionine biosynthesis II
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-diaminopimelate containing)
-
-
isoprenoid biosynthesis
-
-
NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde
-
-
NAD de novo biosynthesis I (from aspartate)
-
-
NAD de novo biosynthesis IV (anaerobic)
-
-
nicotine biosynthesis
-
-
superpathway of nicotine biosynthesis
-
-
adenine salvage
-
-
i antigen and I antigen biosynthesis
-
-
terminal O-glycans residues modification (via type 2 precursor disaccharide)
-
-
CMP-legionaminate biosynthesis I
-
-
UDP-GlcNAc biosynthesis
-
-
D-gluconate degradation
-
-
ketogluconate metabolism
-
-
L-idonate degradation
-
-
superpathway of phospholipid biosynthesis II (plants)
-
-
diacylglycerol biosynthesis (PUFA enrichment in oilseed)
-
-
phosphatidylinositol biosynthesis II (eukaryotes)
-
-
thiosulfate disproportionation IV (rhodanese)
-
-
L-cysteine degradation III
-
-
2-oxobutanoate degradation II
-
-
tRNA splicing I
-
-
amygdalin and prunasin degradation
-
-
chitin derivatives degradation
-
-
metabolism of amino sugars and derivatives
-
-
N-acetylglucosamine degradation I
-
-
penicillin G and penicillin V biosynthesis
-
-
phenylacetate degradation II (anaerobic)
-
-
pyridoxal 5'-phosphate biosynthesis I
-
-
vitamin B6 metabolism
-
-
L-lysine biosynthesis VI
-
-
protective electron sinks in the thylakoid membrane (PSII to PTOX)
-
-
D-lactate to cytochrome bo oxidase electron transfer
-
-
NADH to cytochrome bo oxidase electron transfer II
-
-
proline to cytochrome bo oxidase electron transfer
-
-
pyruvate to cytochrome bo oxidase electron transfer
-
-
(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate biosynthesis II (4-desaturase)
-
-
arachidonate biosynthesis III (6-desaturase, mammals)
-
-
docosahexaenoate biosynthesis IV (4-desaturase, mammals)
-
-
4,4'-diapolycopenedioate biosynthesis
-
-
botryococcenes and methylated squalene biosynthesis
-
-
epoxysqualene biosynthesis
-
-
hopanoid biosynthesis (bacteria)
-
-
staphyloxanthin biosynthesis
-
-
saframycin A biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
basolateral membrane domain of the epithelial vulval precursor cells
Manually annotated by BRENDA team
-
in Pcrn-7(4xNLS)::GFP larvae
Manually annotated by BRENDA team
P41988 AND P47207 AND Q9N4J8 AND P47208 AND P47209 AND P46550 AND Q9TZS5 AND Q9N358
-
Manually annotated by BRENDA team
-
N-ethylmaleimide sensitive factor is required for fusion of the Caenorhabditis elegans uterine anchor cell
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
P41988 AND P47207 AND Q9N4J8 AND P47208 AND P47209 AND P46550 AND Q9TZS5 AND Q9N358
-
-
Manually annotated by BRENDA team
-
dynamin is a general component of clathrin-coated endocytic pits
-
Manually annotated by BRENDA team
the enzyme has multiple transmembrane domains
-
Manually annotated by BRENDA team
P41988 AND P47207 AND Q9N4J8 AND P47208 AND P47209 AND P46550 AND Q9TZS5 AND Q9N358
-
-
Manually annotated by BRENDA team
meiotic chromosome pairing centers localize PLK-2 to the nuclear envelope
-
Manually annotated by BRENDA team
-
mitotic, midzone
-
Manually annotated by BRENDA team
additional information
LINKS TO OTHER DATABASES (specific for Caenorhabditis elegans)