Any feedback?
Please rate this page
(organism.php)
(0/150)

BRENDA support

Information on Organism Acinetobacter sp.

TaxTree of Organism Acinetobacter sp.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(+)-camphor degradation
-
-
(-)-camphor degradation
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
1,3-dimethylbenzene degradation to 3-methylbenzoate
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,4-dimethylbenzene degradation to 4-methylbenzoate
-
-
1,5-anhydrofructose degradation
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
2,4-dichlorophenoxyacetate degradation
-
-
2,5-xylenol and 3,5-xylenol degradation
-
-
2-amino-3-carboxymuconate semialdehyde degradation to glutaryl-CoA
-
-
2-hydroxybiphenyl degradation
-
-
2-hydroxypenta-2,4-dienoate degradation
-
-
2-methyl-branched fatty acid beta-oxidation
-
-
2-nitrobenzoate degradation II
-
-
2-nitrotoluene degradation
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
3-chlorocatechol degradation
-
-
3-chlorotoluene degradation II
-
-
3-dehydroquinate biosynthesis II (archaea)
-
-
3-methyl-branched fatty acid alpha-oxidation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
3-phenylpropionate degradation
-
-
4-aminobutanoate degradation V
-
-
4-chloro-2-methylphenoxyacetate degradation
-
-
4-chlorobenzoate degradation
-
-
4-chloronitrobenzene degradation
-
-
4-coumarate degradation (aerobic)
-
-
4-hydroxymandelate degradation
4-hydroxyphenylacetate degradation
4-methylphenol degradation to protocatechuate
-
-
4-sulfocatechol degradation
-
-
5-nitroanthranilate degradation
-
-
acetaldehyde biosynthesis I
-
-
acetate conversion to acetyl-CoA
-
-
acetate fermentation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetylene degradation (anaerobic)
-
-
acrylonitrile degradation I
-
-
acrylonitrile degradation II
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
adipate degradation
-
-
adlupulone and adhumulone biosynthesis
-
-
agarose degradation
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
alkane oxidation
-
-
alpha-Linolenic acid metabolism
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
ammonia assimilation cycle III
-
-
ammonia oxidation I (aerobic)
-
-
ammonia oxidation III
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
anapleurotic synthesis of oxalacetate
-
-
aniline degradation
-
-
anthranilate degradation I (aerobic)
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arginine metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
arsenate reduction (respiratory)
-
-
arsonoacetate degradation
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate metabolism
-
-
assimilatory sulfate reduction II
-
-
assimilatory sulfate reduction III
-
-
assimilatory sulfate reduction IV
-
-
autoinducer AI-1 biosynthesis
-
-
bacterial bioluminescence
-
-
Benzoate degradation
-
-
benzoate degradation I (aerobic)
-
-
benzoyl-CoA degradation I (aerobic)
-
-
beta-Alanine metabolism
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
Bifidobacterium shunt
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of unsaturated fatty acids
-
-
biphenyl degradation
-
-
bisphenol A degradation
-
-
bupropion degradation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camphor degradation
-
-
Caprolactam degradation
-
-
carbaryl degradation
-
-
carbazole degradation
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
carbon tetrachloride degradation II
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
catechol degradation to beta-ketoadipate
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide degradation by alpha-oxidation
-
-
chitin deacetylation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
chlorinated phenols degradation
-
-
Chloroalkane and chloroalkene degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
chlorogenic acid degradation
-
-
chlorosalicylate degradation
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
chorismate metabolism
-
-
cis-geranyl-CoA degradation
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
colupulone and cohumulone biosynthesis
-
-
creatine phosphate biosynthesis
-
-
creatinine degradation
-
-
creatinine degradation I
-
-
cuticular wax biosynthesis
-
-
cutin biosynthesis
-
-
Cutin, suberine and wax biosynthesis
-
-
Cyanoamino acid metabolism
-
-
cyanophycin metabolism
-
-
cyclohexanol degradation
Cysteine and methionine metabolism
-
-
D-galactose degradation II
-
-
d-mannose degradation
-
-
D-xylose degradation to ethylene glycol (engineered)
-
-
degradation of aromatic, nitrogen containing compounds
-
-
degradation of pentoses
-
-
degradation of sugar acids
-
-
degradation of sugar alcohols
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
dimethyl sulfide biosynthesis from methionine
-
-
dimethyl sulfide degradation II (oxidation)
-
-
Dioxin degradation
-
-
diphenyl ethers degradation
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
dopamine degradation
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis IV (engineered)
-
-
ethene biosynthesis V (engineered)
-
-
Ethylbenzene degradation
-
-
fatty acid alpha-oxidation I (plants)
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
Fatty acid degradation
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
ferrichrome A biosynthesis
-
-
Flavone and flavonol biosynthesis
-
-
Fluorobenzoate degradation
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
gallate degradation
-
-
gentisate degradation I
-
-
Geraniol degradation
-
-
gluconeogenesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glucose degradation (oxidative)
-
-
glutamate and glutamine metabolism
-
-
glycerol degradation II
-
-
glycerol degradation to butanol
-
-
Glycerolipid metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate cycle
-
-
guanosine ribonucleotides de novo biosynthesis
-
-
heterolactic fermentation
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
hydrogen production VI
-
-
hypotaurine degradation
-
-
IAA biosynthesis
-
-
incomplete reductive TCA cycle
-
-
indole glucosinolate activation (herbivore attack)
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
indole-3-acetate biosynthesis V (bacteria and fungi)
-
-
Insect hormone biosynthesis
-
-
isoleucine metabolism
-
-
L-alanine degradation II (to D-lactate)
-
-
L-arabinose degradation I
-
-
L-arginine degradation II (AST pathway)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
L-ascorbate biosynthesis IV (animals, D-glucuronate pathway)
-
-
L-ascorbate biosynthesis VI (plants, myo-inositol pathway)
-
-
L-ascorbate biosynthesis VIII (engineered pathway)
-
-
L-aspartate degradation II (aerobic)
-
-
L-aspartate degradation III (anaerobic)
-
-
L-glutamate degradation I
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
L-glutamine biosynthesis I
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis III
-
-
L-isoleucine biosynthesis IV
-
-
L-isoleucine biosynthesis V
-
-
L-isoleucine degradation II
-
-
L-leucine degradation I
-
-
L-leucine degradation III
-
-
L-lysine degradation II (L-pipecolate pathway)
-
-
L-lysine degradation XI (mammalian)
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation III
-
-
L-serine biosynthesis II
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
L-tyrosine biosynthesis II
-
-
L-tyrosine degradation III
-
-
L-valine biosynthesis
-
-
L-valine degradation II
-
-
lactose degradation II
-
-
leucine metabolism
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
Linoleic acid metabolism
-
-
lipid metabolism
-
-
long chain fatty acid ester synthesis (engineered)
-
-
lupulone and humulone biosynthesis
-
-
luteolin triglucuronide degradation
-
-
Lysine degradation
-
-
m-cresol degradation
-
-
malate/L-aspartate shuttle pathway
-
-
melatonin degradation I
-
-
melibiose degradation
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
methanogenesis from acetate
-
-
methanol oxidation to carbon dioxide
-
-
methanol oxidation to formaldehyde II
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methyl ketone biosynthesis (engineered)
-
-
methylaspartate cycle
methylgallate degradation
-
-
methylsalicylate degradation
-
-
Microbial metabolism in diverse environments
-
-
mitochondrial NADPH production (yeast)
-
-
mixed acid fermentation
-
-
monoacylglycerol metabolism (yeast)
-
-
Monobactam biosynthesis
-
-
NAD metabolism
-
-
Naphthalene degradation
-
-
naphthalene degradation (aerobic)
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitrate assimilation
-
-
Nitrogen metabolism
-
-
nitrogen remobilization from senescing leaves
-
-
Nitrotoluene degradation
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
nucleoside and nucleotide degradation (archaea)
-
-
nylon-6 oligomer degradation
-
-
octane oxidation
oleandomycin activation/inactivation
-
-
oleate beta-oxidation
-
-
oleate biosynthesis II (animals and fungi)
-
-
Other glycan degradation
-
-
oxidative decarboxylation of pyruvate
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
palmitoleate biosynthesis IV (fungi and animals)
-
-
Pantothenate and CoA biosynthesis
-
-
partial TCA cycle (obligate autotrophs)
-
-
Penicillin and cephalosporin biosynthesis
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) I
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
phenol degradation
-
-
phenol degradation I (aerobic)
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
phosphate acquisition
-
-
photosynthesis
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
phytol degradation
-
-
platensimycin biosynthesis
-
-
polybrominated dihydroxylated diphenyl ethers biosynthesis
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
polyhydroxybutanoate biosynthesis
-
-
polyhydroxydecanoate biosynthesis
-
-
polyphosphate metabolism
-
-
porphyran degradation
-
-
Porphyrin and chlorophyll metabolism
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
protocatechuate degradation I (meta-cleavage pathway)
-
-
protocatechuate degradation II (ortho-cleavage pathway)
-
-
Purine metabolism
-
-
purine metabolism
-
-
putrescine degradation III
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
pyruvate decarboxylation to acetyl CoA II
-
-
pyruvate fermentation to butanol I
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
quinate degradation
-
-
quinate degradation I
-
-
reactive oxygen species degradation
-
-
reductive acetyl coenzyme A pathway
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
reductive acetyl coenzyme A pathway II (autotrophic methanogens)
-
-
reductive glycine pathway
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
Rubisco shunt
-
-
salicin biosynthesis
-
-
salicortin biosynthesis
-
-
salicylate degradation I
-
-
salidroside biosynthesis
-
-
sedoheptulose bisphosphate bypass
-
-
selenate reduction
-
-
Selenocompound metabolism
-
-
serine metabolism
-
-
serotonin degradation
-
-
serotonin metabolism
-
-
shikimate degradation I
-
-
sophorosyloxydocosanoate deacetylation
-
-
sorbitol biosynthesis II
-
-
sorgoleone biosynthesis
-
-
Sphingolipid metabolism
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
spongiadioxin C biosynthesis
-
-
sporopollenin precursors biosynthesis
-
-
stachyose degradation
-
-
Starch and sucrose metabolism
-
-
starch degradation
-
-
stearate biosynthesis I (animals)
-
-
stearate biosynthesis III (fungi)
-
-
Steroid biosynthesis
-
-
Steroid degradation
-
-
Steroid hormone biosynthesis
-
-
sterol:steryl ester interconversion (yeast)
-
-
Styrene degradation
-
-
suberin monomers biosynthesis
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sulfate activation for sulfonation
-
-
sulfate reduction
-
-
sulfite oxidation III
-
-
Sulfur metabolism
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of methylsalicylate metabolism
-
-
syringate degradation
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
TCA cycle VIII (Chlamydia)
-
-
Thiamine metabolism
-
-
thymine degradation
-
-
Toluene degradation
-
-
toluene degradation II (aerobic) (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
toluene degradation to benzoate
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
triacylglycerol degradation
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
uracil degradation I (reductive)
-
-
valine metabolism
-
-
Valine, leucine and isoleucine biosynthesis
-
-
Valine, leucine and isoleucine degradation
-
-
valproate beta-oxidation
-
-
vanillin and vanillate degradation II
-
-
vanillin biosynthesis I
-
-
vitamin B1 metabolism
-
-
wax esters biosynthesis I
-
-
wax esters biosynthesis II
-
-
Xylene degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
induction of enzyme formation by trans-cyclohexan-1,2-diol containing medium
Manually annotated by BRENDA team
-
induction of enzyme synthesis by growth in cyclohexanol containing medium
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
additional information
-
determination of subcellular distribution, overview
-
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Acinetobacter sp.)