Any feedback?
Please rate this page
(organism.php)
(0/150)

BRENDA support

Information on Organism Asparagus officinalis

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(1'S,5'S)-averufin biosynthesis
-
-
(R)-cysteate degradation
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis I
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,5-anhydrofructose degradation
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
3-methylbutanol biosynthesis (engineered)
-
-
4-aminobutanoate degradation V
-
-
4-coumarate degradation (aerobic)
-
-
4-coumarate degradation (anaerobic)
-
-
4-hydroxy-2-nonenal detoxification
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
6-gingerol analog biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetylene degradation (anaerobic)
-
-
Aflatoxin biosynthesis
-
-
aflatoxin biosynthesis
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
alpha-Linolenic acid metabolism
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminoacyl-tRNA biosynthesis
-
-
Aminobenzoate degradation
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
Ascorbate and aldarate metabolism
-
-
aspartate and asparagine metabolism
-
-
atromentin biosynthesis
-
-
avenanthramide biosynthesis
-
-
bacterial bioluminescence
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
beta-Alanine metabolism
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
betanidin degradation
-
-
Bifidobacterium shunt
-
-
bile acid biosynthesis, neutral pathway
Biosynthesis of secondary metabolites
-
-
bupropion degradation
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C20 prostanoid biosynthesis
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
Caffeine metabolism
-
-
caffeoylglucarate biosynthesis
-
-
camalexin biosynthesis
-
-
Caprolactam degradation
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
Chloroalkane and chloroalkene degradation
-
-
cholesterol biosynthesis
-
-
choline biosynthesis III
-
-
cinnamoyl-CoA biosynthesis
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
coumarins biosynthesis (engineered)
-
-
curcuminoid biosynthesis
-
-
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
degradation of sugar acids
-
-
diethylphosphate degradation
-
-
divinyl ether biosynthesis II
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
ephedrine biosynthesis
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis I (plants)
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis IV (engineered)
-
-
Ether lipid metabolism
-
-
Fatty acid degradation
-
-
Flavone and flavonol biosynthesis
-
-
flavonoid biosynthesis
-
-
Flavonoid biosynthesis
-
-
flavonoid di-C-glucosylation
-
-
Folate biosynthesis
-
-
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde oxidation VII (THF pathway)
-
-
formate assimilation into 5,10-methylenetetrahydrofolate
-
-
fructan biosynthesis
-
-
fructan degradation
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
GDP-alpha-D-glucose biosynthesis
-
-
ginsenoside metabolism
-
-
ginsenosides biosynthesis
-
-
gliotoxin biosynthesis
-
-
gluconeogenesis
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glutamate and glutamine metabolism
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glutathione-peroxide redox reactions
-
-
Glycerophospholipid metabolism
-
-
glycine betaine biosynthesis
-
-
Glycine, serine and threonine metabolism
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis III (from glucose)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate cycle
-
-
heme degradation I
-
-
heme metabolism
-
-
heterolactic fermentation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
incomplete reductive TCA cycle
-
-
indole glucosinolate activation (intact plant cell)
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis VI (bacteria)
-
-
inulin degradation
-
-
Isoquinoline alkaloid biosynthesis
-
-
jasmonic acid biosynthesis
-
-
jasmonoyl-L-isoleucine inactivation
-
-
justicidin B biosynthesis
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation III
-
-
L-alanine degradation V (oxidative Stickland reaction)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-asparagine biosynthesis I
-
-
L-asparagine biosynthesis II
-
-
L-asparagine degradation I
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-glutamate degradation I
-
-
L-glutamate degradation II
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
L-histidine degradation III
-
-
L-histidine degradation V
-
-
L-isoleucine degradation II
-
-
L-lactaldehyde degradation
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-methionine salvage cycle II (plants)
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation VI (reductive Stickland reaction)
-
-
L-tryptophan degradation IV (via indole-3-lactate)
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation VIII (to tryptophol)
-
-
L-tryptophan degradation XIII (reductive Stickland reaction)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation III
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
L-valine degradation II
-
-
lactate fermentation
-
-
lactose degradation II
-
-
lanosterol biosynthesis
-
-
leucine metabolism
-
-
Linoleic acid metabolism
-
-
lipid metabolism
-
-
luteolin triglucuronide degradation
-
-
malate/L-aspartate shuttle pathway
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methylaspartate cycle
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
NAD metabolism
-
-
Naphthalene degradation
-
-
naringenin biosynthesis (engineered)
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
Nitrogen metabolism
-
-
nitrogen remobilization from senescing leaves
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
Novobiocin biosynthesis
-
-
octane oxidation
One carbon pool by folate
-
-
Other glycan degradation
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
pentachlorophenol degradation
-
-
Pentose and glucuronate interconversions
-
-
phaselate biosynthesis
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
phosphate acquisition
-
-
phosphatidate metabolism, as a signaling molecule
-
-
phospholipases
-
-
phosphopantothenate biosynthesis I
-
-
photosynthesis
-
-
photosynthesis light reactions
-
-
phytol degradation
-
-
Porphyrin and chlorophyll metabolism
-
-
Primary bile acid biosynthesis
-
-
proline metabolism
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
protective electron sinks in the thylakoid membrane (PSII to PTOX)
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
pyruvate fermentation to (S)-lactate
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive acetyl coenzyme A pathway
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
reductive glycine pathway
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
rosmarinic acid biosynthesis I
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
serotonin metabolism
-
-
sesamin biosynthesis
-
-
Sphingolipid metabolism
-
-
Starch and sucrose metabolism
-
-
Steroid biosynthesis
-
-
Steroid hormone biosynthesis
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
streptomycin biosynthesis
-
-
Streptomycin biosynthesis
-
-
suberin monomers biosynthesis
sucrose biosynthesis II
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sulfolactate degradation III
-
-
sulfopterin metabolism
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VIII (Chlamydia)
-
-
tetrahydrofolate metabolism
-
-
tetrahydrofolate salvage from 5,10-methenyltetrahydrofolate
-
-
Thiamine metabolism
-
-
trans-caffeate degradation (aerobic)
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
tRNA charging
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
umbelliferone biosynthesis
-
-
valine metabolism
-
-
vanillin biosynthesis I
-
-
vitamin B1 metabolism
-
-
xanthohumol biosynthesis
-
-
xanthommatin biosynthesis
-
-
xylan biosynthesis
-
-
xyloglucan degradation II (exoglucanase)
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
activity in all tested varieties is significantly higher in roots than in spears and leaves
Manually annotated by BRENDA team
-
around, higher levels than other regions
Manually annotated by BRENDA team
additional information
-
comprehensive comparison shows that the Asparagus officinalis A7 variety has the highest asparaginase activity, while A1 has the lowest, regardless of the tissue type
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
LINKS TO OTHER DATABASES (specific for Asparagus officinalis)