Information on Organism Cajanus cajan

TaxTree of Organism Cajanus cajan
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Pyruvate metabolism
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
serotonin metabolism
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
Bifidobacterium shunt
-
-
Cysteine and methionine metabolism
-
-
L-histidine degradation V
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
Propanoate metabolism
-
-
pyruvate fermentation to (S)-lactate
-
-
superpathway of glucose and xylose degradation
-
-
alanine metabolism
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
pyruvate fermentation to (R)-lactate
-
-
vancomycin resistance I
-
-
isoprene biosynthesis II (engineered)
-
-
mevalonate metabolism
-
-
mevalonate pathway I (eukaryotes and bacteria)
-
-
mevalonate pathway II (haloarchaea)
-
-
mevalonate pathway III (Thermoplasma)
-
-
mevalonate pathway IV (archaea)
-
-
Terpenoid backbone biosynthesis
-
-
cytosolic NADPH production (yeast)
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde oxidation I
-
-
Glutathione metabolism
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
Entner Doudoroff pathway
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
Methane metabolism
-
-
protein S-nitrosylation and denitrosylation
-
-
2-deoxy-D-glucose 6-phosphate degradation
-
-
3-methyl-branched fatty acid alpha-oxidation
-
-
alkane oxidation
-
-
Arginine and proline metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
Ascorbate and aldarate metabolism
-
-
beta-Alanine metabolism
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide degradation by alpha-oxidation
-
-
dopamine degradation
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
fatty acid alpha-oxidation I (plants)
-
-
Glycerolipid metabolism
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
hypotaurine degradation
-
-
Insect hormone biosynthesis
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
Lysine degradation
-
-
mitochondrial NADPH production (yeast)
-
-
non-pathway related
-
-
octane oxidation
Pantothenate and CoA biosynthesis
-
-
putrescine degradation III
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
Tryptophan metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
arginine metabolism
-
-
Carbapenem biosynthesis
-
-
L-citrulline biosynthesis
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-ornithine biosynthesis II
-
-
L-proline biosynthesis I (from L-glutamate)
-
-
proline metabolism
-
-
Carbon fixation in photosynthetic organisms
-
-
photosynthesis
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-arginine degradation XIII (reductive Stickland reaction)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
superpathway of photosynthetic hydrogen production
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
vitamin K-epoxide cycle
-
-
nitrate reduction II (assimilatory)
-
-
Nitrogen metabolism
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
glutathione metabolism
-
-
glutathione-peroxide redox reactions
-
-
gossypol biosynthesis
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
sesamin biosynthesis
-
-
photosynthesis light reactions
-
-
protective electron sinks in the thylakoid membrane (PSII to PTOX)
-
-
Glyoxylate and dicarboxylate metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
luteolin triglucuronide degradation
-
-
Phenylpropanoid biosynthesis
-
-
xanthommatin biosynthesis
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
ascorbate metabolism
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
Drug metabolism - other enzymes
-
-
methane metabolism
-
-
Phenylalanine metabolism
-
-
divinyl ether biosynthesis II
-
-
jasmonic acid biosynthesis
-
-
Linoleic acid metabolism
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
Arginine biosynthesis
-
-
nitric oxide biosynthesis II (mammals)
-
-
1,5-anhydrofructose degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Aminobenzoate degradation
-
-
bupropion degradation
-
-
Caffeine metabolism
-
-
melatonin degradation I
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
Steroid hormone biosynthesis
-
-
vanillin biosynthesis I
-
-
bacterial bioluminescence
-
-
heme degradation I
-
-
heme metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
bile acid biosynthesis, neutral pathway
Primary bile acid biosynthesis
-
-
Betalain biosynthesis
-
-
firefly bioluminescence
-
-
Isoquinoline alkaloid biosynthesis
-
-
L-dopa and L-dopachrome biosynthesis
-
-
pheomelanin biosynthesis
-
-
Biosynthesis of unsaturated fatty acids
-
-
lipid metabolism
-
-
oleate biosynthesis II (animals and fungi)
-
-
palmitoleate biosynthesis IV (fungi and animals)
-
-
sorgoleone biosynthesis
-
-
ethene biosynthesis III (microbes)
-
-
nitrate assimilation
-
-
nitrogen fixation I (ferredoxin)
-
-
Glycerophospholipid metabolism
-
-
carnitine metabolism
-
-
mitochondrial L-carnitine shuttle
-
-
bryostatin biosynthesis
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
fatty acid biosynthesis initiation (plant mitochondria)
-
-
fatty acid biosynthesis initiation (type II)
-
-
mupirocin biosynthesis
-
-
pederin biosynthesis
-
-
Cyanoamino acid metabolism
-
-
gamma-glutamyl cycle
-
-
hypoglycin biosynthesis
-
-
leukotriene biosynthesis
-
-
Taurine and hypotaurine metabolism
-
-
Starch and sucrose metabolism
-
-
sucrose degradation II (sucrose synthase)
-
-
Pentose and glucuronate interconversions
-
-
saponin biosynthesis II
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
chondroitin biosynthesis
-
-
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate
-
-
vitamin B12 metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation III
-
-
L-alanine degradation V (oxidative Stickland reaction)
-
-
tryptophan metabolism
-
-
(S)-reticuline biosynthesis I
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
atromentin biosynthesis
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine biosynthesis III (cytosolic, plants)
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation VI (reductive Stickland reaction)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
Lysine biosynthesis
-
-
Novobiocin biosynthesis
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
rosmarinic acid biosynthesis I
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
acyl carrier protein activation
-
-
acyl carrier protein metabolism
-
-
enterobactin biosynthesis
-
-
petrobactin biosynthesis
-
-
diethylphosphate degradation
-
-
Folate biosynthesis
-
-
sulfopterin metabolism
-
-
Thiamine metabolism
-
-
NAD metabolism
-
-
phosphate acquisition
-
-
Riboflavin metabolism
-
-
vitamin B1 metabolism
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
inosine 5'-phosphate degradation
-
-
NAD salvage (plants)
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
Nicotinate and nicotinamide metabolism
-
-
Purine metabolism
-
-
purine metabolism
-
-
Pyrimidine metabolism
-
-
tunicamycin biosynthesis
-
-
UTP and CTP dephosphorylation I
-
-
Inositol phosphate metabolism
-
-
myo-inositol biosynthesis
-
-
phenol degradation
-
-
phytate degradation I
-
-
NAD phosphorylation and dephosphorylation
-
-
NAD(P)/NADPH interconversion
-
-
sphingolipid biosynthesis (mammals)
-
-
Sphingolipid metabolism
-
-
sphingomyelin metabolism
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
Amino sugar and nucleotide sugar metabolism
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Galactose metabolism
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
lactose degradation II
-
-
metabolism of disaccharids
-
-
Other glycan degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
nocardicin A biosynthesis
-
-
aspartate and asparagine metabolism
-
-
L-asparagine degradation I
-
-
L-asparagine degradation III (mammalian)
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
ammonia assimilation cycle III
-
-
D-Amino acid metabolism
-
-
glutamate and glutamine metabolism
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
L-glutamate biosynthesis I
-
-
L-glutamine degradation I
-
-
acrylonitrile degradation I
-
-
degradation of aromatic, nitrogen containing compounds
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
Styrene degradation
-
-
Atrazine degradation
-
-
urea cycle
-
-
urea degradation II
-
-
allantoin degradation
-
-
allantoin degradation to ureidoglycolate I (urea producing)
-
-
allantoin degradation to ureidoglycolate II (ammonia producing)
-
-
pyrimidine metabolism
-
-
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
Calvin-Benson-Bassham cycle
-
-
nucleoside and nucleotide degradation (archaea)
-
-
Rubisco shunt
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
2-methyl-branched fatty acid beta-oxidation
-
-
adipate degradation
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
Butanoate metabolism
-
-
Caprolactam degradation
-
-
Carbon fixation pathways in prokaryotes
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
Geraniol degradation
-
-
methyl ketone biosynthesis (engineered)
-
-
oleate beta-oxidation
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
platensimycin biosynthesis
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
valproate beta-oxidation
-
-
d-mannose degradation
-
-
Fructose and mannose metabolism
-
-
GDP-6-deoxy-D-talose biosynthesis
-
-
GDP-D-perosamine biosynthesis
-
-
GDP-D-rhamnose biosynthesis
-
-
GDP-L-colitose biosynthesis
-
-
GDP-L-fucose biosynthesis I (from GDP-D-mannose)
-
-
GDP-mycosamine biosynthesis
-
-
GDP-N-acetyl-alpha-D-perosamine biosynthesis
-
-
GDP-N-formyl-alpha-D-perosamine biosynthesis
-
-
O-Antigen nucleotide sugar biosynthesis
-
-
methylglyoxal degradation
-
-
methylglyoxal degradation I
-
-
methylglyoxal degradation VIII
-
-
cholesterol biosynthesis
-
-
lanosterol biosynthesis
-
-
Steroid biosynthesis
-
-
ergothioneine biosynthesis I (bacteria)
-
-
glutathione biosynthesis
-
-
homoglutathione biosynthesis
-
-
ophthalmate biosynthesis
-
-
L-asparagine biosynthesis I
-
-
Aflatoxin biosynthesis
-
-
CO2 fixation in Crenarchaeota
-
-
fatty acid biosynthesis initiation (type I)
-
-
jadomycin biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
2 genotypes ICPL 84023 and ICP 301 tolerant to waterlogging stress, and 2 genotypes ICP 7035 and Pusa 207 susceptible to waterlogging stress. Pattern of variation in reducing sugar content in the 4 genotypes is parallel to sucrose synthase activity. ICPL 84023 and ICP 301 also show fewer declines in total and non-reducing sugars and greater increase in reducing sugar and SuSy activity than ICP 7035 and Pusa 207
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
main localization
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Cajanus cajan)