Information on Organism Cajanus cajan

TaxTree of Organism Cajanus cajan
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis I
-
-
1,5-anhydrofructose degradation
-
-
2-deoxy-D-glucose 6-phosphate degradation
-
-
2-methyl-branched fatty acid beta-oxidation
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
3-methyl-branched fatty acid alpha-oxidation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
acetaldehyde biosynthesis I
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetylene degradation (anaerobic)
-
-
acyl carrier protein activation
-
-
acyl carrier protein metabolism
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
adipate degradation
-
-
aerobic respiration in cyanobacteria (NDH-2 to cytochrome c oxidase via plastocyanin)
-
-
Aflatoxin biosynthesis
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
alkane oxidation
-
-
allantoin degradation
-
-
allantoin degradation to ureidoglycolate I (urea producing)
-
-
allantoin degradation to ureidoglycolate II (ammonia producing)
-
-
alpha-Linolenic acid metabolism
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
ammonia oxidation II (anaerobic)
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arginine metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
Ascorbate and aldarate metabolism
-
-
aspartate and asparagine metabolism
-
-
Atrazine degradation
-
-
atromentin biosynthesis
-
-
bacterial bioluminescence
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
beta-Alanine metabolism
-
-
betanidin degradation
-
-
Bifidobacterium shunt
-
-
bile acid biosynthesis, neutral pathway
Biosynthesis of secondary metabolites
-
-
Biosynthesis of unsaturated fatty acids
-
-
bryostatin biosynthesis
-
-
bupropion degradation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
Caprolactam degradation
-
-
Carbapenem biosynthesis
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
carnitine metabolism
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide degradation by alpha-oxidation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Chloroalkane and chloroalkene degradation
-
-
cholesterol biosynthesis
-
-
chondroitin biosynthesis
-
-
CO2 fixation in Crenarchaeota
-
-
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cytosolic NADPH production (yeast)
-
-
D-Glutamine and D-glutamate metabolism
-
-
d-mannose degradation
-
-
denitrification
-
-
diethylphosphate degradation
-
-
divinyl ether biosynthesis II
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
dopamine degradation
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
enterobactin biosynthesis
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ergothioneine biosynthesis I (bacteria)
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis III (microbes)
-
-
fatty acid alpha-oxidation I (plants)
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
fatty acid biosynthesis initiation (plant mitochondria)
-
-
fatty acid biosynthesis initiation (type I)
-
-
fatty acid biosynthesis initiation (type II)
-
-
Fatty acid degradation
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
Folate biosynthesis
-
-
formaldehyde oxidation I
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
gamma-glutamyl cycle
-
-
GDP-6-deoxy-D-talose biosynthesis
-
-
GDP-D-perosamine biosynthesis
-
-
GDP-D-rhamnose biosynthesis
-
-
GDP-L-colitose biosynthesis
-
-
GDP-L-fucose biosynthesis I (from GDP-D-mannose)
-
-
GDP-mycosamine biosynthesis
-
-
Geraniol degradation
-
-
glutamate and glutamine metabolism
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
glutathione biosynthesis
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-peroxide redox reactions
-
-
Glycerolipid metabolism
-
-
Glycerophospholipid metabolism
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
gossypol biosynthesis
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
heme degradation I
-
-
heme metabolism
-
-
heterolactic fermentation
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
homoglutathione biosynthesis
-
-
hypoglycin biosynthesis
-
-
hypotaurine degradation
-
-
inosine 5'-phosphate degradation
-
-
Inositol phosphate metabolism
-
-
Insect hormone biosynthesis
-
-
isoprene biosynthesis II (engineered)
-
-
Isoquinoline alkaloid biosynthesis
-
-
jadomycin biosynthesis
-
-
jasmonic acid biosynthesis
-
-
justicidin B biosynthesis
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation III
-
-
L-alanine degradation V (oxidative Stickland reaction)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-arginine degradation XIII (reductive Stickland reaction)
-
-
L-asparagine biosynthesis I
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
L-asparagine degradation I
-
-
L-asparagine degradation III (mammalian)
-
-
L-citrulline biosynthesis
-
-
L-glutamate biosynthesis I
-
-
L-glutamine degradation I
-
-
L-histidine degradation V
-
-
L-isoleucine degradation I
-
-
L-isoleucine degradation II
-
-
L-lactaldehyde degradation
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-ornithine biosynthesis II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine biosynthesis III (cytosolic, plants)
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation VI (reductive Stickland reaction)
-
-
L-proline biosynthesis I (from L-glutamate)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation III
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
L-valine degradation I
-
-
L-valine degradation II
-
-
lactate fermentation
-
-
lactose degradation II
-
-
lanosterol biosynthesis
-
-
leucine metabolism
-
-
leukotriene biosynthesis
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
Linoleic acid metabolism
-
-
lipid metabolism
-
-
luteolin triglucuronide degradation
-
-
Lysine biosynthesis
-
-
Lysine degradation
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methane metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl ketone biosynthesis (engineered)
-
-
methylglyoxal degradation
-
-
methylglyoxal degradation I
-
-
mevalonate metabolism
-
-
mevalonate pathway I (eukaryotes and bacteria)
-
-
mevalonate pathway II (haloarchaea)
-
-
mevalonate pathway III (Thermoplasma)
-
-
mevalonate pathway IV (archaea)
-
-
Microbial metabolism in diverse environments
-
-
mitochondrial L-carnitine shuttle
-
-
mitochondrial NADPH production (yeast)
-
-
mixed acid fermentation
-
-
mupirocin biosynthesis
-
-
myo-inositol biosynthesis
-
-
NAD metabolism
-
-
NAD phosphorylation and dephosphorylation
-
-
NAD salvage (plants)
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
NAD(P)/NADPH interconversion
-
-
Naphthalene degradation
-
-
Nicotinate and nicotinamide metabolism
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitrate assimilation
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction VII (denitrification)
-
-
nitric oxide biosynthesis II (mammals)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
nitrogen fixation I (ferredoxin)
-
-
Nitrogen metabolism
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
Novobiocin biosynthesis
-
-
nucleoside and nucleotide degradation (archaea)
-
-
octane oxidation
oleate beta-oxidation
-
-
oleate biosynthesis II (animals and fungi)
-
-
ophthalmate biosynthesis
-
-
Other glycan degradation
-
-
Pantothenate and CoA biosynthesis
-
-
pederin biosynthesis
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
petrobactin biosynthesis
-
-
phenol degradation
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phosphate acquisition
-
-
photosynthesis
-
-
photosynthesis light reactions
-
-
phytate degradation I
-
-
phytol degradation
-
-
platensimycin biosynthesis
-
-
Porphyrin and chlorophyll metabolism
-
-
Primary bile acid biosynthesis
-
-
proline metabolism
-
-
propanoate fermentation to 2-methylbutanoate
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
protective electron sinks in the thylakoid membrane (PSII to PTOX)
-
-
Purine metabolism
-
-
purine metabolism
-
-
putrescine degradation III
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
pyruvate fermentation to (S)-lactate
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
rosmarinic acid biosynthesis I
-
-
Rubisco shunt
-
-
salidroside biosynthesis
-
-
saponin biosynthesis II
-
-
serotonin degradation
-
-
sesamin biosynthesis
-
-
sorgoleone biosynthesis
-
-
sphingolipid biosynthesis (mammals)
-
-
Sphingolipid metabolism
-
-
sphingomyelin metabolism
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
Starch and sucrose metabolism
-
-
Steroid biosynthesis
-
-
Steroid hormone biosynthesis
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sulfopterin metabolism
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
superpathway of photosynthetic hydrogen production
-
-
Taurine and hypotaurine metabolism
-
-
Terpenoid backbone biosynthesis
-
-
Thiamine metabolism
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
tunicamycin biosynthesis
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
urea cycle
-
-
urea degradation II
-
-
UTP and CTP dephosphorylation I
-
-
valine metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
valproate beta-oxidation
-
-
vancomycin resistance I
-
-
vanillin biosynthesis I
-
-
vitamin B1 metabolism
-
-
vitamin B12 metabolism
-
-
vitamin K-epoxide cycle
-
-
xyloglucan degradation II (exoglucanase)
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
2 genotypes ICPL 84023 and ICP 301 tolerant to waterlogging stress, and 2 genotypes ICP 7035 and Pusa 207 susceptible to waterlogging stress. Pattern of variation in reducing sugar content in the 4 genotypes is parallel to sucrose synthase activity. ICPL 84023 and ICP 301 also show fewer declines in total and non-reducing sugars and greater increase in reducing sugar and SuSy activity than ICP 7035 and Pusa 207
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
main localization
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Cajanus cajan)