Information on Organism Brassica napus

TaxTree of Organism Brassica napus
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(1,4)-beta-D-xylan degradation
-
-
(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate biosynthesis II (4-desaturase)
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(5R)-carbapenem carboxylate biosynthesis
(5Z)-dodecenoate biosynthesis I
-
-
(5Z)-dodecenoate biosynthesis II
-
-
(7Z,10Z,13Z)-hexadecatrienoate biosynthesis
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
(9Z)-tricosene biosynthesis
-
-
(aminomethyl)phosphonate degradation
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
(R)-cysteate degradation
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis I
-
-
1,3-beta-D-glucan biosynthesis
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,5-anhydrofructose degradation
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
1D-myo-inositol hexakisphosphate biosynthesis I (from Ins(1,4,5)P3)
-
-
1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza)
-
-
1D-myo-inositol hexakisphosphate biosynthesis IV (Dictyostelium)
-
-
1D-myo-inositol hexakisphosphate biosynthesis V (from Ins(1,3,4)P3)
-
-
2'-deoxymugineic acid phytosiderophore biosynthesis
-
-
2,3-cis-flavanols biosynthesis
-
-
2,3-dihydroxybenzoate biosynthesis
-
-
2,3-trans-flavanols biosynthesis
-
-
2-arachidonoylglycerol biosynthesis
-
-
2-carboxy-1,4-naphthoquinol biosynthesis
-
-
2-deoxy-D-glucose 6-phosphate degradation
-
-
2-deoxy-D-ribose degradation II
-
-
2-methyl-branched fatty acid beta-oxidation
-
-
2-methylpropene degradation
-
-
2-nitrotoluene degradation
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
3,5-dimethoxytoluene biosynthesis
-
-
3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
-
-
3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
3-methyl-branched fatty acid alpha-oxidation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
3-phenylpropionate degradation
-
-
3-phosphoinositide biosynthesis
-
-
4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis I
-
-
4-amino-2-methyl-5-diphosphomethylpyrimidine biosynthesis II
-
-
4-aminobutanoate degradation I
-
-
4-aminobutanoate degradation II
-
-
4-aminobutanoate degradation III
-
-
4-aminobutanoate degradation IV
-
-
4-aminobutanoate degradation V
-
-
4-ethylphenol degradation (anaerobic)
-
-
4-hydroxy-2-nonenal detoxification
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
4-oxopentanoate degradation
-
-
5,6-dimethylbenzimidazole biosynthesis I (aerobic)
-
-
5-deoxystrigol biosynthesis
-
-
6-gingerol analog biosynthesis (engineered)
-
-
8-amino-7-oxononanoate biosynthesis I
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
9-lipoxygenase and 9-allene oxide synthase pathway
-
-
9-lipoxygenase and 9-hydroperoxide lyase pathway
-
-
abscisic acid biosynthesis
-
-
acetaldehyde biosynthesis I
-
-
acetaldehyde biosynthesis II
-
-
acetate conversion to acetyl-CoA
-
-
acetate fermentation
-
-
acetoacetate degradation (to acetyl CoA)
-
-
acetoin degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetyl CoA biosynthesis
-
-
acetyl-CoA biosynthesis from citrate
-
-
acetyl-CoA fermentation to butanoate II
-
-
acetylene degradation (anaerobic)
-
-
acrylonitrile degradation I
-
-
acyl-CoA hydrolysis
-
-
acyl-[acyl-carrier protein] thioesterase pathway
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage II
-
-
adenine and adenosine salvage VI
-
-
adenine salvage
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
adipate degradation
-
-
adlupulone and adhumulone biosynthesis
-
-
aerobic respiration (NDH-1 to cytochrome c oxidase via plastocyanin)
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
aerobic respiration in cyanobacteria (NDH-2 to cytochrome c oxidase via plastocyanin)
-
-
Aflatoxin biosynthesis
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
alkane biosynthesis I
-
-
alkane biosynthesis II
-
-
alkane oxidation
-
-
alpha-carotene biosynthesis
-
-
alpha-linolenate biosynthesis I (plants and red algae)
-
-
alpha-Linolenic acid metabolism
-
-
alpha-tomatine degradation
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
ammonia oxidation II (anaerobic)
-
-
amygdalin and prunasin degradation
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
androsrtendione degradation II (anaerobic)
-
-
androstenedione degradation I (aerobic)
-
-
aniline degradation
-
-
anteiso-branched-chain fatty acid biosynthesis
-
-
arachidonate biosynthesis
-
-
arachidonate biosynthesis I (6-desaturase, lower eukaryotes)
-
-
arachidonate biosynthesis III (6-desaturase, mammals)
-
-
arachidonate biosynthesis IV (8-detaturase, lower eukaryotes)
-
-
arachidonate biosynthesis V (8-detaturase, mammals)
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arginine dependent acid resistance
-
-
arginine metabolism
-
-
aromatic glucosinolate activation
-
-
aromatic biogenic amine degradation (bacteria)
-
-
aromatic polyketides biosynthesis
-
-
arsenite oxidation I (respiratory)
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate glutathione cycle
-
-
ascorbate metabolism
-
-
ascorbate recycling (cytosolic)
-
-
aspartate and asparagine metabolism
-
-
assimilatory sulfate reduction I
-
-
assimilatory sulfate reduction II
-
-
assimilatory sulfate reduction III
-
-
assimilatory sulfate reduction IV
-
-
ATP biosynthesis
-
-
Atrazine degradation
-
-
atromentin biosynthesis
-
-
avenanthramide biosynthesis
-
-
bacilysin biosynthesis
-
-
bacterial bioluminescence
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
baicalein metabolism
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
beta-(1,4)-mannan degradation
-
-
beta-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation
-
-
beta-alanine biosynthesis I
-
-
beta-Alanine metabolism
-
-
beta-carotene biosynthesis
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
Betalain biosynthesis
-
-
betanidin degradation
-
-
betaxanthin biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
Bifidobacterium shunt
-
-
bile acid biosynthesis, neutral pathway
Biosynthesis of 12-, 14- and 16-membered macrolides
-
-
Biosynthesis of ansamycins
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of siderophore group nonribosomal peptides
-
-
Biosynthesis of unsaturated fatty acids
-
-
Biosynthesis of various secondary metabolites - part 3
-
-
biotin biosynthesis
-
-
Biotin metabolism
-
-
biotin-carboxyl carrier protein assembly
-
-
bryostatin biosynthesis
-
-
bupropion degradation
-
-
butanoate fermentation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
C5-Branched dibasic acid metabolism
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
cannabinoid biosynthesis
-
-
Caprolactam degradation
-
-
capsaicin biosynthesis
-
-
capsiconiate biosynthesis
-
-
Carbapenem biosynthesis
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
carnitine metabolism
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
catecholamine biosynthesis
CDP-6-deoxy-D-gulose biosynthesis
-
-
CDP-diacylglycerol biosynthesis
-
-
CDP-diacylglycerol biosynthesis I
-
-
CDP-diacylglycerol biosynthesis II
-
-
CDP-diacylglycerol biosynthesis III
-
-
cell-surface glycoconjugate-linked phosphocholine biosynthesis
-
-
cellulose biosynthesis
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide biosynthesis
-
-
ceramide degradation by alpha-oxidation
-
-
chitin biosynthesis
-
-
chitin deacetylation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Chloroalkane and chloroalkene degradation
-
-
chlorobactene biosynthesis
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
chlorogenic acid biosynthesis I
-
-
chlorophyll a biosynthesis I
-
-
chlorophyll a biosynthesis II
-
-
chlorophyll a biosynthesis III
-
-
chlorophyll a degradation I
-
-
chlorophyll a degradation II
-
-
chlorophyll a degradation III
-
-
chlorophyll a2 biosynthesis
-
-
chlorophyll b2 biosynthesis
-
-
chlorophyll cycle
-
-
chlorophyll metabolism
-
-
chlorosalicylate degradation
-
-
cholesterol biosynthesis
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
choline biosynthesis I
-
-
choline biosynthesis III
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
chorismate metabolism
-
-
cinnamoyl-CoA biosynthesis
-
-
cis-geranyl-CoA degradation
-
-
cis-vaccenate biosynthesis
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CO2 fixation in Crenarchaeota
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
coenzyme A metabolism
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
colanic acid building blocks biosynthesis
-
-
colupulone and cohumulone biosynthesis
-
-
coumarin biosynthesis (via 2-coumarate)
-
-
coumarins biosynthesis (engineered)
-
-
creatine-phosphate biosynthesis
-
-
crepenynate biosynthesis
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
curcuminoid biosynthesis
-
-
cutin biosynthesis
-
-
Cutin, suberine and wax biosynthesis
-
-
cyanate degradation
cyanide degradation
-
-
cyanide detoxification I
-
-
cyanide detoxification II
-
-
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
cytokinin-O-glucosides biosynthesis
-
-
cytosolic NADPH production (yeast)
-
-
D-cycloserine biosynthesis
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-galactose detoxification
-
-
D-Glutamine and D-glutamate metabolism
-
-
d-mannose degradation
-
-
D-mannose degradation I
-
-
D-mannose degradation II
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
D-myo-inositol (1,4,5,6)-tetrakisphosphate biosynthesis
-
-
D-myo-inositol-5-phosphate metabolism
-
-
D-sorbitol biosynthesis I
-
-
D-sorbitol degradation I
-
-
d-xylose degradation
-
-
D-xylose degradation IV
-
-
D-xylose degradation to ethylene glycol (engineered)
-
-
degradation of aromatic, nitrogen containing compounds
-
-
degradation of hexoses
-
-
degradation of pentoses
-
-
degradation of sugar acids
-
-
degradation of sugar alcohols
-
-
denitrification
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
di-myo-inositol phosphate biosynthesis
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
diacylglycerol biosynthesis (PUFA enrichment in oilseed)
-
-
diethylphosphate degradation
-
-
dimethylsulfoniopropanoate degradation I (cleavage)
-
-
dimorphecolate biosynthesis
-
-
Dioxin degradation
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
Diterpenoid biosynthesis
-
-
divinyl ether biosynthesis I
-
-
divinyl ether biosynthesis II
-
-
docosahexaenoate biosynthesis I (lower eukaryotes)
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
docosahexaenoate biosynthesis IV (4-desaturase, mammals)
-
-
dopamine degradation
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
dTMP de novo biosynthesis (mitochondrial)
-
-
enterobactin biosynthesis
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ephedrine biosynthesis
-
-
epoxysqualene biosynthesis
-
-
ergosterol biosynthesis II
-
-
erythromycin D biosynthesis
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis I (plants)
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis IV (engineered)
-
-
ethene biosynthesis V (engineered)
-
-
Ether lipid metabolism
-
-
Ethylbenzene degradation
-
-
ethylmalonyl-CoA pathway
-
-
even iso-branched-chain fatty acid biosynthesis
-
-
fatty acid alpha-oxidation I (plants)
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
fatty acid biosynthesis initiation (plant mitochondria)
-
-
fatty acid biosynthesis initiation (type I)
-
-
fatty acid biosynthesis initiation (type II)
-
-
Fatty acid degradation
-
-
Fatty acid elongation
-
-
fatty acid elongation -- saturated
-
-
fatty acid salvage
-
-
Fe(II) oxidation
-
-
ferulate and sinapate biosynthesis
-
-
firefly bioluminescence
-
-
flavin biosynthesis
-
-
flavin biosynthesis I (bacteria and plants)
-
-
flavin biosynthesis III (fungi)
-
-
flavin salvage
-
-
Flavone and flavonol biosynthesis
-
-
flavonoid biosynthesis
-
-
Flavonoid biosynthesis
-
-
flavonoid biosynthesis (in equisetum)
-
-
flavonoid di-C-glucosylation
-
-
flavonol biosynthesis
-
-
flexixanthin biosynthesis
-
-
Folate biosynthesis
-
-
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation I
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
free phenylpropanoid acid biosynthesis
-
-
fructan degradation
-
-
Fructose and mannose metabolism
-
-
GABA shunt
-
-
Galactose metabolism
-
-
gamma-linolenate biosynthesis II (animals)
-
-
GDP-alpha-D-glucose biosynthesis
-
-
GDP-mannose biosynthesis
-
-
Geraniol degradation
-
-
gibberellin biosynthesis III (early C-13 hydroxylation)
-
-
gibberellin inactivation I (2beta-hydroxylation)
-
-
ginsenoside metabolism
-
-
gliotoxin biosynthesis
-
-
gluconeogenesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glucose degradation (oxidative)
-
-
glucosinolate activation
-
-
Glucosinolate biosynthesis
-
-
glucosinolate biosynthesis from dihomomethionine
-
-
glucosinolate biosynthesis from hexahomomethionine
-
-
glucosinolate biosynthesis from homomethionine
-
-
glucosinolate biosynthesis from pentahomomethionine
-
-
glucosinolate biosynthesis from phenylalanine
-
-
glucosinolate biosynthesis from tetrahomomethionine
-
-
glucosinolate biosynthesis from trihomomethionine
-
-
glucosinolate biosynthesis from tryptophan
-
-
glucosinolate biosynthesis from tyrosine
-
-
glucosylglycerol biosynthesis
-
-
glutamate and glutamine metabolism
-
-
glutamate removal from folates
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
glutaryl-CoA degradation
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glutathione-peroxide redox reactions
-
-
glycerol degradation to butanol
-
-
Glycerolipid metabolism
-
-
Glycerophospholipid metabolism
-
-
glycine betaine biosynthesis
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
glycolate and glyoxylate degradation II
-
-
glycolipid desaturation
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate assimilation
-
-
glyoxylate cycle
-
-
glyphosate degradation I
-
-
glyphosate degradation III
-
-
gondoate biosynthesis (anaerobic)
-
-
gossypol biosynthesis
-
-
guaiacol biosynthesis
-
-
heme b biosynthesis I (aerobic)
-
-
heme degradation I
-
-
heme metabolism
-
-
heptadecane biosynthesis
-
-
heterolactic fermentation
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
homocysteine and cysteine interconversion
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
hydroxylated fatty acid biosynthesis (plants)
-
-
hydroxymethylpyrimidine salvage
-
-
hyoscyamine and scopolamine biosynthesis
-
-
hypotaurine degradation
-
-
IAA biosynthesis
-
-
icosapentaenoate biosynthesis I (lower eukaryotes)
-
-
icosapentaenoate biosynthesis II (6-desaturase, mammals)
-
-
icosapentaenoate biosynthesis III (8-desaturase, mammals)
-
-
icosapentaenoate biosynthesis V (8-desaturase, lower eukaryotes)
-
-
icosapentaenoate biosynthesis VI (fungi)
-
-
incomplete reductive TCA cycle
-
-
Indole alkaloid biosynthesis
-
-
indole glucosinolate activation (herbivore attack)
-
-
indole glucosinolate activation (intact plant cell)
-
-
indole-3-acetate biosynthesis I
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
indole-3-acetate biosynthesis V (bacteria and fungi)
-
-
indole-3-acetate biosynthesis VI (bacteria)
-
-
indole-3-acetate inactivation IX
-
-
Inositol phosphate metabolism
-
-
Insect hormone biosynthesis
-
-
iron reduction and absorption
-
-
Isoflavonoid biosynthesis
-
-
isoflavonoid biosynthesis I
-
-
isoflavonoid biosynthesis II
-
-
isoleucine metabolism
-
-
isoprene biosynthesis II (engineered)
-
-
isoprenoid biosynthesis
-
-
isopropanol biosynthesis (engineered)
-
-
Isoquinoline alkaloid biosynthesis
-
-
isorenieratene biosynthesis I (actinobacteria)
-
-
jadomycin biosynthesis
-
-
jasmonic acid biosynthesis
-
-
juniperonate biosynthesis
-
-
justicidin B biosynthesis
-
-
ketogenesis
-
-
ketolysis
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation III
-
-
L-alanine degradation V (oxidative Stickland reaction)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-arabinose degradation IV
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaea)
-
-
L-arginine degradation I (arginase pathway)
-
-
L-arginine degradation II (AST pathway)
-
-
L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
-
-
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway)
-
-
L-arginine degradation V (arginine deiminase pathway)
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
L-arginine degradation XIII (reductive Stickland reaction)
-
-
L-arginine degradation XIV (oxidative Stickland reaction)
-
-
L-ascorbate degradation II (bacterial, aerobic)
-
-
L-ascorbate degradation III
-
-
L-asparagine biosynthesis II
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-carnitine degradation III
-
-
L-citrulline biosynthesis
-
-
L-citrulline degradation
-
-
L-cysteine biosynthesis I
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
L-cysteine biosynthesis VII (from S-sulfo-L-cysteine)
-
-
L-dopa degradation I (mammalian)
-
-
L-dopa degradation II (bacterial)
-
-
L-glutamate biosynthesis I
-
-
L-glutamate degradation I
-
-
L-glutamate degradation II
-
-
L-glutamate degradation IV
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
L-glutamine biosynthesis I
-
-
L-glutamine biosynthesis III
-
-
L-glutamine degradation I
-
-
L-glutamine degradation II
-
-
L-histidine degradation V
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis III
-
-
L-isoleucine biosynthesis IV
-
-
L-isoleucine biosynthesis V
-
-
L-isoleucine degradation I
-
-
L-isoleucine degradation II
-
-
L-lactaldehyde degradation
-
-
L-leucine degradation III
-
-
L-lysine degradation XI (mammalian)
-
-
L-lysine fermentation to acetate and butanoate
-
-
L-malate degradation II
-
-
L-methionine biosynthesis I
-
-
L-methionine biosynthesis III
-
-
L-methionine degradation I (to L-homocysteine)
-
-
L-methionine degradation III
-
-
L-methionine salvage cycle II (plants)
-
-
L-methionine salvage from L-homocysteine
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-ornithine biosynthesis II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine biosynthesis II
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation VI (reductive Stickland reaction)
-
-
L-proline biosynthesis I (from L-glutamate)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
L-proline degradation I
-
-
L-serine biosynthesis II
-
-
L-tryptophan degradation IV (via indole-3-lactate)
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation VIII (to tryptophol)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
L-tryptophan degradation XIII (reductive Stickland reaction)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine biosynthesis II
-
-
L-tyrosine biosynthesis III
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation III
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
L-valine biosynthesis
-
-
L-valine degradation II
-
-
lactate fermentation
-
-
lactose degradation II
-
-
lactucaxanthin biosynthesis
-
-
lanosterol biosynthesis
-
-
leucine metabolism
-
-
leucodelphinidin biosynthesis
-
-
leucopelargonidin and leucocyanidin biosynthesis
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
linamarin degradation
-
-
linezolid resistance
-
-
linoleate biosynthesis I (plants)
-
-
linoleate biosynthesis II (animals)
-
-
Linoleic acid metabolism
-
-
linustatin bioactivation
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
lipid IVA biosynthesis (E. coli)
-
-
lipid IVA biosynthesis (P. putida)
-
-
lipid metabolism
-
-
lipoate biosynthesis
-
-
Lipopolysaccharide biosynthesis
-
-
long chain fatty acid ester synthesis (engineered)
-
-
long-chain fatty acid activation
-
-
lotaustralin degradation
-
-
lupulone and humulone biosynthesis
-
-
lutein biosynthesis
-
-
luteolin biosynthesis
-
-
luteolin triglucuronide degradation
-
-
lychnose and isolychnose biosynthesis
-
-
Lysine degradation
-
-
lysine metabolism
-
-
malate/L-aspartate shuttle pathway
-
-
mannitol biosynthesis
-
-
mannitol cycle
-
-
mannitol degradation II
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methyl ketone biosynthesis (engineered)
-
-
methyl tert-butyl ether degradation
-
-
methylaspartate cycle
methylerythritol phosphate pathway I
-
-
methylerythritol phosphate pathway II
-
-
methylglyoxal degradation
-
-
methylglyoxal degradation I
-
-
methylglyoxal degradation VIII
-
-
methylsalicylate degradation
-
-
mevalonate metabolism
-
-
mevalonate pathway I (eukaryotes and bacteria)
-
-
mevalonate pathway II (haloarchaea)
-
-
mevalonate pathway III (Thermoplasma)
-
-
mevalonate pathway IV (archaea)
-
-
Microbial metabolism in diverse environments
-
-
mitochondrial NADPH production (yeast)
-
-
mixed acid fermentation
-
-
molybdenum cofactor biosynthesis
-
-
monoacylglycerol metabolism (yeast)
-
-
Monobactam biosynthesis
-
-
mRNA capping I
-
-
mupirocin biosynthesis
-
-
mycobacterial sulfolipid biosynthesis
-
-
mycolate biosynthesis
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
mycothiol biosynthesis
-
-
myo-inositol biosynthesis
myxol-2' fucoside biosynthesis
-
-
N-3-oxalyl-L-2,3-diaminopropanoate biosynthesis
-
-
N-methyl-Delta1-pyrrolinium cation biosynthesis
-
-
NAD metabolism
-
-
NAD phosphorylation and dephosphorylation
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
NAD(P)/NADPH interconversion
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
Naphthalene degradation
-
-
naringenin biosynthesis (engineered)
-
-
neolinustatin bioactivation
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
nicotine degradation I (pyridine pathway)
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
nitrate reduction VII (denitrification)
-
-
nitric oxide biosynthesis II (mammals)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
Nitrogen metabolism
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
Novobiocin biosynthesis
-
-
nucleoside and nucleotide degradation (archaea)
-
-
O-Antigen nucleotide sugar biosynthesis
-
-
o-diquinones biosynthesis
-
-
octane oxidation
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast)
-
-
odd iso-branched-chain fatty acid biosynthesis
-
-
okenone biosynthesis
-
-
oleandomycin activation/inactivation
-
-
oleate beta-oxidation
-
-
oleate beta-oxidation (isomerase-dependent, yeast)
-
-
oleate biosynthesis I (plants)
-
-
oleate biosynthesis II (animals and fungi)
-
-
oleate biosynthesis III (cyanobacteria)
-
-
oleate biosynthesis IV (anaerobic)
-
-
One carbon pool by folate
-
-
Other glycan degradation
-
-
Other types of O-glycan biosynthesis
-
-
oxalate biosynthesis
oxalate degradation IV
-
-
oxalate degradation V
-
-
oxidative decarboxylation of pyruvate
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
palmitate biosynthesis
-
-
palmitate biosynthesis (type I fatty acid synthase)
-
-
palmitate biosynthesis (type II fatty acid synthase)
-
-
palmitoleate biosynthesis
-
-
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)
-
-
palmitoleate biosynthesis II (plants and bacteria)
-
-
palmitoleate biosynthesis III (cyanobacteria)
-
-
palmitoyl ethanolamide biosynthesis
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
partial TCA cycle (obligate autotrophs)
-
-
pectin degradation I
-
-
pectin degradation II
-
-
pederin biosynthesis
-
-
Penicillin and cephalosporin biosynthesis
-
-
pentachlorophenol degradation
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) I
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
pentose phosphate pathway (oxidative branch) I
-
-
pentose phosphate pathway (partial)
-
-
petroselinate biosynthesis
-
-
phenol degradation
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
phenylpropanoids methylation (ice plant)
-
-
phloridzin biosynthesis
-
-
phosalacine biosynthesis
-
-
phosphate acquisition
-
-
phosphatidate biosynthesis (yeast)
-
-
phosphatidate metabolism, as a signaling molecule
-
-
phosphatidylcholine acyl editing
-
-
phosphatidylcholine biosynthesis I
-
-
phosphatidylcholine biosynthesis II
-
-
phosphatidylcholine biosynthesis III
-
-
phosphatidylcholine biosynthesis IV
-
-
phosphatidylcholine biosynthesis VII
-
-
phosphatidylcholine resynthesis via glycerophosphocholine
-
-
phosphatidylethanolamine biosynthesis II
-
-
phosphatidylethanolamine bioynthesis
-
-
phosphatidylinositol biosynthesis I (bacteria)
-
-
phosphatidylinositol biosynthesis II (eukaryotes)
-
-
phosphatidylserine and phosphatidylethanolamine biosynthesis I
-
-
phosphinothricin tripeptide biosynthesis
-
-
phospholipases
-
-
phospholipid desaturation
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
Phosphonate and phosphinate metabolism
-
-
phosphopantothenate biosynthesis I
-
-
phosphopantothenate biosynthesis II
-
-
phosphopantothenate biosynthesis III (archaea)
-
-
photorespiration
-
-
Photosynthesis
-
-
photosynthesis
-
-
photosynthesis light reactions
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
phytate degradation I
-
-
phytochelatins biosynthesis
-
-
phytol degradation
-
-
plasmalogen biosynthesis
-
-
plasmalogen degradation
-
-
plastoquinol-9 biosynthesis I
-
-
platensimycin biosynthesis
-
-
poly-hydroxy fatty acids biosynthesis
-
-
polyamine pathway
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
polyhydroxybutanoate biosynthesis
-
-
Porphyrin and chlorophyll metabolism
-
-
Primary bile acid biosynthesis
-
-
proanthocyanidins biosynthesis from flavanols
-
-
proline metabolism
-
-
proline to cytochrome bo oxidase electron transfer
-
-
propanoate fermentation to 2-methylbutanoate
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
propanoyl CoA degradation I
-
-
propanoyl-CoA degradation II
-
-
propionate fermentation
-
-
protective electron sinks in the thylakoid membrane (PSII to PTOX)
-
-
protein ubiquitination
-
-
Purine metabolism
-
-
purine metabolism
-
-
putrescine biosynthesis I
-
-
putrescine biosynthesis II
-
-
putrescine degradation III
-
-
pyridoxal 5'-phosphate salvage I
-
-
pyridoxal 5'-phosphate salvage II (plants)
-
-
pyrimidine deoxyribonucleosides degradation
-
-
pyrimidine deoxyribonucleosides salvage
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
pyrimidine nucleobases salvage II
-
-
pyrimidine ribonucleosides degradation
-
-
pyrimidine ribonucleosides salvage I
-
-
pyrimidine ribonucleosides salvage II
-
-
pyrimidine ribonucleosides salvage III
-
-
pyruvate decarboxylation to acetyl CoA I
-
-
pyruvate decarboxylation to acetyl CoA II
-
-
pyruvate fermentation to (R)-acetoin I
-
-
pyruvate fermentation to (R)-acetoin II
-
-
pyruvate fermentation to (S)-acetoin
-
-
pyruvate fermentation to (S)-lactate
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
pyruvate fermentation to acetone
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol I
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to hexanol (engineered)
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
pyruvate fermentation to opines
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
resveratrol biosynthesis
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
ricinoleate biosynthesis
-
-
roseoflavin biosynthesis
-
-
rosmarinic acid biosynthesis I
-
-
Rubisco shunt
-
-
rutin biosynthesis
-
-
S-adenosyl-L-methionine biosynthesis
-
-
S-adenosyl-L-methionine salvage I
-
-
S-adenosyl-L-methionine salvage II
-
-
salicylate biosynthesis I
-
-
salicylate degradation I
-
-
salidroside biosynthesis
-
-
salinosporamide A biosynthesis
-
-
sciadonate biosynthesis
-
-
scopoletin biosynthesis
-
-
secologanin and strictosidine biosynthesis
-
-
sedoheptulose bisphosphate bypass
-
-
selenate reduction
-
-
seleno-amino acid biosynthesis (plants)
-
-
seleno-amino acid detoxification and volatilization III
-
-
Selenocompound metabolism
-
-
selenocysteine biosynthesis
-
-
serine metabolism
-
-
serotonin and melatonin biosynthesis
-
-
serotonin degradation
-
-
sesamin biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
sinapate ester biosynthesis
-
-
sitosterol degradation to androstenedione
-
-
sophorolipid biosynthesis
-
-
sorgoleone biosynthesis
-
-
spermidine biosynthesis I
-
-
spermidine biosynthesis III
-
-
sphingolipid biosynthesis (plants)
-
-
Sphingolipid metabolism
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
sphingosine metabolism
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
sporopollenin precursors biosynthesis
-
-
stachyose biosynthesis
-
-
stachyose degradation
-
-
Starch and sucrose metabolism
-
-
starch biosynthesis
-
-
starch degradation
-
-
starch degradation I
-
-
starch degradation II
-
-
starch degradation III
-
-
starch degradation V
-
-
stearate biosynthesis I (animals)
-
-
stearate biosynthesis II (bacteria and plants)
-
-
stearate biosynthesis III (fungi)
-
-
stellariose and mediose biosynthesis
-
-
Steroid biosynthesis
-
-
Steroid degradation
-
-
Steroid hormone biosynthesis
-
-
stigma estolide biosynthesis
-
-
Stilbenoid, diarylheptanoid and gingerol biosynthesis
-
-
streptomycin biosynthesis
-
-
Streptomycin biosynthesis
-
-
streptorubin B biosynthesis
-
-
Styrene degradation
-
-
suberin monomers biosynthesis
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis III
-
-
sucrose degradation I (sucrose phosphotransferase)
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sucrose degradation VII (sucrose 3-dehydrogenase)
-
-
sulfate activation for sulfonation
-
-
sulfate reduction
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
sulfolactate degradation III
-
-
sulfopterin metabolism
-
-
Sulfur metabolism
-
-
sulfur volatiles biosynthesis
-
-
superoxide radicals degradation
-
-
superpathway of coenzyme A biosynthesis III (mammals)
-
-
superpathway of dimethylsulfoniopropanoate degradation
-
-
superpathway of fatty acid biosynthesis initiation (E. coli)
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of hyoscyamine and scopolamine biosynthesis
-
-
superpathway of indole-3-acetate conjugate biosynthesis
-
-
superpathway of methylsalicylate metabolism
-
-
superpathway of phospholipid biosynthesis II (plants)
-
-
superpathway of photosynthetic hydrogen production
-
-
superpathway of scopolin and esculin biosynthesis
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
syringetin biosynthesis
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
Terpenoid backbone biosynthesis
-
-
testosterone and androsterone degradation to androstendione (aerobic)
-
-
tetradecanoate biosynthesis (mitochondria)
-
-
tetrahydrofolate biosynthesis
-
-
tetrahydrofolate metabolism
-
-
tetrapyrrole biosynthesis I (from glutamate)
-
-
thiamine diphosphate biosynthesis I (E. coli)
-
-
thiamine diphosphate biosynthesis II (Bacillus)
-
-
thiamine diphosphate biosynthesis III (Staphylococcus)
-
-
thiamine diphosphate biosynthesis IV (eukaryotes)
-
-
thiamine diphosphate salvage II
-
-
thiamine diphosphate salvage IV (yeast)
-
-
Thiamine metabolism
-
-
thiamine phosphate formation from pyrithiamine and oxythiamine (yeast)
-
-
thiazole component of thiamine diphosphate biosynthesis I
-
-
thiazole component of thiamine diphosphate biosynthesis II
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
Toluene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria)
-
-
trans-zeatin biosynthesis
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
trehalose biosynthesis I
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
triacylglycerol degradation
-
-
tricin biosynthesis
-
-
tRNA processing
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
type IV lipoteichoic acid biosynthesis (S. pneumoniae)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
UDP-alpha-D-galactose biosynthesis
-
-
UDP-alpha-D-glucose biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
ultra-long-chain fatty acid biosynthesis
-
-
UMP biosynthesis II
-
-
urea cycle
urea degradation II
-
-
valine metabolism
-
-
Valine, leucine and isoleucine biosynthesis
-
-
Valine, leucine and isoleucine degradation
-
-
valproate beta-oxidation
-
-
vancomycin resistance I
-
-
vanillin biosynthesis I
-
-
vernolate biosynthesis III
-
-
very long chain fatty acid biosynthesis I
-
-
very long chain fatty acid biosynthesis II
-
-
vitamin B1 metabolism
-
-
Vitamin B6 metabolism
-
-
vitamin B6 metabolism
-
-
vitamin E biosynthesis (tocopherols)
-
-
vitamin E biosynthesis (tocotrienols)
-
-
vitamin E metabolism
-
-
vitamin K metabolism
-
-
vitamin K-epoxide cycle
-
-
wax esters biosynthesis I
-
-
wax esters biosynthesis II
-
-
wogonin metabolism
-
-
xanthohumol biosynthesis
-
-
Xylene degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
Zeatin biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
in fertile anthers at the binucleated stage where tapetal degeneration is initiated, the QRT3 signal is comparatively weak in the tapetum and reaches a peak in the binucleated pollen
Manually annotated by BRENDA team
BnC4H-1 and BvC4H-2 are co-dominantly expressed
Manually annotated by BRENDA team
myrosinase-storing cells, i.e. myrosin cells
Manually annotated by BRENDA team
-
parenchyma, myrosin cells
Manually annotated by BRENDA team
-
BnGA2ox6 transcript is present at the highest levels in siliques and flowers, followed by the leaves and stems, while expressed at comparatively low levels in other plant organs
Manually annotated by BRENDA team
-
DFR activity is lower in YN01-429 as compared to N89-53 seed coats. Two copies of the DFR gene, which are both functional in YN01-429, homeoallelic repression or silencing, together they show very low expression levels (17fold fewer transcripts) relative to DFR acitvity in N89-53 seed coats
Manually annotated by BRENDA team
-
Myr2 encodes vegetative type myrosinase
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
plastidic isozyme, associated with the chloroplast envelope
Manually annotated by BRENDA team
-
the recombinant enzyme, expressed in Escherichia coli is exclusively present in inclusion bodies
Manually annotated by BRENDA team
-
transmembrane protein
Manually annotated by BRENDA team
additional information
LINKS TO OTHER DATABASES (specific for Brassica napus)