Information on Organism Auxenochlorella protothecoides

TaxTree of Organism Auxenochlorella protothecoides
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
1,3-propanediol biosynthesis (engineered)
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
-
-
3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
-
-
3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
-
-
4-aminobutanoate degradation V
-
-
acetyl CoA biosynthesis
-
-
aerobic respiration (NDH-1 to cytochrome c oxidase via plastocyanin)
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
aerobic respiration in cyanobacteria (NDH-2 to cytochrome c oxidase via plastocyanin)
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
alpha-carotene biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
Arginine biosynthesis
-
-
assimilatory sulfate reduction II
-
-
assimilatory sulfate reduction III
-
-
assimilatory sulfate reduction IV
-
-
beta-carotene biosynthesis
-
-
Bifidobacterium shunt
-
-
Biosynthesis of secondary metabolites
-
-
Butanoate metabolism
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
Calvin-Benson-Bassham cycle
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
Carotenoid biosynthesis
-
-
carotenoid biosynthesis
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin deacetylation
-
-
chlorobactene biosynthesis
-
-
chlorophyll a degradation I
-
-
chlorophyll a degradation II
-
-
chlorophyll a degradation III
-
-
chlorophyll metabolism
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
cutin biosynthesis
-
-
Cutin, suberine and wax biosynthesis
-
-
Cysteine and methionine metabolism
-
-
cytosolic NADPH production (yeast)
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
Entner-Doudoroff pathway I
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis IV (engineered)
-
-
ethene biosynthesis V (engineered)
-
-
flexixanthin biosynthesis
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
formaldehyde oxidation I
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
GDP-alpha-D-glucose biosynthesis
-
-
gluconeogenesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glutamate and glutamine metabolism
-
-
Glutathione metabolism
-
-
Glycerolipid metabolism
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis III (from glucose)
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate cycle
-
-
heterolactic fermentation
-
-
incomplete reductive TCA cycle
-
-
isoprenoid biosynthesis
-
-
isorenieratene biosynthesis I (actinobacteria)
-
-
L-alanine degradation II (to D-lactate)
-
-
L-carnitine degradation III
-
-
L-glutamate degradation I
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
L-glutamine biosynthesis I
-
-
L-glutamine biosynthesis III
-
-
L-glutamine degradation II
-
-
L-malate degradation II
-
-
lactucaxanthin biosynthesis
-
-
lipid metabolism
-
-
lutein biosynthesis
-
-
Lysine degradation
-
-
malate/L-aspartate shuttle pathway
-
-
Metabolic pathways
-
-
Methane metabolism
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
methylaspartate cycle
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Monobactam biosynthesis
-
-
mRNA capping I
-
-
myxol-2' fucoside biosynthesis
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
Nitrogen metabolism
-
-
non-pathway related
-
-
nucleoside and nucleotide degradation (archaea)
-
-
okenone biosynthesis
-
-
oxidative decarboxylation of pyruvate
-
-
Oxidative phosphorylation
-
-
partial TCA cycle (obligate autotrophs)
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) I
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
pentose phosphate pathway (oxidative branch) I
-
-
pentose phosphate pathway (partial)
-
-
Photosynthesis
-
-
photosynthesis
-
-
photosynthesis light reactions
-
-
Porphyrin and chlorophyll metabolism
-
-
Propanoate metabolism
-
-
propionate fermentation
-
-
Purine metabolism
-
-
purine metabolism
-
-
pyruvate decarboxylation to acetyl CoA I
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
retinol biosynthesis
-
-
Rubisco shunt
-
-
selenate reduction
-
-
Selenocompound metabolism
-
-
Starch and sucrose metabolism
-
-
starch degradation
-
-
Streptomycin biosynthesis
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
sucrose biosynthesis II
-
-
sucrose degradation III (sucrose invertase)
-
-
sulfate activation for sulfonation
-
-
sulfate reduction
-
-
sulfite oxidation III
-
-
Sulfur metabolism
-
-
superoxide radicals degradation
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VII (acetate-producers)
-
-
thioredoxin pathway
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
triacylglycerol degradation
-
-
Tryptophan metabolism
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
Valine, leucine and isoleucine degradation
-
-
vernolate biosynthesis III
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
additional information
-
in Chlorella, the release of red pigments is correlated with the loss of chlorophyll only if the cells are kept in the dark. These pigments are neither produced in light-grown cells nor in the dark if a source of nitrogen is provided
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
Q6VQA8 and Q6VQA9 and Q7YKW4
-
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Auxenochlorella protothecoides)