Any feedback?
Please rate this page
(organism.php)
(0/150)

BRENDA support

Information on Organism Bactrocera dorsalis

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(9Z)-tricosene biosynthesis
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,5-anhydrofructose degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
4-hydroxy-2-nonenal detoxification
-
-
acetaldehyde biosynthesis I
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetylene degradation (anaerobic)
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Alanine, aspartate and glutamate metabolism
-
-
alpha-Linolenic acid metabolism
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
ammonia assimilation cycle III
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
arachidonate biosynthesis IV (8-detaturase, lower eukaryotes)
-
-
arachidonate biosynthesis V (8-detaturase, mammals)
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arsenite to oxygen electron transfer
-
-
arsenite to oxygen electron transfer (via azurin)
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate recycling (cytosolic)
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
ATP biosynthesis
-
-
bacterial bioluminescence
-
-
beta-carboline biosynthesis
-
-
Betalain biosynthesis
-
-
betalamic acid biosynthesis
-
-
betaxanthin biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
Bifidobacterium shunt
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of unsaturated fatty acids
-
-
bupropion degradation
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
Carbon fixation in photosynthetic organisms
-
-
catecholamine biosynthesis
CDP-6-deoxy-D-gulose biosynthesis
-
-
chitin biosynthesis
-
-
chitin deacetylation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Chloroalkane and chloroalkene degradation
-
-
cholesterol biosynthesis
-
-
cis-abienol biosynthesis
-
-
creatine phosphate biosynthesis
-
-
Cyanoamino acid metabolism
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-sorbitol biosynthesis I
-
-
degradation of hexoses
-
-
Diterpenoid biosynthesis
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
dTDP-beta-L-rhamnose biosynthesis
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis III (microbes)
-
-
Ether lipid metabolism
-
-
Fatty acid degradation
-
-
Fatty acid elongation
-
-
Fe(II) oxidation
-
-
Folate biosynthesis
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
formaldehyde oxidation I
-
-
fructan degradation
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
GDP-alpha-D-glucose biosynthesis
-
-
GDP-mannose biosynthesis
-
-
gliotoxin biosynthesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glucosylglycerol biosynthesis
-
-
glutamate and glutamine metabolism
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
Glycerophospholipid metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glyoxylate and dicarboxylate metabolism
-
-
heterolactic fermentation
-
-
hydroxycinnamic acid serotonin amides biosynthesis
-
-
hydroxycinnamic acid tyramine amides biosynthesis
-
-
hydroxylated fatty acid biosynthesis (plants)
-
-
icosapentaenoate biosynthesis III (8-desaturase, mammals)
-
-
icosapentaenoate biosynthesis V (8-desaturase, lower eukaryotes)
-
-
indole glucosinolate activation (intact plant cell)
-
-
indole-3-acetate biosynthesis II
-
-
Insect hormone biosynthesis
-
-
Isoquinoline alkaloid biosynthesis
-
-
juniperonate biosynthesis
-
-
juvenile hormone III biosynthesis I
-
-
juvenile hormone III biosynthesis II
-
-
L-aspartate degradation II (aerobic)
-
-
L-aspartate degradation III (anaerobic)
-
-
L-dopa degradation II (bacterial)
-
-
L-glutamine biosynthesis I
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
lanosterol biosynthesis
-
-
leucine metabolism
-
-
Linoleic acid metabolism
-
-
lipid metabolism
-
-
melatonin degradation I
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methanofuran biosynthesis
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methylsalicylate degradation
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
NAD(P)/NADPH interconversion
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
NADPH to cytochrome c oxidase via plastocyanin
-
-
Naphthalene degradation
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitric oxide biosynthesis II (mammals)
-
-
Nitrogen metabolism
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
O-Antigen nucleotide sugar biosynthesis
-
-
o-diquinones biosynthesis
-
-
octopamine biosynthesis
-
-
oleandomycin activation/inactivation
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
pentachlorophenol degradation
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
phosphatidylcholine acyl editing
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
Photosynthesis
-
-
photosynthesis
-
-
phytol degradation
-
-
plasmalogen degradation
-
-
Porphyrin and chlorophyll metabolism
-
-
propanol degradation
-
-
protein ubiquitination
-
-
psilocybin biosynthesis
-
-
Purine metabolism
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
resolvin D biosynthesis
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
rosmarinic acid biosynthesis II
-
-
salidroside biosynthesis
-
-
sciadonate biosynthesis
-
-
secologanin and strictosidine biosynthesis
-
-
sedoheptulose bisphosphate bypass
-
-
serotonin and melatonin biosynthesis
-
-
serotonin degradation
-
-
serotonin metabolism
-
-
Starch and sucrose metabolism
-
-
starch biosynthesis
-
-
starch degradation
-
-
starch degradation I
-
-
starch degradation III
-
-
starch degradation V
-
-
stearate biosynthesis I (animals)
-
-
Steroid biosynthesis
-
-
Steroid hormone biosynthesis
-
-
streptomycin biosynthesis
-
-
Streptomycin biosynthesis
-
-
succinate to chytochrome c oxidase via cytochrome c6
-
-
succinate to cytochrome c oxidase via plastocyanin
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis III
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of methylsalicylate metabolism
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation V
-
-
trehalose degradation VI (periplasmic)
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
UDP-alpha-D-glucose biosynthesis
-
-
UDP-GlcNAc biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
ultra-long-chain fatty acid biosynthesis
-
-
valine metabolism
-
-
vanillin biosynthesis I
-
-
very long chain fatty acid biosynthesis I
-
-
very long chain fatty acid biosynthesis II
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
additional information
BdB1 is significantly more abundant in multiple tissues in the malathion-resistant strain, MR. Expression profiles of BdB1 in the MR and MS strains of Bacterocera dorsalis, overview. The transcripts of BdB1 are expressed 8.64fold higher in the whole body, 3.5fold higher in the head, 13.53fold higher in the midgut and 5.56fold higher in the fat body in the MR strain than those in the MS strain
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Bactrocera dorsalis)