Information on Organism Bacillus anthracis

TaxTree of Organism Bacillus anthracis
Condensed Tree View
Bacteria can be found in Brenda BRENDA pathways(superkingdom)
Firmicutes can be found in Brenda BRENDA pathways(phylum)
Bacilli can be found in Brenda BRENDA pathways(class)
Bacillus can be found in Brenda BRENDA pathways(genus)
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(5Z)-dodecenoate biosynthesis I
-
-
(5Z)-dodecenoate biosynthesis II
-
-
(aminomethyl)phosphonate degradation
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis I
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,5-anhydrofructose degradation
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
2,3-dihydroxybenzoate biosynthesis
-
-
2-arachidonoylglycerol biosynthesis
-
-
2-carboxy-1,4-naphthoquinol biosynthesis
-
-
2-deoxy-D-glucose 6-phosphate degradation
-
-
2-nitrotoluene degradation
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
-
-
3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
-
-
3-chlorocatechol degradation
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
3-hydroxyquinaldate biosynthesis
-
-
3-methylarginine biosynthesis
-
-
3-methylbutanol biosynthesis (engineered)
-
-
3-phosphoinositide biosynthesis
-
-
4-hydroxy-2-nonenal detoxification
-
-
8-amino-7-oxononanoate biosynthesis I
-
-
Acarbose and validamycin biosynthesis
-
-
acetaldehyde biosynthesis I
-
-
acetaldehyde biosynthesis II
-
-
acetoin degradation
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetyl CoA biosynthesis
-
-
acetylene degradation (anaerobic)
-
-
acrylonitrile degradation I
-
-
acyl carrier protein activation
-
-
acyl carrier protein metabolism
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
adenine and adenosine salvage VI
-
-
adenosine deoxyribonucleotides de novo biosynthesis
-
-
adenosine deoxyribonucleotides de novo biosynthesis II
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
aerobic respiration (NDH-1 to cytochrome c oxidase via plastocyanin)
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
aerobic respiration in cyanobacteria (NDH-2 to cytochrome c oxidase via plastocyanin)
-
-
alanine metabolism
-
-
alanine racemization
-
-
Alanine, aspartate and glutamate metabolism
-
-
alginate degradation
-
-
alpha-Linolenic acid metabolism
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminoacyl-tRNA biosynthesis
-
-
Aminobenzoate degradation
-
-
ammonia oxidation II (anaerobic)
-
-
amygdalin and prunasin degradation
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
anhydromuropeptides recycling I
-
-
anhydromuropeptides recycling II
-
-
ansatrienin biosynthesis
-
-
anteiso-branched-chain fatty acid biosynthesis
-
-
arachidonate biosynthesis
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arginine metabolism
-
-
arsenate detoxification I (mammalian)
-
-
arsenate detoxification V
-
-
arsenite oxidation I (respiratory)
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate metabolism
-
-
ascorbate recycling (cytosolic)
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
ATP biosynthesis
-
-
Atrazine degradation
-
-
autoinducer AI-2 biosynthesis I
-
-
autoinducer AI-2 biosynthesis II (Vibrio)
-
-
bacterial bioluminescence
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
Benzoate degradation
-
-
beta-(1,4)-mannan degradation
-
-
beta-1,4-D-mannosyl-N-acetyl-D-glucosamine degradation
-
-
beta-Alanine metabolism
-
-
betanidin degradation
-
-
Bifidobacterium shunt
-
-
Biosynthesis of ansamycins
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of siderophore group nonribosomal peptides
-
-
biotin biosynthesis
-
-
Biotin metabolism
-
-
biotin-carboxyl carrier protein assembly
-
-
Bisphenol degradation
-
-
bupropion degradation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C20 prostanoid biosynthesis
-
-
C30 carotenoid biosynthesis
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
C5-Branched dibasic acid metabolism
-
-
caffeine biosynthesis I
-
-
caffeine biosynthesis II (via paraxanthine)
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
canavanine degradation
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
Carotenoid biosynthesis
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
catechol degradation to beta-ketoadipate
-
-
CDP-diacylglycerol biosynthesis III
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin deacetylation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Chloroalkane and chloroalkene degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
chlorpyrifos degradation
-
-
choline biosynthesis III
-
-
chondroitin sulfate degradation I (bacterial)
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
chorismate metabolism
-
-
cis-vaccenate biosynthesis
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CMP phosphorylation
-
-
CMP-legionaminate biosynthesis I
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
coenzyme A biosynthesis I (prokaryotic)
-
-
coenzyme A metabolism
-
-
colanic acid building blocks biosynthesis
-
-
creatine-phosphate biosynthesis
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
cyanate degradation
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
cytosolic NADPH production (yeast)
-
-
D-Alanine metabolism
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-galactose detoxification
-
-
D-gluconate degradation
-
-
D-Glutamine and D-glutamate metabolism
-
-
d-mannose degradation
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
D-myo-inositol-5-phosphate metabolism
-
-
d-xylose degradation
-
-
D-xylose degradation I
-
-
D-xylose degradation IV
-
-
degradation of aromatic, nitrogen containing compounds
-
-
degradation of hexoses
-
-
degradation of sugar alcohols
-
-
denitrification
-
-
dermatan sulfate degradation I (bacterial)
-
-
di-trans,poly-cis-undecaprenyl phosphate biosynthesis
-
-
diethylphosphate degradation
-
-
dipicolinate biosynthesis
-
-
diploterol biosynthesis
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
drosopterin and aurodrosopterin biosynthesis
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
dTDP-3-acetamido-3,6-dideoxy-alpha-D-glucose biosynthesis
-
-
dTDP-3-acetamido-alpha-D-fucose biosynthesis
-
-
dTDP-4-O-demethyl-beta-L-noviose biosynthesis
-
-
dTDP-6-deoxy-alpha-D-allose biosynthesis
-
-
dTDP-alpha-D-forosamine biosynthesis
-
-
dTDP-alpha-D-mycaminose biosynthesis
-
-
dTDP-alpha-D-olivose, dTDP-alpha-D-oliose and dTDP-alpha-D-mycarose biosynthesis
-
-
dTDP-alpha-D-ravidosamine and dTDP-4-acetyl-alpha-D-ravidosamine biosynthesis
-
-
dTDP-beta-D-fucofuranose biosynthesis
-
-
dTDP-beta-L-4-epi-vancosamine biosynthesis
-
-
dTDP-beta-L-digitoxose biosynthesis
-
-
dTDP-beta-L-megosamine biosynthesis
-
-
dTDP-beta-L-mycarose biosynthesis
-
-
dTDP-beta-L-olivose biosynthesis
-
-
dTDP-beta-L-rhamnose biosynthesis
-
-
dTDP-D-desosamine biosynthesis
-
-
dTDP-L-daunosamine biosynthesis
-
-
dTDP-N-acetylthomosamine biosynthesis
-
-
dTDP-N-acetylviosamine biosynthesis
-
-
dTDPLrhamnose biosynthesis
-
-
enterobactin biosynthesis
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
erythro-tetrahydrobiopterin biosynthesis I
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis V (engineered)
-
-
Ether lipid metabolism
-
-
even iso-branched-chain fatty acid biosynthesis
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
fatty acid biosynthesis initiation (type II)
-
-
Fatty acid degradation
-
-
fatty acid elongation -- saturated
-
-
Fe(II) oxidation
-
-
felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis
-
-
flavin biosynthesis
-
-
flavin biosynthesis I (bacteria and plants)
-
-
flavin biosynthesis II (archaea)
-
-
flavin biosynthesis III (fungi)
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
Fluorobenzoate degradation
-
-
Folate biosynthesis
-
-
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
formaldehyde oxidation I
-
-
fructan biosynthesis
-
-
fructan degradation
-
-
Fructose and mannose metabolism
-
-
Galactose metabolism
-
-
gamma-glutamyl cycle
-
-
GDP-mannose biosynthesis
-
-
gliotoxin biosynthesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
Glucosinolate biosynthesis
-
-
glutamate and glutamine metabolism
-
-
glutamate removal from folates
-
-
glutaminyl-tRNAgln biosynthesis via transamidation
-
-
glutathione degradation (DUG pathway - yeast)
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glutathione-peroxide redox reactions
-
-
glycerol degradation II
-
-
glycerol degradation to butanol
-
-
Glycerolipid metabolism
-
-
Glycerophospholipid metabolism
-
-
glycine betaine biosynthesis
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis II (from UDP-D-Glucose)
-
-
glycogen degradation I
-
-
glycogen metabolism
-
-
glycolate and glyoxylate degradation II
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate assimilation
-
-
glyoxylate cycle
-
-
glyphosate degradation III
-
-
gondoate biosynthesis (anaerobic)
-
-
guanine and guanosine salvage
-
-
guanine and guanosine salvage II
-
-
guanosine deoxyribonucleotides de novo biosynthesis I
-
-
guanosine deoxyribonucleotides de novo biosynthesis II
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
guanosine ribonucleotides de novo biosynthesis
-
-
heme b biosynthesis I (aerobic)
-
-
heme b biosynthesis II (oxygen-independent)
-
-
heme b biosynthesis V (aerobic)
-
-
heme degradation I
-
-
heme metabolism
-
-
heterolactic fermentation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
homocysteine and cysteine interconversion
-
-
homospermidine biosynthesis I
-
-
homospermidine biosynthesis II
-
-
hopanoid biosynthesis (bacteria)
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
hypoglycin biosynthesis
-
-
IAA biosynthesis
-
-
incomplete reductive TCA cycle
-
-
indole glucosinolate activation (intact plant cell)
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
inosine 5'-phosphate degradation
-
-
inosine-5'-phosphate biosynthesis I
-
-
inosine-5'-phosphate biosynthesis II
-
-
inosine-5'-phosphate biosynthesis III
-
-
Inositol phosphate metabolism
-
-
isoleucine metabolism
-
-
isoprenoid biosynthesis
-
-
Isoquinoline alkaloid biosynthesis
-
-
justicidin B biosynthesis
-
-
ketogluconate metabolism
-
-
L-alanine biosynthesis I
-
-
L-alanine degradation I
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-arabinose degradation IV
-
-
L-arginine degradation I (arginase pathway)
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-arginine degradation VII (arginase 3 pathway)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
L-arginine degradation XIII (reductive Stickland reaction)
-
-
L-asparagine biosynthesis III (tRNA-dependent)
-
-
L-citrulline biosynthesis
-
-
L-cysteine biosynthesis I
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
L-cysteine degradation III
-
-
L-glutamate biosynthesis I
-
-
L-glutamine degradation I
-
-
L-histidine degradation I
-
-
L-histidine degradation II
-
-
L-histidine degradation III
-
-
L-histidine degradation V
-
-
L-histidine degradation VI
-
-
L-idonate degradation
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis III
-
-
L-isoleucine biosynthesis IV
-
-
L-isoleucine biosynthesis V
-
-
L-isoleucine degradation I
-
-
L-isoleucine degradation II
-
-
L-isoleucine degradation III (oxidative Stickland reaction)
-
-
L-lactaldehyde degradation
-
-
L-leucine biosynthesis
-
-
L-leucine degradation I
-
-
L-leucine degradation III
-
-
L-leucine degradation IV (reductive Stickland reaction)
-
-
L-leucine degradation V (oxidative Stickland reaction)
-
-
L-lysine biosynthesis I
-
-
L-lysine biosynthesis II
-
-
L-lysine biosynthesis III
-
-
L-lysine biosynthesis VI
-
-
L-lysine degradation XI (mammalian)
-
-
L-methionine biosynthesis I
-
-
L-methionine biosynthesis III
-
-
L-methionine biosynthesis IV
-
-
L-methionine degradation III
-
-
L-methionine salvage from L-homocysteine
-
-
L-Ndelta-acetylornithine biosynthesis
-
-
L-phenylalanine degradation III
-
-
L-proline biosynthesis I (from L-glutamate)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
L-tryptophan degradation I (via anthranilate)
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation III
-
-
L-valine biosynthesis
-
-
L-valine degradation I
-
-
L-valine degradation II
-
-
L-valine degradation III (oxidative Stickland reaction)
-
-
lactate fermentation
-
-
lactose degradation II
-
-
leucine metabolism
-
-
leukotriene biosynthesis
-
-
Linoleic acid metabolism
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
lipid IVA biosynthesis (E. coli)
-
-
lipid IVA biosynthesis (P. putida)
-
-
lipid metabolism
-
-
Lipopolysaccharide biosynthesis
-
-
lipoprotein posttranslational modification
-
-
long chain fatty acid ester synthesis (engineered)
-
-
luteolin triglucuronide degradation
-
-
Lysine biosynthesis
-
-
Lysine degradation
-
-
lysine metabolism
-
-
malate/L-aspartate shuttle pathway
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
melibiose degradation
-
-
Metabolic pathways
-
-
metabolism of amino sugars and derivatives
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methyl parathion degradation
-
-
methylaspartate cycle
methylerythritol phosphate pathway I
-
-
methylerythritol phosphate pathway II
-
-
methylsalicylate degradation
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Monobactam biosynthesis
-
-
muropeptide degradation
-
-
mycolate biosynthesis
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
myristate biosynthesis (mitochondria)
-
-
N-acetylneuraminate and N-acetylmannosamine degradation I
-
-
N-acetylneuraminate and N-acetylmannosamine degradation II
-
-
NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde
-
-
NAD biosynthesis III (from nicotinamide)
-
-
NAD de novo biosynthesis I (from aspartate)
-
-
NAD metabolism
-
-
NAD salvage (plants)
-
-
NAD salvage pathway I (PNC VI cycle)
-
-
NAD salvage pathway II (PNC IV cycle)
-
-
NAD salvage pathway III (to nicotinamide riboside)
-
-
NAD salvage pathway IV (from nicotinamide riboside)
-
-
NAD salvage pathway V (PNC V cycle)
-
-
Naphthalene degradation
-
-
Nicotinate and nicotinamide metabolism
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitric oxide biosynthesis II (mammals)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
Nitrogen metabolism
-
-
Nitrotoluene degradation
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
nucleoside and nucleotide degradation (archaea)
-
-
O-antigen building blocks biosynthesis (E. coli)
-
-
o-diquinones biosynthesis
-
-
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast)
-
-
odd iso-branched-chain fatty acid biosynthesis
-
-
oleandomycin activation/inactivation
-
-
oleate biosynthesis IV (anaerobic)
-
-
One carbon pool by folate
-
-
Other glycan degradation
-
-
oxidative decarboxylation of pyruvate
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
palmitate biosynthesis
-
-
palmitate biosynthesis (type II fatty acid synthase)
-
-
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
paraoxon degradation
-
-
parathion degradation
-
-
partial TCA cycle (obligate autotrophs)
-
-
Penicillin and cephalosporin biosynthesis
-
-
pentachlorophenol degradation
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) I
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
pentose phosphate pathway (oxidative branch) I
-
-
pentose phosphate pathway (partial)
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis II (staphylococci)
-
-
peptidoglycan biosynthesis III (mycobacteria)
-
-
peptidoglycan biosynthesis IV (Enterococcus faecium)
-
-
peptidoglycan biosynthesis V (beta-lactam resistance)
-
-
peptidoglycan maturation (meso-diaminopimelate containing)
-
-
petrobactin biosynthesis
-
-
petroselinate biosynthesis
-
-
phenol degradation
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phosphate acquisition
-
-
phosphatidate metabolism, as a signaling molecule
-
-
phosphatidylcholine acyl editing
-
-
phosphatidylcholine resynthesis via glycerophosphocholine
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
phosphopantothenate biosynthesis I
-
-
phosphopantothenate biosynthesis II
-
-
Photosynthesis
-
-
photosynthesis
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
phytol degradation
-
-
plasmalogen biosynthesis
-
-
plasmalogen degradation
-
-
poly(3-O-beta-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate) wall teichoic acid biosynthesis
-
-
poly(glycerol phosphate) wall teichoic acid biosynthesis
-
-
poly(ribitol phosphate) wall teichoic acid biosynthesis I (B. subtilis)
-
-
poly(ribitol phosphate) wall teichoic acid biosynthesis II (S. aureus)
-
-
polyamine pathway
-
-
Polyketide sugar unit biosynthesis
-
-
polyphosphate metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
ppGpp metabolism
-
-
procollagen hydroxylation and glycosylation
-
-
proline metabolism
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
propionate fermentation
-
-
pseudouridine degradation
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
purine deoxyribonucleosides salvage
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine ribonucleosides degradation
-
-
putrescine biosynthesis III
-
-
pyrimidine deoxyribonucleosides salvage
-
-
pyrimidine deoxyribonucleotide phosphorylation
-
-
pyrimidine deoxyribonucleotides biosynthesis from CTP
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis I
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis III
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis IV
-
-
pyrimidine deoxyribonucleotides dephosphorylation
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
pyruvate decarboxylation to acetyl CoA I
-
-
pyruvate fermentation to (R)-acetoin I
-
-
pyruvate fermentation to (R)-acetoin II
-
-
pyruvate fermentation to (S)-acetoin
-
-
pyruvate fermentation to (S)-lactate
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
quinate degradation
-
-
quinate degradation I
-
-
quinate degradation II
-
-
quinoxaline-2-carboxylate biosynthesis
-
-
reactive oxygen species degradation
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
resolvin D biosynthesis
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
rubber biosynthesis
-
-
Rubisco shunt
-
-
S-adenosyl-L-methionine salvage I
-
-
salicylate biosynthesis I
-
-
salidroside biosynthesis
-
-
salinosporamide A biosynthesis
-
-
sedoheptulose bisphosphate bypass
-
-
seleno-amino acid biosynthesis (plants)
-
-
Selenocompound metabolism
-
-
serotonin degradation
-
-
sesamin biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
shikimate degradation I
-
-
shikimate degradation II
-
-
sophorosyloxydocosanoate deacetylation
-
-
sorbitol biosynthesis II
-
-
sphingolipid biosynthesis (mammals)
-
-
Sphingolipid metabolism
-
-
sphingomyelin metabolism
-
-
stachyose degradation
-
-
Starch and sucrose metabolism
-
-
starch degradation
-
-
starch degradation I
-
-
stearate biosynthesis II (bacteria and plants)
-
-
Steroid biosynthesis
-
-
Steroid hormone biosynthesis
-
-
sterol:steryl ester interconversion (yeast)
-
-
Streptomycin biosynthesis
-
-
streptorubin B biosynthesis
-
-
Styrene degradation
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis III
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sulfate reduction
-
-
sulfide oxidation IV (mitochondria)
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
sulfopterin metabolism
-
-
Sulfur metabolism
-
-
superoxide radicals degradation
-
-
superpathway of coenzyme A biosynthesis III (mammals)
-
-
superpathway of fatty acid biosynthesis initiation (E. coli)
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of methylsalicylate metabolism
-
-
superpathway of ornithine degradation
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VII (acetate-producers)
-
-
teichuronic acid biosynthesis (B. subtilis 168)
-
-
Terpenoid backbone biosynthesis
-
-
tetrahydrofolate biosynthesis
-
-
tetrahydrofolate metabolism
-
-
theobromine biosynthesis I
-
-
thiamine diphosphate biosynthesis I (E. coli)
-
-
thiamine diphosphate biosynthesis II (Bacillus)
-
-
thiamine diphosphate biosynthesis III (Staphylococcus)
-
-
thiamine diphosphate biosynthesis IV (eukaryotes)
-
-
thiamine diphosphate salvage II
-
-
thiamine diphosphate salvage IV (yeast)
-
-
Thiamine metabolism
-
-
thiamine phosphate formation from pyrithiamine and oxythiamine (yeast)
-
-
thioredoxin pathway
-
-
thiosulfate disproportionation IV (rhodanese)
-
-
threo-tetrahydrobiopterin biosynthesis
-
-
thymine degradation
-
-
Toluene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
triacylglycerol degradation
-
-
tRNA charging
-
-
tRNA processing
-
-
tRNA splicing I
-
-
tRNA splicing II
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
tunicamycin biosynthesis
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
UDP-2,3-diacetamido-2,3-dideoxy-alpha-D-mannuronate biosynthesis
-
-
UDP-alpha-D-galactofuranose biosynthesis
-
-
UDP-alpha-D-galactose biosynthesis
-
-
UDP-GlcNAc biosynthesis
-
-
UDP-N-acetyl-alpha-D-galactosaminuronate biosynthesis
-
-
UDP-N-acetyl-alpha-D-mannosaminouronate biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis I
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing)
-
-
UDP-N-acetylmuramoyl-pentapeptide biosynthesis III (meso-diaminopimelate containing)
-
-
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
uracil degradation I (reductive)
-
-
urea cycle
urea degradation II
-
-
UTP and CTP de novo biosynthesis
-
-
UTP and CTP dephosphorylation I
-
-
valine metabolism
-
-
Valine, leucine and isoleucine biosynthesis
-
-
Valine, leucine and isoleucine degradation
-
-
vancomycin resistance I
-
-
vanillin biosynthesis I
-
-
Various types of N-glycan biosynthesis
-
-
vitamin B1 metabolism
-
-
vitamin K metabolism
-
-
xanthine and xanthosine salvage
-
-
Xylene degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
Q81L07, Q81X74, YP_027084
-
Manually annotated by BRENDA team
A0A2B6C4K2, Q81X74, YP_027084
-
-
Manually annotated by BRENDA team
Q81X74, YP_027084
-
Manually annotated by BRENDA team
-
Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins including lethal factor
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Bacillus anthracis)