Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Muthu, M.; Ophir, Y.; Macdonald, L.J.; Vaidya, A.; Lloyd-Jones, G.
    Versatile catechol dioxygenases in Sphingobium scionense WP01T (2018), Antonie van Leeuwenhoek, 111, 2293-2301 .
    View publication on PubMed

Cloned(Commentary)

EC Number Cloned (Comment) Organism
1.13.11.1 expression in Escherichia coli BL21 (DE3) Sphingobium scionense
1.13.11.2 expression in Escherichia coli BL21 (DE3) Sphingobium scionense

Organism

EC Number Organism UniProt Comment Textmining
1.13.11.1 Sphingobium scionense A0A346DAQ1
-
-
1.13.11.1 Sphingobium scionense A0A346DAQ2
-
-
1.13.11.1 Sphingobium scionense DSM 19371 A0A346DAQ1
-
-
1.13.11.1 Sphingobium scionense DSM 19371 A0A346DAQ2
-
-
1.13.11.2 Sphingobium scionense A0A346DAQ3
-
-
1.13.11.2 Sphingobium scionense DSM 19371 A0A346DAQ3
-
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
1.13.11.1 3,5-dichlorocatechol + O2 99.35% compared to the activity with catechol Sphingobium scionense ?
-
?
1.13.11.1 3,5-dichlorocatechol + O2 99.35% compared to the activity with catechol Sphingobium scionense DSM 19371 ?
-
?
1.13.11.1 3-methylcatechol + O2 117.4% compared to the activity with catechol Sphingobium scionense (2Z,4Z)-2-methylhexa-2,4-dienedioate
-
?
1.13.11.1 3-methylcatechol + O2 9.9% compared to the activity with catechol Sphingobium scionense (2Z,4Z)-2-methylhexa-2,4-dienedioate
-
?
1.13.11.1 3-methylcatechol + O2 9.9% compared to the activity with catechol Sphingobium scionense DSM 19371 (2Z,4Z)-2-methylhexa-2,4-dienedioate
-
?
1.13.11.1 3-methylcatechol + O2 117.4% compared to the activity with catechol Sphingobium scionense DSM 19371 (2Z,4Z)-2-methylhexa-2,4-dienedioate
-
?
1.13.11.1 4-chlorocatechol + O2 3.3% compared to the activity with catechol Sphingobium scionense (2E,4Z)-3-chlorohexa-2,4-dienedioate
-
?
1.13.11.1 4-chlorocatechol + O2 70% compared to the activity with catechol Sphingobium scionense (2E,4Z)-3-chlorohexa-2,4-dienedioate
-
?
1.13.11.1 4-chlorocatechol + O2 3.3% compared to the activity with catechol Sphingobium scionense DSM 19371 (2E,4Z)-3-chlorohexa-2,4-dienedioate
-
?
1.13.11.1 4-chlorocatechol + O2 70% compared to the activity with catechol Sphingobium scionense DSM 19371 (2E,4Z)-3-chlorohexa-2,4-dienedioate
-
?
1.13.11.1 4-methylcatechol + O2 136.4% compared to the activity with catechol Sphingobium scionense (2Z,4Z)-3-methylhexa-2,4-dienedioate
-
?
1.13.11.1 4-methylcatechol + O2 18.2% compared to the activity with catechol Sphingobium scionense (2Z,4Z)-3-methylhexa-2,4-dienedioate
-
?
1.13.11.1 4-methylcatechol + O2 18.2% compared to the activity with catechol Sphingobium scionense DSM 19371 (2Z,4Z)-3-methylhexa-2,4-dienedioate
-
?
1.13.11.1 4-methylcatechol + O2 136.4% compared to the activity with catechol Sphingobium scionense DSM 19371 (2Z,4Z)-3-methylhexa-2,4-dienedioate
-
?
1.13.11.1 catechol + O2
-
Sphingobium scionense cis,cis-muconate
-
?
1.13.11.1 catechol + O2
-
Sphingobium scionense DSM 19371 cis,cis-muconate
-
?
1.13.11.2 2,3-dihydroxybiphenyl + O2 9.47% compared to the activity with catechol Sphingobium scionense ?
-
?
1.13.11.2 2,3-dihydroxybiphenyl + O2 9.47% compared to the activity with catechol Sphingobium scionense DSM 19371 ?
-
?
1.13.11.2 3-methylcatechol + O2 211.7% compared to the activity with catechol Sphingobium scionense 2-hydroxy-3-methoxymuconate semialdehyde
-
?
1.13.11.2 4,5-dichlorocatechol + O2 4.6% compared to the activity with catechol Sphingobium scionense ?
-
?
1.13.11.2 4,5-dichlorocatechol + O2 4.6% compared to the activity with catechol Sphingobium scionense DSM 19371 ?
-
?
1.13.11.2 4-chlorocatechol + O2 17.4% compared to the activity with catechol Sphingobium scionense 4-chloro-2-hydroxymuconate semialdehyde
-
?
1.13.11.2 4-chlorocatechol + O2 17.4% compared to the activity with catechol Sphingobium scionense DSM 19371 4-chloro-2-hydroxymuconate semialdehyde
-
?
1.13.11.2 4-methylcatechol + O2 111.4% compared to the activity with catechol Sphingobium scionense 2-hydroxy-4-methylmuconate semialdehyde
-
?
1.13.11.2 4-methylcatechol + O2 111.4% compared to the activity with catechol Sphingobium scionense DSM 19371 2-hydroxy-4-methylmuconate semialdehyde
-
?
1.13.11.2 catechol + O2
-
Sphingobium scionense 2-hydroxymuconate-6-semialdehyde
-
?
1.13.11.2 catechol + O2
-
Sphingobium scionense DSM 19371 2-hydroxymuconate-6-semialdehyde
-
?

Synonyms

EC Number Synonyms Comment Organism
1.13.11.1 CatA
-
Sphingobium scionense
1.13.11.1 catechol 1,2-dioxygenase
-
Sphingobium scionense
1.13.11.1 chlorocatechol 1,2-dioxygenase
-
Sphingobium scionense
1.13.11.1 clCA
-
Sphingobium scionense
1.13.11.2 catechol 2,3-dioxygenase
-
Sphingobium scionense
1.13.11.2 XylE
-
Sphingobium scionense

Expression

EC Number Organism Comment Expression
1.13.11.1 Sphingobium scionense induced by naphthalene, biphenyl and pentachlorophenol up
1.13.11.1 Sphingobium scionense when used as sole carbon sources benzoate and meta-toluate lead to elevated expression up
1.13.11.2 Sphingobium scionense induced by naphthalene, biphenyl and pentachlorophenol up
1.13.11.2 Sphingobium scionense when used as sole carbon sources benzoate and meta-toluate lead to elevated expression. The induction of xylE is the highest (at 93.5times higher than succinate grown cells) when grown on benzoate or meta-toluate up

General Information

EC Number General Information Comment Organism
1.13.11.1 physiological function the enzyme (ClcA) is recruited in pathways that are involved in the degradation of chlorinated aromatic compounds such as pentachlorophenol. It will also play a role in degradation pathways that produce alkylcatechols. ClcA is involved in pathways that generate catechol as a degradation pathway intermediate Sphingobium scionense
1.13.11.1 physiological function the enzyme is involved in pathways that generate catechol as a degradation pathway intermediate Sphingobium scionense
1.13.11.2 physiological function the enzyme (XylE) is recruited in pathways that are involved in the degradation of chlorinated aromatic compounds such as pentachlorophenol. It is involved in pathways that generate catechol as a degradation pathway intermediate. XylE will also play a role in degradation pathways that produce alkylcatechols Sphingobium scionense