Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Lee, H.-C.; Inoue, T.; Imae, R.; Kono, N.; Shirae, S.; Matsuda, S.; Gengyo-Ando, K.; Mitani, S.; Arai, H.
    Caenorhabditis elegans mboa-7, a member of the MBOAT family, is required for selective incorporation of polyunsaturated fatty acids into phosphatidylinositol (2008), Mol. Biol. Cell, 19, 1174-1184 .
    View publication on PubMedView publication on EuropePMC

Cloned(Commentary)

EC Number Cloned (Comment) Organism
2.3.1.B46 gene mboa-7, DNA and amino acid sequence determination and analysis, sequence comparisons Caenorhabditis elegans
2.3.1.B46 gene Mboat7, cloning from a liver DNA library, DNA and amino acid sequence determination and analysis, sequence comparisons Mus musculus
2.3.1.B46 gene MBOAT7, cloning from HeLa cells, DNA and amino acid sequence determination and analysis, sequence comparisons, quantitative real-time reverse transcription PCR enzyme expression analysis Homo sapiens

Protein Variants

EC Number Protein Variants Comment Organism
2.3.1.B46 additional information construction of mboa-7 mutants, the following mutations are used: fat-1(wa9), fat-3(wa22), fat-4(wa14), eri-1(mg366), and mboa-7(gk399). mboa-7(gk399) mutation is backcrossed at five times, phenotype, detailed overview. fat-4 fat-1 mutants, which do not produce AA(20:4n-6) and n-3 PUFAs such as EPA(20:5n-3), are viable and fertile, but they exhibited slow growth at 15°C. Dietary supplementation with arachidonic acid (AA) or eicosapentaenoic acid (EPA) leads to incorporation of these PUFAs into the phospholipid fractions of fat-4 fat-1 mutants, and it rescues the growth defects of this strain. Fatty acid composition of wild-type and mboa-7 mutants, overview Caenorhabditis elegans
2.3.1.B46 additional information in cells transfected with hmboa-7 siRNA duplex, h-mboa-7 mRNA levels are reduced to about 30% of the level in control siRNA-transfected cells at 72 h after the transfection. Incorporation of [14C]AA into cellular PI is specifically reduced from 13.1% of the total radioactivity in control cells to 6.7% in the siRNA-transfected cells. Incorporation of [14C]EPA into PI is also reduced similar to that of [14C]AA in siRNA-transfected cells Homo sapiens

Localization

EC Number Localization Comment Organism GeneOntology No. Textmining
2.3.1.B46 membrane membrane-bound Homo sapiens 16020
-
2.3.1.B46 membrane membrane-bound Mus musculus 16020
-
2.3.1.B46 membrane membrane-bound Caenorhabditis elegans 16020
-

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
2.3.1.B46 arachidonoyl-CoA + 1-acyl-lysophosphatidylinositol Homo sapiens
-
CoA + 1-acyl-2-arachidonoyl-lysophosphatidylinositol
-
?
2.3.1.B46 arachidonoyl-CoA + 1-acyl-lysophosphatidylinositol Mus musculus
-
CoA + 1-acyl-2-arachidonoyl-lysophosphatidylinositol
-
?
2.3.1.B46 arachidonoyl-CoA + 1-acyl-lysophosphatidylinositol Caenorhabditis elegans
-
CoA + 1-acyl-2-arachidonoyl-lysophosphatidylinositol
-
?
2.3.1.B46 arachidonoyl-CoA + 1-acyl-lysophosphatidylinositol Caenorhabditis elegans Bristol N2
-
CoA + 1-acyl-2-arachidonoyl-lysophosphatidylinositol
-
?
2.3.1.B46 eicosapentaenoyl-CoA + 1-acyl-lysophosphatidylinositol Homo sapiens
-
CoA + 1-acyl-2-eicosapentaenoyl-lysophosphatidylinositol
-
?
2.3.1.B46 eicosapentaenoyl-CoA + 1-acyl-lysophosphatidylinositol Mus musculus
-
CoA + 1-acyl-2-eicosapentaenoyl-lysophosphatidylinositol
-
?
2.3.1.B46 eicosapentaenoyl-CoA + 1-acyl-lysophosphatidylinositol Caenorhabditis elegans
-
CoA + 1-acyl-2-eicosapentaenoyl-lysophosphatidylinositol
-
?
2.3.1.B46 eicosapentaenoyl-CoA + 1-acyl-lysophosphatidylinositol Caenorhabditis elegans Bristol N2
-
CoA + 1-acyl-2-eicosapentaenoyl-lysophosphatidylinositol
-
?
2.3.1.B46 additional information Mus musculus LPLAT 7 prefers 20:4-CoA and 20:5-CoA as donors ?
-
-
2.3.1.B46 additional information Caenorhabditis elegans LPLAT 7 prefers 20:4-CoA and 20:5-CoA as donors. Analysis of in vivo incorporation of exogenous fatty acids into Caenorhabditis elegans ?
-
-
2.3.1.B46 additional information Homo sapiens LPLAT 7 prefers 20:4-CoA and 20:5-CoA as donors. Analysis of in vivo incorporation of exogenous fatty acids into HeLa cells ?
-
-
2.3.1.B46 additional information Caenorhabditis elegans Bristol N2 LPLAT 7 prefers 20:4-CoA and 20:5-CoA as donors. Analysis of in vivo incorporation of exogenous fatty acids into Caenorhabditis elegans ?
-
-

Organism

EC Number Organism UniProt Comment Textmining
2.3.1.B46 Caenorhabditis elegans Q19468
-
-
2.3.1.B46 Caenorhabditis elegans Bristol N2 Q19468
-
-
2.3.1.B46 Homo sapiens Q96N66
-
-
2.3.1.B46 Mus musculus Q8CHK3
-
-

Source Tissue

EC Number Source Tissue Comment Organism Textmining
2.3.1.B46 breast cancer cell
-
Mus musculus
-
2.3.1.B46 HeLa cell
-
Homo sapiens
-
2.3.1.B46 liver
-
Mus musculus
-
2.3.1.B46 additional information Escherichia coli OP50, a bacterium that does not synthesize or require polyunsaturated fatty acids, is used as the sole food source Caenorhabditis elegans
-
2.3.1.B46 additional information the enzyme is reported to be upregulated in metastatic breast and bladder carcinomas Mus musculus
-
2.3.1.B46 urinary bladder cancer cell
-
Mus musculus
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
2.3.1.B46 arachidonoyl-CoA + 1-acyl-lysophosphatidylinositol
-
Homo sapiens CoA + 1-acyl-2-arachidonoyl-lysophosphatidylinositol
-
?
2.3.1.B46 arachidonoyl-CoA + 1-acyl-lysophosphatidylinositol
-
Mus musculus CoA + 1-acyl-2-arachidonoyl-lysophosphatidylinositol
-
?
2.3.1.B46 arachidonoyl-CoA + 1-acyl-lysophosphatidylinositol
-
Caenorhabditis elegans CoA + 1-acyl-2-arachidonoyl-lysophosphatidylinositol
-
?
2.3.1.B46 arachidonoyl-CoA + 1-acyl-lysophosphatidylinositol
-
Caenorhabditis elegans Bristol N2 CoA + 1-acyl-2-arachidonoyl-lysophosphatidylinositol
-
?
2.3.1.B46 eicosapentaenoyl-CoA + 1-acyl-lysophosphatidylinositol
-
Homo sapiens CoA + 1-acyl-2-eicosapentaenoyl-lysophosphatidylinositol
-
?
2.3.1.B46 eicosapentaenoyl-CoA + 1-acyl-lysophosphatidylinositol
-
Mus musculus CoA + 1-acyl-2-eicosapentaenoyl-lysophosphatidylinositol
-
?
2.3.1.B46 eicosapentaenoyl-CoA + 1-acyl-lysophosphatidylinositol
-
Caenorhabditis elegans CoA + 1-acyl-2-eicosapentaenoyl-lysophosphatidylinositol
-
?
2.3.1.B46 eicosapentaenoyl-CoA + 1-acyl-lysophosphatidylinositol
-
Caenorhabditis elegans Bristol N2 CoA + 1-acyl-2-eicosapentaenoyl-lysophosphatidylinositol
-
?
2.3.1.B46 additional information LPLAT 7 prefers 20:4-CoA and 20:5-CoA as donors Homo sapiens ?
-
-
2.3.1.B46 additional information LPLAT 7 prefers 20:4-CoA and 20:5-CoA as donors Mus musculus ?
-
-
2.3.1.B46 additional information LPLAT 7 prefers 20:4-CoA and 20:5-CoA as donors Caenorhabditis elegans ?
-
-
2.3.1.B46 additional information LPLAT 7 prefers 20:4-CoA and 20:5-CoA as donors. Analysis of in vivo incorporation of exogenous fatty acids into Caenorhabditis elegans Caenorhabditis elegans ?
-
-
2.3.1.B46 additional information LPLAT 7 prefers 20:4-CoA and 20:5-CoA as donors. Analysis of in vivo incorporation of exogenous fatty acids into HeLa cells Homo sapiens ?
-
-
2.3.1.B46 additional information LPLAT 7 prefers 20:4-CoA and 20:5-CoA as donors Caenorhabditis elegans Bristol N2 ?
-
-
2.3.1.B46 additional information LPLAT 7 prefers 20:4-CoA and 20:5-CoA as donors. Analysis of in vivo incorporation of exogenous fatty acids into Caenorhabditis elegans Caenorhabditis elegans Bristol N2 ?
-
-

Synonyms

EC Number Synonyms Comment Organism
2.3.1.B46 BB1
-
Homo sapiens
2.3.1.B46 LPIAT
-
Homo sapiens
2.3.1.B46 LPIAT
-
Mus musculus
2.3.1.B46 LPIAT
-
Caenorhabditis elegans
2.3.1.B46 LPIAT1
-
Homo sapiens
2.3.1.B46 LPIAT1
-
Mus musculus
2.3.1.B46 LPIAT1
-
Caenorhabditis elegans
2.3.1.B46 LPLAT 7
-
Homo sapiens
2.3.1.B46 LPLAT 7
-
Mus musculus
2.3.1.B46 LPLAT 7
-
Caenorhabditis elegans
2.3.1.B46 lysophosphatidylinositol-acyltransferase-1
-
Homo sapiens
2.3.1.B46 lysophosphatidylinositol-acyltransferase-1
-
Mus musculus
2.3.1.B46 lysophosphatidylinositol-acyltransferase-1
-
Caenorhabditis elegans
2.3.1.B46 lysophospholipid acyltransferase 7
-
Homo sapiens
2.3.1.B46 lysophospholipid acyltransferase 7
-
Mus musculus
2.3.1.B46 lysophospholipid acyltransferase 7
-
Caenorhabditis elegans
2.3.1.B46 LysoPI acyltransferase
-
Homo sapiens
2.3.1.B46 LysoPI acyltransferase
-
Mus musculus
2.3.1.B46 LysoPI acyltransferase
-
Caenorhabditis elegans
2.3.1.B46 mboa-7
-
Homo sapiens
2.3.1.B46 mboa-7
-
Mus musculus
2.3.1.B46 mboa-7
-
Caenorhabditis elegans
2.3.1.B46 MBOAT7
-
Caenorhabditis elegans
2.3.1.B46 MBOAT7
-
Homo sapiens
2.3.1.B46 MBOAT7
-
Mus musculus

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
2.3.1.B46 20
-
assay at Homo sapiens
2.3.1.B46 20
-
assay at Mus musculus
2.3.1.B46 20
-
assay at Caenorhabditis elegans

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
2.3.1.B46 7
-
assay at Homo sapiens
2.3.1.B46 7
-
assay at Mus musculus
2.3.1.B46 7
-
assay at Caenorhabditis elegans

General Information

EC Number General Information Comment Organism
2.3.1.B46 evolution the enzyme belongs to the MBOAT family Homo sapiens
2.3.1.B46 evolution the enzyme belongs to the MBOAT family Mus musculus
2.3.1.B46 evolution the enzyme belongs to the MBOAT family Caenorhabditis elegans
2.3.1.B46 malfunction incorporation of exogenous PUFA into PI of the living worms and LPIAT activity in the microsomes are greatly reduced in mboa-7 mutants. Furthermore, the membrane fractions of transgenic worms expressing recombinant MBOA-7 and its human homologue exhibit remarkably increased LPIAT activity. Gene mboa-7 mutants have significantly lower eicosapentaenoic acid (EPA) levels in phosphatidylinositol (PI), and they exhibit larval arrest and egg-laying defects. Fatty acid composition of wild-type and mboa-7 mutants, overview Caenorhabditis elegans
2.3.1.B46 physiological function the enzyme is required for selective incorporation of polyunsaturated fatty acids (PUFAs) into phosphatidylinositol. Phosphatidylinositol (PI) is a component of membrane phospholipids, and it functions both as a signaling molecule and as a compartment-specific localization signal in the form of polyphosphoinositides. Arachidonic acid (AA) is the predominant fatty acid in the sn-2 position of PI in mammals. LysoPI acyltransferase (LPIAT) is thought to catalyze formation of AA-containing PI Homo sapiens
2.3.1.B46 physiological function the enzyme is required for selective incorporation of polyunsaturated fatty acids (PUFAs) into phosphatidylinositol. Phosphatidylinositol (PI) is a component of membrane phospholipids, and it functions both as a signaling molecule and as a compartment-specific localization signal in the form of polyphosphoinositides. Arachidonic acid (AA) is the predominant fatty acid in the sn-2 position of PI in mammals. LysoPI acyltransferase (LPIAT) is thought to catalyze formation of AA-containing PI Mus musculus
2.3.1.B46 physiological function the enzyme is required for selective incorporation of polyunsaturated fatty acids (PUFAs) into phosphatidylinositol. Phosphatidylinositol (PI) is a component of membrane phospholipids, and it functions both as a signaling molecule and as a compartment-specific localization signal in the form of polyphosphoinositides. Arachidonic acid (AA) is the predominant fatty acid in the sn-2 position of PI in mammals. LysoPI acyltransferase (LPIAT) is thought to catalyze formation of AA-containing PI. In Caenorhabditis elegans, eicosapentaenoic acid (EPA) instead of AA is the predominant fatty acid in PI Caenorhabditis elegans