Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Kronen, M.; Sasikaran, J.; Berg, I.A.
    Mesaconase activity of class I fumarase contributes to mesaconate utilization by Burkholderia xenovorans (2015), Appl. Environ. Microbiol., 81, 5632-5638 .
    View publication on PubMedView publication on EuropePMC

Activating Compound

EC Number Activating Compound Comment Organism Structure
4.2.1.2 thiol storage of the protein for 6 months leads to almost complete loss of its activity, which can be fully restored by the reactivation with Fe2+ and thiol Paraburkholderia xenovorans
4.2.1.34 thiol storage of the protein for 6 months leads to almost complete loss of its activity, which can be fully restored by the reactivation with Fe2+ and thiol Paraburkholderia xenovorans

Application

EC Number Application Comment Organism
4.2.1.2 synthesis use of tryptophan synthase in the generation of L-dihalotryptophans and L-alkynyltryptophans Paraburkholderia xenovorans

Cloned(Commentary)

EC Number Cloned (Comment) Organism
4.2.1.2 expression in Escherichia coli Paraburkholderia xenovorans
4.2.1.34 expression in Escherichia coli Paraburkholderia xenovorans

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
4.2.1.2 0.03
-
mesaconate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.2 0.03
-
mesaconate pH 6.9, 30°C Paraburkholderia xenovorans
4.2.1.2 0.1
-
fumarate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.2 0.1
-
fumarate pH 6.9, 30°C Paraburkholderia xenovorans
4.2.1.2 0.138
-
fumarate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.2 0.138
-
fumarate pH 6.9, 30°C Paraburkholderia xenovorans
4.2.1.2 0.28
-
(S)-malate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.2 0.28
-
L-malate pH 6.9, 30°C Paraburkholderia xenovorans
4.2.1.2 0.42
-
(S)-malate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.2 0.42
-
L-malate pH 6.9, 30°C Paraburkholderia xenovorans
4.2.1.2 0.52
-
(S)-citramalate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.2 0.52
-
(S)-citramalate pH 6.9, 30°C Paraburkholderia xenovorans
4.2.1.34 0.03
-
mesaconate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.34 0.1
-
fumarate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.34 0.28
-
(S)-malate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.34 0.52
-
(S)-citramalate pH 8.0, 30°C Paraburkholderia xenovorans

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
4.2.1.2 Fe2+ storage of the protein for 6 months leads to almost complete loss of its activity, which can be fully restored by the reactivation with Fe2+ and thiol Paraburkholderia xenovorans
4.2.1.34 Fe2+ storage of the protein for 6 months leads to almost complete loss of its activity, which can be fully restored by the reactivation with Fe2+ and thiol Paraburkholderia xenovorans

Molecular Weight [Da]

EC Number Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
4.2.1.2 50000
-
SDS-PAGE Paraburkholderia xenovorans
4.2.1.2 60000
-
SDS-PAGE Paraburkholderia xenovorans
4.2.1.34 60000
-
SDS-PAGE Paraburkholderia xenovorans

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
4.1.3.25 (3S)-citramalyl-CoA Paraburkholderia xenovorans
-
acetyl-CoA + pyruvate
-
?
4.1.3.25 (3S)-citramalyl-CoA Paraburkholderia xenovorans DSMZ 17367 / LB400
-
acetyl-CoA + pyruvate
-
?
4.2.1.2 mesaconate + H2O Paraburkholderia xenovorans mesaconase activity of class I fumarase contributes to mesaconate utilization by Burkholderia xenovorans. Mesaconate is metabolized through its hydration to (S)-citramalate. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase (S)-citramalate
-
?
4.2.1.34 mesaconate + H2O Paraburkholderia xenovorans mesaconase activity of class I fumarase contributes to mesaconate utilization by Burkholderia xenovorans. Mesaconate is metabolized through its hydration to (S)-citramalate. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase (S)-citramalate
-
?
4.2.1.34 mesaconate + H2O Paraburkholderia xenovorans DSMZ 17367 / LB400 mesaconase activity of class I fumarase contributes to mesaconate utilization by Burkholderia xenovorans. Mesaconate is metabolized through its hydration to (S)-citramalate. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase (S)-citramalate
-
?
4.2.1.56 Itaconyl-CoA + H2O Paraburkholderia xenovorans the enzyme is involved in the degradation of itaconate Citramalyl-CoA
-
?
4.2.1.56 Itaconyl-CoA + H2O Paraburkholderia xenovorans DSMZ 17367 / LB400 the enzyme is involved in the degradation of itaconate Citramalyl-CoA
-
?

Organism

EC Number Organism UniProt Comment Textmining
4.1.3.25 Paraburkholderia xenovorans
-
-
-
4.1.3.25 Paraburkholderia xenovorans DSMZ 17367 / LB400
-
-
-
4.2.1.2 Paraburkholderia xenovorans Q13VI0
-
-
4.2.1.2 Paraburkholderia xenovorans Q141Z6
-
-
4.2.1.2 Paraburkholderia xenovorans DSMZ 17367 / LB400 Q13VI0
-
-
4.2.1.2 Paraburkholderia xenovorans DSMZ 17367 / LB400 Q141Z6
-
-
4.2.1.34 Paraburkholderia xenovorans Q141Z6
-
-
4.2.1.34 Paraburkholderia xenovorans DSMZ 17367 / LB400 Q141Z6
-
-
4.2.1.56 Paraburkholderia xenovorans
-
-
-
4.2.1.56 Paraburkholderia xenovorans DSMZ 17367 / LB400
-
-
-

Oxidation Stability

EC Number Oxidation Stability Organism
4.2.1.2 the enzyme is oxygen-sensitive, and the aerobically measured activity of the (aerobically) purified protein is relatively low. The incubation of the enzyme with Fe2+ and thiol and following measurement of the activity under strictly anaerobic conditions leads to an 4fold increase in fumarate hydratase activity Paraburkholderia xenovorans
4.2.1.34 the enzyme is oxygen sensitive, and the aerobically measured activity of the (aerobically) purified protein is relatively low. The incubation of the enzyme with Fe2+ and thiol and following measurement of the activity under strictly anaerobic conditions leads to an 4fold increase in fumarate hydratase activity Paraburkholderia xenovorans

Purification (Commentary)

EC Number Purification (Comment) Organism
4.2.1.2
-
Paraburkholderia xenovorans
4.2.1.34
-
Paraburkholderia xenovorans

Source Tissue

EC Number Source Tissue Comment Organism Textmining
4.1.3.25 culture condition:itaconate-grown cell
-
Paraburkholderia xenovorans
-
4.1.3.25 culture condition:mesaconate-grown cell
-
Paraburkholderia xenovorans
-

Storage Stability

EC Number Storage Stability Organism
4.2.1.2 storage of the protein for 6 months leads to almost complete loss of its activity, which can be fully restored by the reactivation with Fe2+ and thiol Paraburkholderia xenovorans
4.2.1.34 storage of the protein for 6 months leads to almost complete loss of its activity, which can be fully restored by the reactivation with Fe2+ and thiol Paraburkholderia xenovorans

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
4.1.3.25 (3S)-citramalyl-CoA
-
Paraburkholderia xenovorans acetyl-CoA + pyruvate
-
?
4.1.3.25 (3S)-citramalyl-CoA
-
Paraburkholderia xenovorans DSMZ 17367 / LB400 acetyl-CoA + pyruvate
-
?
4.2.1.2 (S)-citramalate
-
Paraburkholderia xenovorans mesaconate + H2O
-
r
4.2.1.2 (S)-malate
-
Paraburkholderia xenovorans fumarate + H2O
-
r
4.2.1.2 (S)-malate
-
Paraburkholderia xenovorans DSMZ 17367 / LB400 fumarate + H2O
-
r
4.2.1.2 fumarate + H2O
-
Paraburkholderia xenovorans L-malate
-
r
4.2.1.2 fumarate + H2O
-
Paraburkholderia xenovorans DSMZ 17367 / LB400 L-malate
-
r
4.2.1.2 fumarate + H2O
-
Paraburkholderia xenovorans (S)-malate
-
r
4.2.1.2 L-malate
-
Paraburkholderia xenovorans fumarate + H2O
-
r
4.2.1.2 L-malate
-
Paraburkholderia xenovorans DSMZ 17367 / LB400 fumarate + H2O
-
r
4.2.1.2 mesaconate + H2O
-
Paraburkholderia xenovorans (S)-citramalate
-
r
4.2.1.2 mesaconate + H2O mesaconase activity of class I fumarase contributes to mesaconate utilization by Burkholderia xenovorans. Mesaconate is metabolized through its hydration to (S)-citramalate. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase Paraburkholderia xenovorans (S)-citramalate
-
?
4.2.1.2 additional information no activity with either mesaconate or (S)-citramalate Paraburkholderia xenovorans ?
-
?
4.2.1.2 additional information no substrate: mesaconate Paraburkholderia xenovorans ?
-
?
4.2.1.2 additional information no activity with either mesaconate or (S)-citramalate Paraburkholderia xenovorans DSMZ 17367 / LB400 ?
-
?
4.2.1.2 additional information no substrate: mesaconate Paraburkholderia xenovorans DSMZ 17367 / LB400 ?
-
?
4.2.1.34 (S)-citramalate
-
Paraburkholderia xenovorans mesaconate + H2O
-
r
4.2.1.34 (S)-citramalate
-
Paraburkholderia xenovorans DSMZ 17367 / LB400 mesaconate + H2O
-
r
4.2.1.34 (S)-malate
-
Paraburkholderia xenovorans fumarate + H2O
-
r
4.2.1.34 (S)-malate
-
Paraburkholderia xenovorans DSMZ 17367 / LB400 fumarate + H2O
-
r
4.2.1.34 fumarate + H2O
-
Paraburkholderia xenovorans (S)-malate
-
r
4.2.1.34 fumarate + H2O
-
Paraburkholderia xenovorans DSMZ 17367 / LB400 (S)-malate
-
r
4.2.1.34 mesaconate + H2O
-
Paraburkholderia xenovorans (S)-citramalate
-
r
4.2.1.34 mesaconate + H2O mesaconase activity of class I fumarase contributes to mesaconate utilization by Burkholderia xenovorans. Mesaconate is metabolized through its hydration to (S)-citramalate. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase Paraburkholderia xenovorans (S)-citramalate
-
?
4.2.1.34 mesaconate + H2O
-
Paraburkholderia xenovorans DSMZ 17367 / LB400 (S)-citramalate
-
r
4.2.1.34 mesaconate + H2O mesaconase activity of class I fumarase contributes to mesaconate utilization by Burkholderia xenovorans. Mesaconate is metabolized through its hydration to (S)-citramalate. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase Paraburkholderia xenovorans DSMZ 17367 / LB400 (S)-citramalate
-
?
4.2.1.56 Itaconyl-CoA + H2O
-
Paraburkholderia xenovorans Citramalyl-CoA
-
?
4.2.1.56 Itaconyl-CoA + H2O the enzyme is involved in the degradation of itaconate Paraburkholderia xenovorans Citramalyl-CoA
-
?
4.2.1.56 Itaconyl-CoA + H2O
-
Paraburkholderia xenovorans DSMZ 17367 / LB400 Citramalyl-CoA
-
?
4.2.1.56 Itaconyl-CoA + H2O the enzyme is involved in the degradation of itaconate Paraburkholderia xenovorans DSMZ 17367 / LB400 Citramalyl-CoA
-
?

Synonyms

EC Number Synonyms Comment Organism
4.1.3.25 (3S)-citramalyl-CoA pyruvate-lyase
-
Paraburkholderia xenovorans
4.1.3.25 CCL
-
Paraburkholderia xenovorans
4.2.1.2 Bxe_A1038
-
Paraburkholderia xenovorans
4.2.1.2 Bxe_A3136
-
Paraburkholderia xenovorans
4.2.1.2 class II fumarase
-
Paraburkholderia xenovorans
4.2.1.2 fumarase/mesaconase
-
Paraburkholderia xenovorans
4.2.1.34 Bxe_A3136
-
Paraburkholderia xenovorans
4.2.1.34 fumarase/mesaconase
-
Paraburkholderia xenovorans

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
4.1.3.25 30
-
assay Paraburkholderia xenovorans
4.2.1.2 30
-
assay Paraburkholderia xenovorans
4.2.1.34 30
-
assay Paraburkholderia xenovorans
4.2.1.56 30
-
assay Paraburkholderia xenovorans

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
4.1.3.25 8
-
assay at Paraburkholderia xenovorans
4.2.1.2 8
-
assay at Paraburkholderia xenovorans
4.2.1.34 8
-
assay at Paraburkholderia xenovorans
4.2.1.56 8
-
assay at Paraburkholderia xenovorans

Expression

EC Number Organism Comment Expression
4.1.3.25 Paraburkholderia xenovorans substantially downregulated in acetate-grown cells down
4.1.3.25 Paraburkholderia xenovorans high activities of itaconyl-CoA hydratase in cell extracts of itaconate-grown Paraburkholderia xenovorans up
4.2.1.2 Paraburkholderia xenovorans expression is induced by growth on acetate and mesaconate up
4.2.1.56 Paraburkholderia xenovorans substantially downregulated in acetate-grown cells down
4.2.1.56 Paraburkholderia xenovorans high activities of itaconyl-CoA hydratase in cell extracts of itaconate-grown Paraburkholderia xenovorans up

General Information

EC Number General Information Comment Organism
4.1.3.25 metabolism the enzyme is involved in the degradation of itaconate Paraburkholderia xenovorans
4.2.1.2 metabolism mesaconase activity of the promiscuous fumarase/mesaconase contributes to mesaconate utilization by Burkholderia xenovorans. Mesaconate is metabolized through its hydration to (S)-citramalate. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase Paraburkholderia xenovorans
4.2.1.2 physiological function Paraburkholderia xenovorans is able to grow on itaconate and mesaconate (i.e. methylfumarate). Mesaconate is metabolized through its hydration to (S)-citramalate, which is then metabolized to acetyl-CoA and pyruvate. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by class I fumarase Bxe_A3136 Paraburkholderia xenovorans
4.2.1.2 physiological function the enzyme (Bxe_A3136) is in fact a promiscuous fumarase/mesaconase. It has similar efficiencies (kcat/Km) for both fumarate and mesaconate hydration. This promiscuity is physiologically relevant, as it allows the growth of this bacterium on mesaconate as a sole carbon and energy source Paraburkholderia xenovorans
4.2.1.34 metabolism mesaconase activity of the promiscuous fumarase/mesaconase contributes to mesaconate utilization by Burkholderia xenovorans. Mesaconate is metabolized through its hydration to (S)-citramalate. The first reaction of the pathway, the mesaconate hydratase (mesaconase) reaction, is catalyzed by a class I fumarase. The latter compound is then metabolized to acetyl-CoA and pyruvate with the participation of two enzymes of the itaconate degradation pathway, a promiscuous itaconate-CoA transferase able to activate (S)-citramalate in addition to itaconate and (S)-citramalyl-CoA lyase Paraburkholderia xenovorans
4.2.1.34 physiological function the enzyme (Bxe_A3136) is in fact a promiscuous fumarase/mesaconase. It has similar efficiencies (kcat/Km) for both fumarate and mesaconate hydration. This promiscuity is physiologically relevant, as it allows the growth of this bacterium on mesaconate as a sole carbon and energy source Paraburkholderia xenovorans
4.2.1.56 metabolism the enzyme is involved in the degradation of itaconate. Itaconyl-CoA hydratase reaction as a bottleneck in the conversion. Its activity is an order of magnitude lower than the activities of itaconate-CoA transferase and (S)-citramalyl-CoA lyase Paraburkholderia xenovorans

kcat/KM [mM/s]

EC Number kcat/KM Value [1/mMs-1] kcat/KM Value Maximum [1/mMs-1] Substrate Comment Organism Structure
4.2.1.2 131
-
(S)-citramalate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.2 131
-
(S)-citramalate pH 6.9, 30°C Paraburkholderia xenovorans
4.2.1.2 320
-
(S)-malate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.2 320
-
L-malate pH 6.9, 30°C Paraburkholderia xenovorans
4.2.1.2 398
-
(S)-malate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.2 398
-
L-malate pH 6.9, 30°C Paraburkholderia xenovorans
4.2.1.2 2200
-
fumarate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.2 2200
-
fumarate pH 6.9, 30°C Paraburkholderia xenovorans
4.2.1.2 2800
-
fumarate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.2 2800
-
fumarate pH 6.9, 30°C Paraburkholderia xenovorans
4.2.1.2 3600
-
mesaconate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.2 3600
-
mesaconate pH 6.9, 30°C Paraburkholderia xenovorans
4.2.1.34 131
-
(S)-citramalate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.34 398
-
(S)-malate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.34 2800
-
fumarate pH 8.0, 30°C Paraburkholderia xenovorans
4.2.1.34 3600
-
mesaconate pH 8.0, 30°C Paraburkholderia xenovorans