Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Bell, S.A.; Niehaus, T.D.; Nybo, S.E.; Chappell, J.
    Structure-function mapping of key determinants for hydrocarbon biosynthesis by squalene and squalene synthase-like enzymes from the green alga Botryococcus braunii race B (2014), Biochemistry, 53, 7570-7581 .
    View publication on PubMed

Cloned(Commentary)

EC Number Cloned (Comment) Organism
1.3.1.96 gene SSL-2, sequence comparisons, recombinant expression of C-terminally truncated wild-type and mutant enzymes enzymes, lacking 87 amino acids, in Escherichia coli strain BL21(DE3) Botryococcus braunii
1.3.1.97 gene SSL-3, sequence comparisons, recombinant expression of wild-type and mutant enzymes in Escherichia coli strain BL21(DE3) Botryococcus braunii
2.5.1.21 gene BbSS, sequence comparisons, recombinant expression of C-terminally truncated wild-type and mutant enzymes BbSS, lacking 65 amino acids, in Escherichia coli strain BL21(DE3) Botryococcus braunii
2.5.1.103 gene SSL-1, sequence comparisons, recombinant expression of wild-type and mutant enzymes in Escherichia coli strain BL21(DE3) Botryococcus braunii

Protein Variants

EC Number Protein Variants Comment Organism
1.3.1.96 Y168A site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
1.3.1.96 Y168F site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
1.3.1.97 N171A/G207Q site-directed mutagenesis, combined N171A and G207Q mutations in the SSL-3 backbone result in complete conversion of SSL-3 from an enzyme that used presqualene diphosphate for botryococcene biosynthesis to one that used presqualene diphosphate for squalene biosynthesis Botryococcus braunii
1.3.1.97 Y166A site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
1.3.1.97 Y166F site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 A177N site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 A177N/Q213G site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type, the mutant has lost the first reaction step but retains a greater level of the second reaction step for the conversion of presqualene diphosphate to squalene Botryococcus braunii
2.5.1.21 D220A site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 D224A site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 D79A site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 D83A site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 E223A site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 E82A site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 G207Q site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 N171A site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 N171A/G207Q site-directed mutagenesis Botryococcus braunii
2.5.1.21 Q213G site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 Q213N site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 R219A site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 R76A site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 V176N site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 V176N/A177N site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 Y172A site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.21 Y172F site-directed mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.103 Y175A site-sirected mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii
2.5.1.103 Y175F site-sirected mutagenesis, mutant substrate specificity and activity compared to the wild-type Botryococcus braunii

Localization

EC Number Localization Comment Organism GeneOntology No. Textmining
1.3.1.96 membrane bound Botryococcus braunii 16020
-
2.5.1.21 membrane bound Botryococcus braunii 16020
-

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
1.3.1.96 Mg2+ required Botryococcus braunii
2.5.1.21 Mg2+ required Botryococcus braunii
2.5.1.103 Mg2+ required Botryococcus braunii

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
1.3.1.96 additional information Botryococcus braunii squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-tohead condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively. Different enzymes are responsible for botryococcene and squalene biosynthesis in the green alga Botryococcus braunii race B. The specificity for the 1'-1 and 1'-3 linkages is controlled by residues in the active sites that can mediate catalytic specificity. Identification of several amino acid positions contributing to the rearrangement of the cyclopropyl intermediate to squalene, The same positions do not appear to be sufficient to account for the cyclopropyl rearrangement to give botryococcene, oerview ?
-
?
1.3.1.96 presqualene diphosphate + NADPH + H+ Botryococcus braunii
-
squalene + diphosphate + NADP+
-
r
1.3.1.97 presqualene diphosphate + NADPH + H+ Botryococcus braunii mutant SSL-3 squalene + diphosphate + NADP+
-
?
1.3.1.97 presqualene diphosphate + NADPH + H+ Botryococcus braunii
-
C30 botryococcene + diphosphate + NADP+
-
?
2.5.1.21 2 (2E,6E)-farnesyl diphosphate + NADPH + H+ Botryococcus braunii
-
squalene + 2 diphosphate + NADP+
-
?
2.5.1.21 additional information Botryococcus braunii squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-to-head condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively. Different enzymes are responsible for botryococcene and squalene biosynthesis in the green alga Botryococcus braunii race B. The specificity for the 1'-1 and 1'-3 linkages is controlled by residues in the active sites that can mediate catalytic specificity. Identification of several amino acid positions contributing to the rearrangement of the cyclopropyl intermediate to squalene, The same positions do not appear to be sufficient to account for the cyclopropyl rearrangement to give botryococcene, oerview ?
-
?
2.5.1.103 2 (2E,6E)-farnesyl diphosphate + NADPH + H+ Botryococcus braunii
-
diphosphate + presqualene diphosphate + NADP+
-
?

Organism

EC Number Organism UniProt Comment Textmining
1.3.1.96 Botryococcus braunii G0Y287 race B
-
1.3.1.97 Botryococcus braunii G0Y288 race B
-
2.5.1.21 Botryococcus braunii Q9SDW9 race B
-
2.5.1.103 Botryococcus braunii G0Y286 race B
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
1.3.1.96 additional information analysis of substrate specificity, overview Botryococcus braunii ?
-
?
1.3.1.96 additional information squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-tohead condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively. Different enzymes are responsible for botryococcene and squalene biosynthesis in the green alga Botryococcus braunii race B. The specificity for the 1'-1 and 1'-3 linkages is controlled by residues in the active sites that can mediate catalytic specificity. Identification of several amino acid positions contributing to the rearrangement of the cyclopropyl intermediate to squalene, The same positions do not appear to be sufficient to account for the cyclopropyl rearrangement to give botryococcene, oerview Botryococcus braunii ?
-
?
1.3.1.96 presqualene diphosphate + NADPH + H+
-
Botryococcus braunii squalene + diphosphate + NADP+
-
r
1.3.1.97 additional information no activity with farnesyl diphosphate. Analysis of substrate specificity, overview Botryococcus braunii ?
-
?
1.3.1.97 presqualene diphosphate + NADPH + H+ mutant SSL-3 Botryococcus braunii squalene + diphosphate + NADP+
-
?
1.3.1.97 presqualene diphosphate + NADPH + H+
-
Botryococcus braunii C30 botryococcene + diphosphate + NADP+
-
?
2.5.1.21 2 (2E,6E)-farnesyl diphosphate + NADPH + H+
-
Botryococcus braunii squalene + 2 diphosphate + NADP+
-
?
2.5.1.21 additional information squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-to-head condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively. Different enzymes are responsible for botryococcene and squalene biosynthesis in the green alga Botryococcus braunii race B. The specificity for the 1'-1 and 1'-3 linkages is controlled by residues in the active sites that can mediate catalytic specificity. Identification of several amino acid positions contributing to the rearrangement of the cyclopropyl intermediate to squalene, The same positions do not appear to be sufficient to account for the cyclopropyl rearrangement to give botryococcene, oerview Botryococcus braunii ?
-
?
2.5.1.21 additional information analysis of substrate specificity, overview Botryococcus braunii ?
-
?
2.5.1.21 presqualene diphosphate + NADPH + H+
-
Botryococcus braunii squalene + diphosphate + NADP+
-
?
2.5.1.103 2 (2E,6E)-farnesyl diphosphate + NADPH + H+
-
Botryococcus braunii diphosphate + presqualene diphosphate + NADP+
-
?
2.5.1.103 additional information no synthesis of squalene from presqualene diphosphate, analysis of substrate specificity, overview Botryococcus braunii ?
-
?

Synonyms

EC Number Synonyms Comment Organism
1.3.1.96 SSL-2
-
Botryococcus braunii
1.3.1.97 SSL-3
-
Botryococcus braunii
2.5.1.21 BbSS
-
Botryococcus braunii
2.5.1.103 SSL-1
-
Botryococcus braunii

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
1.3.1.96 37
-
assay at Botryococcus braunii
1.3.1.97 37
-
assay at Botryococcus braunii
2.5.1.21 37
-
assay at Botryococcus braunii
2.5.1.103 37
-
assay at Botryococcus braunii

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
1.3.1.96 7.3
-
assay at Botryococcus braunii
1.3.1.97 7.3
-
assay at Botryococcus braunii
2.5.1.21 7.3
-
assay at Botryococcus braunii
2.5.1.103 7.3
-
assay at Botryococcus braunii

Cofactor

EC Number Cofactor Comment Organism Structure
1.3.1.96 NADP+
-
Botryococcus braunii
1.3.1.96 NADPH
-
Botryococcus braunii
1.3.1.97 NADPH
-
Botryococcus braunii
2.5.1.21 NADPH
-
Botryococcus braunii
2.5.1.103 NADPH
-
Botryococcus braunii

General Information

EC Number General Information Comment Organism
1.3.1.96 additional information proposed catalytic cascades for the enzyme-mediated biosynthesis of squalene and botryococcene, and molecular modeling of Botryococcus braunii botryococcene and squalene synthase enzymes, overview. Substrate docking and molecular modeling Botryococcus braunii
1.3.1.96 physiological function squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-tohead condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively Botryococcus braunii
1.3.1.97 additional information proposed catalytic cascades for the enzyme-mediated biosynthesis of squalene and botryococcene, and molecular modeling of Botryococcus braunii botryococcene and squalene synthase enzymes, overview. Substrate docking and molecular modeling Botryococcus braunii
2.5.1.21 additional information proposed catalytic cascades for the enzyme-mediated biosynthesis of squalene and botryococcene, and molecular modeling of Botryococcus braunii botryococcene and squalene synthase enzymes, overview. Substrate docking and molecular modeling Botryococcus braunii
2.5.1.21 physiological function squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-tohead condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively Botryococcus braunii
2.5.1.103 metabolism different enzymes are responsible for botryococcene and squalene biosynthesis in the green alga Botryococcus braunii race B. The specificity for the 1'-1 and 1'-3 linkages is controlled by residues in the active sites that can mediate catalytic specificity. Identification of several amino acid positions contributing to the rearrangement of the cyclopropyl intermediate to squalene, the same positions do not appear to be sufficient to account for the cyclopropyl rearrangement to give botryococcene, overview Botryococcus braunii
2.5.1.103 additional information proposed catalytic cascades for the enzyme-mediated biosynthesis of squalene and botryococcene, and molecular modeling of Botryococcus braunii botryococcene and squalene synthase enzymes, overview. Substrate docking and molecular modeling Botryococcus braunii