Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Valiauga, B.; Williams, E.M.; Ackerley, D.F.; Cenas, N.
    Reduction of quinones and nitroaromatic compounds by Escherichia coli nitroreductase A (NfsA) Characterization of kinetics and substrate specificity (2017), Arch. Biochem. Biophys., 614, 14-22 .
    View publication on PubMed

Application

EC Number Application Comment Organism
1.6.5.5 environmental protection NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives Escherichia coli
1.6.5.5 medicine NfsA has potential applications in the anticancer strategy gene-directed enzyme prodrug therapy Escherichia coli
1.7.1.B3 environmental protection NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives Escherichia coli
1.7.1.B3 medicine NfsA has potential applications in the anticancer strategy gene-directed enzyme prodrug therapy Escherichia coli

Inhibitors

EC Number Inhibitors Comment Organism Structure
1.6.5.5 dicoumarol
-
Escherichia coli
1.7.1.B3 dicoumarol inhibits Escherichia coli enzyme NfsB far more strongly than enzyme NfsA, by acting as a competitive inhibitor towards NADPH, uncompetitive towards substrate tetryl Escherichia coli
1.7.1.B3 NADP+ inhibition of NfsA-catalyzed tetryl reduction by NADP+ Escherichia coli

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
1.6.5.5 additional information
-
additional information Michaelis-Menten steady-state kinetics. For NfsA the oxidative half-reaction (i.e., the reoxidation of FMNHby the oxidant substrate) is a rate-limiting step, because the values of kcat at infinite concentrations of tetryl or 2,4,6-trinitrotoluene are substantially lower than the lowest rate of the reductive half reaction (the reduction of FMN by NADPH) measured in the preliminary rapid reaction experiments. Stopped-flow and single-turnover measurements. The flavoenzymes reducing quinones in a two-electron way possess a highly unstable semiquinone state, i.e., the redox potential of flavin semiquinone/dihydroflavin couple is more positive than the potential of flavin/semiquinone couple, thermodynamics, overview Escherichia coli
1.6.5.5 0.0009
-
5,8-Dihydroxy-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 0.0016
-
5-hydroxy-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 0.0064
-
2-hydroxy-3-methyl-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 0.0066
-
2-Hydroxy-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 0.007
-
1,4-dihydroxy-9,10-anthraquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 0.008
-
2-methyl-1,4-benzoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 0.011
-
1,4-benzoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 0.012
-
9,10-phenanthrenequinone pH 7.0, 25°C Escherichia coli
1.6.5.5 0.015
-
1,8-dihydroxy-9,10-anthraquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 0.016
-
riboflavin pH 7.0, 25°C Escherichia coli
1.6.5.5 0.016
-
2,6-dimethyl-1,4-benzoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 0.022
-
2,3-dichloro-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 0.033
-
1,4-Naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 0.074
-
9,10-anthraquinone-2-sulfonic acid pH 7.0, 25°C Escherichia coli
1.6.5.5 0.13
-
2-methyl-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 1.1
-
tetramethyl-1,4-benzoquinone pH 7.0, 25°C Escherichia coli
1.7.1.B3 additional information
-
additional information Michaelis-Menten steady-state kinetics. For NfsA the oxidative half-reaction (i.e., the reoxidation of FMNH by the oxidant substrate) is a rate-limiting step, because the values of kcat at infinite concentrations of tetryl or 2,4,6-trinitrotoluene are substantially lower than the lowest rate of the reductive half reaction (the reduction of FMN by NADPH) measured in the preliminary rapid reaction experiments. Stopped-flow and single-turnover measurements Escherichia coli
1.7.1.B3 0.011
-
tetryl pH 7.0, 25°C Escherichia coli
1.7.1.B3 0.018
-
o-dinitrobenzene pH 7.0, 25°C Escherichia coli
1.7.1.B3 0.019
-
Nitrofurantoin pH 7.0, 25°C Escherichia coli
1.7.1.B3 0.031
-
nifuroxime pH 7.0, 25°C Escherichia coli
1.7.1.B3 0.033
-
2,4,6-trinitrotoluene pH 7.0, 25°C Escherichia coli
1.7.1.B3 0.037
-
p-dinitrobenzene pH 7.0, 25°C Escherichia coli
1.7.1.B3 0.046
-
m-dinitrobenzene pH 7.0, 25°C Escherichia coli
1.7.1.B3 0.17
-
p-nitrobenzaldehyde pH 7.0, 25°C Escherichia coli
1.7.1.B3 0.23
-
5-(aziridin-1-yl)-2,4-dinitrobenzamide pH 7.0, 25°C Escherichia coli
1.7.1.B3 0.39
-
p-nitroacetophenone pH 7.0, 25°C Escherichia coli
1.7.1.B3 1.5
-
nitrobenzene pH 7.0, 25°C Escherichia coli
1.7.1.B3 2.5
-
p-nitrobenzoic acid pH 7.0, 25°C Escherichia coli

Organism

EC Number Organism UniProt Comment Textmining
1.6.5.5 Escherichia coli
-
-
-
1.7.1.B3 Escherichia coli
-
-
-

Reaction

EC Number Reaction Comment Organism Reaction ID
1.6.5.5 NADPH + H+ + 2 quinone = NADP+ + 2 semiquinone catalytic mechanism analysis, two (four)-electron reduction of nitrobenzenes and single-step (H-) hydride transfer mechanism. NfsA follows a ping-pong mechanism, overview Escherichia coli
1.7.1.B3 an aromatic amine + 3 NADP+ + 2 H2O = an aromatic nitrate + 3 NADPH + 3 H+ catalytic mechanism analysis, two (four)-electron reduction of nitrobenzenes and single-step (H-) hydride transfer mechanism. NfsA follows a ping-pong mechanism, overview Escherichia coli

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
1.6.5.5 1,4-benzoquinone + NADPH + H+
-
Escherichia coli 1,4-benzoquinol + NADP+
-
?
1.6.5.5 1,4-dihydroxy-9,10-anthraquinone + NADPH + H+
-
Escherichia coli anthracene-1,4,9,10-tetrol + NADP+
-
?
1.6.5.5 1,4-naphthoquinone + NADPH + H+
-
Escherichia coli 1,4-naphthoquinol + NADP+
-
?
1.6.5.5 1,8-dihydroxy-9,10-anthraquinone + NADPH + H+
-
Escherichia coli anthracene-1,8,9,10-tetrol + NADP+
-
?
1.6.5.5 2,3-dichloro-1,4-naphthoquinone + NADPH + H+
-
Escherichia coli 2,3-dichloro-1,4-naphthoquinol + NADP+
-
?
1.6.5.5 2,6-dimethyl-1,4-benzoquinone + NADPH + H+
-
Escherichia coli 2,6-dimethyl-1,4-benzoquinol + NADP+
-
?
1.6.5.5 2-hydroxy-1,4-naphthoquinone + NADPH + H+
-
Escherichia coli naphthalene-1,2,4-triol + NADP+
-
?
1.6.5.5 2-hydroxy-3-methyl-1,4-naphthoquinone + NADPH + H+
-
Escherichia coli 3-methylnaphthalene-1,2,4-triol + NADP+
-
?
1.6.5.5 2-methyl-1,4-benzoquinone + NADPH + H+
-
Escherichia coli 2-methyl-1,4-benzoquinol + NADP+
-
?
1.6.5.5 2-methyl-1,4-naphthoquinone + NADPH + H+
-
Escherichia coli 2-methyl-1,4-naphthoquinol + NADP+
-
?
1.6.5.5 5,8-dihydroxy-1,4-naphthoquinone + NADPH + H+
-
Escherichia coli 5,8-dihydroxy-1,4-naphthoquinol + NADP+
-
?
1.6.5.5 5-hydroxy-1,4-naphthoquinone + NADPH + H+
-
Escherichia coli 5-hydroxy-1,4-naphthoquinol + NADP+
-
?
1.6.5.5 9,10-anthraquinone-2-sulfonic acid + NADPH + H+
-
Escherichia coli 9,10-anthraquinol-2-sulfonic acid + NADP+
-
?
1.6.5.5 9,10-phenanthrenequinone + NADPH + H+
-
Escherichia coli 9,10-phenanthrenequinol + NADP+
-
?
1.6.5.5 additional information NADPH-dependent reduction of quinones and nitroaromatic compounds by NfsA, overview. The reactivity of nitroaromatic compounds (log kcat/Km) follows a linear dependence on their single-electron reduction potential, indicating a limited role for compound structure or active site flexibility in their reactivity. The reactivity of quinones is lower than that of nitroaromatics having similar single-electron reduction potential values, except for the significantly enhanced reactivity of 2-OH-1,4-naphthoquinones. The reduction of quinones by NfsA is most consistent with a single-step (H-) hydride transfer mechanism, quantitative analysis of two-electron reduction of quinones and nitroaromatics, overview Escherichia coli ?
-
?
1.6.5.5 riboflavin + NADPH + H+
-
Escherichia coli ? + NADP+
-
?
1.6.5.5 tetramethyl-1,4-benzoquinone + NADPH + H+
-
Escherichia coli tetramethyl-1,4-benzoquinol + NADP+
-
?
1.7.1.B3 2,4,6-trinitrotoluene + NADPH + H+
-
Escherichia coli ? + NADP+ + H2O
-
?
1.7.1.B3 5-(aziridin-1-yl)-2,4-dinitrobenzamide + NADPH + H+ i.e. CB1954, an aziridinyl dinitrobenzamide prodrug Escherichia coli ? + NADP+
-
?
1.7.1.B3 m-dinitrobenzene + NADPH + H+
-
Escherichia coli ? + NADP+
-
?
1.7.1.B3 additional information NADPH-dependent reduction of quinones, cf. EC 1.6.5.5, and nitroaromatic compounds by NfsA, overview. The reactivity of nitroaromatic compounds (log kcat/Km) follows a linear dependence on their single-electron reduction potential, indicating a limited role for compound structure or active site flexibility in their reactivity. The reactivity of quinones is lower than that of nitroaromatics having similar single-electron reduction potential values, except for the significantly enhanced reactivity of 2-OH-1,4-naphthoquinones. The reduction of quinones by NfsA is most consistent with a single-step (H-) hydride transfer mechanism, quantitative analysis of two-electron reduction of quinones and nitroaromatics, overview Escherichia coli ?
-
?
1.7.1.B3 nifuroxime + NADPH + H+
-
Escherichia coli ? + NADP+
-
?
1.7.1.B3 nitrobenzene + NADPH + H+
-
Escherichia coli ? + NADP+
-
?
1.7.1.B3 nitrofurantoin + NADPH + H+
-
Escherichia coli ? + NADP+
-
?
1.7.1.B3 o-dinitrobenzene + NADPH + H+
-
Escherichia coli ? + NADP+
-
?
1.7.1.B3 p-dinitrobenzene + NADPH + H+
-
Escherichia coli ? + NADP+
-
?
1.7.1.B3 p-nitroacetophenone + NADPH + H+
-
Escherichia coli ? + NADP+
-
?
1.7.1.B3 p-nitrobenzaldehyde + NADPH + H+
-
Escherichia coli ? + NADP+
-
?
1.7.1.B3 p-nitrobenzoic acid + NADPH + H+
-
Escherichia coli ? + NADP+
-
?
1.7.1.B3 tetryl + NADPH + H+
-
Escherichia coli ? + NADP+
-
?

Synonyms

EC Number Synonyms Comment Organism
1.6.5.5 NfsA
-
Escherichia coli
1.6.5.5 nitroreductase A
-
Escherichia coli
1.7.1.B3 More cf. EC 1.6.5.5 Escherichia coli
1.7.1.B3 NfsA
-
Escherichia coli
1.7.1.B3 nitroreductase A
-
Escherichia coli

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
1.6.5.5 25
-
assay at Escherichia coli
1.7.1.B3 25
-
assay at Escherichia coli

Turnover Number [1/s]

EC Number Turnover Number Minimum [1/s] Turnover Number Maximum [1/s] Substrate Comment Organism Structure
1.6.5.5 0.7
-
1,4-dihydroxy-9,10-anthraquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 1.4
-
9,10-anthraquinone-2-sulfonic acid pH 7.0, 25°C Escherichia coli
1.6.5.5 1.6
-
1,8-dihydroxy-9,10-anthraquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 2.5
-
tetramethyl-1,4-benzoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 3 6 2-methyl-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 4.2
-
riboflavin pH 7.0, 25°C Escherichia coli
1.6.5.5 12
-
5,8-Dihydroxy-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 22
-
5-hydroxy-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 46
-
1,4-Naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 51
-
2,6-dimethyl-1,4-benzoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 54
-
9,10-phenanthrenequinone pH 7.0, 25°C Escherichia coli
1.6.5.5 54
-
2-methyl-1,4-benzoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 56
-
2-hydroxy-3-methyl-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 61
-
2,3-dichloro-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 62
-
1,4-benzoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 72
-
2-Hydroxy-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.7.1.B3 14
-
nitrobenzene pH 7.0, 25°C Escherichia coli
1.7.1.B3 15
-
5-(aziridin-1-yl)-2,4-dinitrobenzamide pH 7.0, 25°C Escherichia coli
1.7.1.B3 27
-
p-dinitrobenzene pH 7.0, 25°C Escherichia coli
1.7.1.B3 30
-
p-nitrobenzaldehyde pH 7.0, 25°C Escherichia coli
1.7.1.B3 55
-
m-dinitrobenzene pH 7.0, 25°C Escherichia coli
1.7.1.B3 59
-
p-nitroacetophenone pH 7.0, 25°C Escherichia coli
1.7.1.B3 60
-
o-dinitrobenzene pH 7.0, 25°C Escherichia coli
1.7.1.B3 64
-
p-nitrobenzoic acid pH 7.0, 25°C Escherichia coli
1.7.1.B3 85
-
tetryl pH 7.0, 25°C Escherichia coli
1.7.1.B3 89
-
2,4,6-trinitrotoluene pH 7.0, 25°C Escherichia coli
1.7.1.B3 136
-
Nitrofurantoin pH 7.0, 25°C Escherichia coli
1.7.1.B3 180
-
nifuroxime pH 7.0, 25°C Escherichia coli

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
1.6.5.5 7
-
assay at Escherichia coli
1.7.1.B3 7
-
assay at Escherichia coli

Cofactor

EC Number Cofactor Comment Organism Structure
1.6.5.5 FMN prosthetic group involved in the reaction Escherichia coli
1.6.5.5 NADPH
-
Escherichia coli
1.7.1.B3 FMN prosthetic group involved in the reaction Escherichia coli
1.7.1.B3 NADPH
-
Escherichia coli

Ki Value [mM]

EC Number Ki Value [mM] Ki Value maximum [mM] Inhibitor Comment Organism Structure
1.7.1.B3 additional information
-
additional information inhibition kinetics Escherichia coli
1.7.1.B3 0.018
-
dicoumarol pH 7.0, 25°C Escherichia coli

General Information

EC Number General Information Comment Organism
1.6.5.5 additional information comparisons of the quantitative structure-activity relationships of single-electron reduction of quinones and nitroaromatic compounds by dehydrogenase (electron transferase) flavoenzymes, overview Escherichia coli
1.6.5.5 physiological function NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives, and is also of interest for the anticancer strategy gene-directed enzyme prodrug therapy Escherichia coli
1.7.1.B3 additional information comparisons of the quantitative structure-activity relationships of single-electron reduction of quinones and nitroaromatic compounds by dehydrogenase (electron transferase) flavoenzymes, overview Escherichia coli
1.7.1.B3 physiological function NfsA has potential applications in the biodegradation of nitroaromatic environment pollutants, e.g. explosives, and is also of interest for the anticancer strategy gene-directed enzyme prodrug therapy Escherichia coli

kcat/KM [mM/s]

EC Number kcat/KM Value [1/mMs-1] kcat/KM Value Maximum [1/mMs-1] Substrate Comment Organism Structure
1.6.5.5 2.7
-
tetramethyl-1,4-benzoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 18.9
-
9,10-anthraquinone-2-sulfonic acid pH 7.0, 25°C Escherichia coli
1.6.5.5 100
-
1,4-dihydroxy-9,10-anthraquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 106.7
-
1,8-dihydroxy-9,10-anthraquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 262.5
-
riboflavin pH 7.0, 25°C Escherichia coli
1.6.5.5 276.9
-
2-methyl-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 1393.9
-
1,4-Naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 2772.7
-
2,3-dichloro-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 3187.5
-
2,6-dimethyl-1,4-benzoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 5636.4
-
1,4-benzoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 6750
-
2-methyl-1,4-benzoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 8750
-
2-hydroxy-3-methyl-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 10909.1
-
2-Hydroxy-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 13333
-
5,8-Dihydroxy-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.6.5.5 13750
-
5-hydroxy-1,4-naphthoquinone pH 7.0, 25°C Escherichia coli
1.7.1.B3 9.3
-
nitrobenzene pH 7.0, 25°C Escherichia coli
1.7.1.B3 25.6
-
p-nitrobenzoic acid pH 7.0, 25°C Escherichia coli
1.7.1.B3 65.2
-
5-(aziridin-1-yl)-2,4-dinitrobenzamide pH 7.0, 25°C Escherichia coli
1.7.1.B3 151.3
-
p-nitroacetophenone pH 7.0, 25°C Escherichia coli
1.7.1.B3 176.5
-
p-nitrobenzaldehyde pH 7.0, 25°C Escherichia coli
1.7.1.B3 729.7
-
p-dinitrobenzene pH 7.0, 25°C Escherichia coli
1.7.1.B3 1195.7
-
m-dinitrobenzene pH 7.0, 25°C Escherichia coli
1.7.1.B3 2697
-
2,4,6-trinitrotoluene pH 7.0, 25°C Escherichia coli
1.7.1.B3 3333.3
-
o-dinitrobenzene pH 7.0, 25°C Escherichia coli
1.7.1.B3 5806.5
-
nifuroxime pH 7.0, 25°C Escherichia coli
1.7.1.B3 7157.9
-
Nitrofurantoin pH 7.0, 25°C Escherichia coli
1.7.1.B3 7727.27
-
tetryl pH 7.0, 25°C Escherichia coli