Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Jiang, W.; Wang, S.; Wang, Y.; Fang, B.
    Key enzymes catalyzing glycerol to 1,3-propanediol (2016), Biotechnol. Biofuels, 9, 57.
    View publication on PubMedView publication on EuropePMC

Application

EC Number Application Comment Organism
1.1.1.202 synthesis the enzyme can be used for 1,3-propandiol synthesis for use in resaerch and industrial applications, especially in biodiesel industry, but also as a monomer for polycondensation to manufacture plastics with special properties, i.e., polyesters, polyethers, polyurethanes, and polytrimethylene terephthalate as a monomer for cyclic compounds, and as a polyglycol-type lubricant Klebsiella pneumoniae
1.1.1.202 synthesis the enzyme can be used for 1,3-propandiol synthesis for use in resaerch and industrial applications, especially in biodiesel industry, but also as a monomer for polycondensation to manufacture plastics with special properties, i.e., polyesters, polyethers, polyurethanes, and polytrimethylene terephthalate as a monomer for cyclic compounds, and as a polyglycol-type lubricant Pantoea agglomerans
1.1.1.202 synthesis the enzyme can be used for 1,3-propandiol synthesis for use in resaerch and industrial applications, especially in biodiesel industry, but also as a monomer for polycondensation to manufacture plastics with special properties, i.e., polyesters, polyethers, polyurethanes, and polytrimethylene terephthalate as a monomer for cyclic compounds, and as a polyglycol-type lubricant Clostridium pasteurianum
1.1.1.202 synthesis the enzyme can be used for 1,3-propandiol synthesis for use in resaerch and industrial applications, especially in biodiesel industry, but also as a monomer for polycondensation to manufacture plastics with special properties, i.e., polyesters, polyethers, polyurethanes, and polytrimethylene terephthalate as a monomer for cyclic compounds, and as a polyglycol-type lubricant Levilactobacillus brevis
1.1.1.202 synthesis the enzyme can be used for 1,3-propandiol synthesis for use in resaerch and industrial applications, especially in biodiesel industry, but also as a monomer for polycondensation to manufacture plastics with special properties, i.e., polyesters, polyethers, polyurethanes, and polytrimethylene terephthalate as a monomer for cyclic compounds, and as a polyglycol-type lubricant Clostridium butyricum
1.1.1.202 synthesis the enzyme can be used for 1,3-propandiol synthesis for use in resaerch and industrial applications, especially in biodiesel industry, but also as a monomer for polycondensation to manufacture plastics with special properties, i.e., polyesters, polyethers, polyurethanes, and polytrimethylene terephthalate as a monomer for cyclic compounds, and as a polyglycol-type lubricant Citrobacter freundii
1.1.1.202 synthesis the enzyme can be used for 1,3-propandiol synthesis for use in resaerch and industrial applications, especially in biodiesel industry, but also as a monomer for polycondensation to manufacture plastics with special properties, i.e., polyesters, polyethers, polyurethanes, and polytrimethylene terephthalate as a monomer for cyclic compounds, and as a polyglycol-type lubricant Lentilactobacillus buchneri
1.1.1.202 synthesis the enzyme can be used for 1,3-propandiol synthesis for use in resaerch and industrial applications, especially in biodiesel industry, but also as a monomer for polycondensation to manufacture plastics with special properties, i.e., polyesters, polyethers, polyurethanes, and polytrimethylene terephthalate as a monomer for cyclic compounds, and as a polyglycol-type lubricant Clostridium perfringens
1.1.1.202 synthesis the enzyme can be used for 1,3-propandiol synthesis for use in resaerch and industrial applications, especially in biodiesel industry, but also as a monomer for polycondensation to manufacture plastics with special properties, i.e., polyesters, polyethers, polyurethanes, and polytrimethylene terephthalate as a monomer for cyclic compounds, and as a polyglycol-type lubricant Thermotoga maritima
1.1.1.202 synthesis the enzyme can be used for 1,3-propandiol synthesis for use in resaerch and industrial applications, especially in biodiesel industry, but also as a monomer for polycondensation to manufacture plastics with special properties, i.e., polyesters, polyethers, polyurethanes, and polytrimethylene terephthalate as a monomer for cyclic compounds, and as a polyglycol-type lubricant Limosilactobacillus reuteri

Cloned(Commentary)

EC Number Cloned (Comment) Organism
1.1.1.202 gene dhaT, part of the dha regulon, genetic structure, overview. Coexpressions of the PDOR and GDHt from gene dhaB in Klebsiella pneumoniae result in an increase of molar yield from 50.6-64.0% of 1,3-propanediol Clostridium butyricum
1.1.1.202 gene dhaT, part of the dha regulon, genetic structure, recombinant expression in Escherichia coli Citrobacter freundii
1.1.1.202 gene dhaT, part of the dha regulon, genetic structure, recombinant expression in Escherichia coli Clostridium perfringens
1.1.1.202 gene dhaT, part of the dha regulon, genetic structure, recombinant expression in Escherichia coli Thermotoga maritima
1.1.1.202 gene dhaT, part of the dha regulon, recombinant expression in Escherichia coli Klebsiella pneumoniae
1.1.1.202 gene dhaT, part of the dha regulon, recombinant expression in Escherichia coli Pantoea agglomerans
1.1.1.202 gene dhaT, part of the dha regulon, recombinant expression in Escherichia coli Clostridium pasteurianum
1.1.1.202 gene dhaT, part of the dha regulon, recombinant expression in Escherichia coli Levilactobacillus brevis
1.1.1.202 gene dhaT, part of the dha regulon, recombinant expression in Escherichia coli Lentilactobacillus buchneri
1.1.1.202 gene dhaT, part of the dha regulon, recombinant expression in Escherichia coli Limosilactobacillus reuteri

Protein Variants

EC Number Protein Variants Comment Organism
1.1.1.202 additional information the PDOR isozyme activity increases 4.6times, when the yqhD gene is expressed in the Klebsiella pneumoniae mutant strains AK, which is a knockout mutant of the GDH and PDOR Klebsiella pneumoniae

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
1.1.1.202 Ca2+ activates Levilactobacillus brevis
1.1.1.202 Ca2+ activates Lentilactobacillus buchneri
1.1.1.202 Fe2+ required, activates Klebsiella pneumoniae
1.1.1.202 Fe2+ required, activates Clostridium pasteurianum
1.1.1.202 Fe2+ required, activates Levilactobacillus brevis
1.1.1.202 Fe2+ required, activates Clostridium butyricum
1.1.1.202 Fe2+ required, activates Citrobacter freundii
1.1.1.202 Fe2+ required, activates Lentilactobacillus buchneri
1.1.1.202 Fe2+ required, activates Clostridium perfringens
1.1.1.202 Fe2+ required, activates Thermotoga maritima
1.1.1.202 Fe2+ required, activates Limosilactobacillus reuteri
1.1.1.202 K+ activates Limosilactobacillus reuteri
1.1.1.202 Li+ activates Clostridium butyricum
1.1.1.202 Mg2+ activates Levilactobacillus brevis
1.1.1.202 Mg2+ activates Lentilactobacillus buchneri
1.1.1.202 Mn2+ activates Klebsiella pneumoniae
1.1.1.202 Mn2+ activates Pantoea agglomerans
1.1.1.202 Mn2+ activates Clostridium pasteurianum
1.1.1.202 Mn2+ activates Levilactobacillus brevis
1.1.1.202 Mn2+ activates Clostridium butyricum
1.1.1.202 Mn2+ activates Citrobacter freundii
1.1.1.202 Mn2+ activates Lentilactobacillus buchneri
1.1.1.202 Mn2+ activates Clostridium perfringens
1.1.1.202 Mn2+ activates Thermotoga maritima
1.1.1.202 Mn2+ activates Limosilactobacillus reuteri
1.1.1.202 additional information the highest enzyme activity occurs with Mn2+, while the enzyme activity declines by 60-90% with other cations Clostridium pasteurianum
1.1.1.202 additional information the highest enzyme activity occurs with Mn2+, while the enzyme activity declines by 60-90% with other cations Clostridium butyricum
1.1.1.202 Na+ activates Klebsiella pneumoniae
1.1.1.202 Na+ activates Clostridium butyricum
1.1.1.202 NH4+ activates Klebsiella pneumoniae

Molecular Weight [Da]

EC Number Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
1.1.1.202 38500
-
-
Pantoea agglomerans
1.1.1.202 41500
-
-
Klebsiella pneumoniae
1.1.1.202 42000
-
x * 42000 Klebsiella pneumoniae
1.1.1.202 42000
-
x * 42000 Clostridium butyricum
1.1.1.202 43400
-
-
Citrobacter freundii
1.1.1.202 336000
-
-
Klebsiella pneumoniae
1.1.1.202 347000
-
-
Citrobacter freundii
1.1.1.202 350000
-
-
Levilactobacillus brevis
1.1.1.202 355000
-
-
Pantoea agglomerans
1.1.1.202 384200
-
-
Clostridium butyricum
1.1.1.202 387000
-
-
Klebsiella pneumoniae

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
1.1.1.202 1,2-propylene glycol + NAD+ Klebsiella pneumoniae
-
? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+ Pantoea agglomerans
-
? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+ Clostridium pasteurianum
-
? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+ Levilactobacillus brevis
-
? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+ Clostridium butyricum
-
? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+ Citrobacter freundii
-
? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+ Lentilactobacillus buchneri
-
? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+ Clostridium perfringens
-
? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+ Thermotoga maritima
-
? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+ Limosilactobacillus reuteri
-
? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+ Citrobacter freundii DSM 30040
-
? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+ Klebsiella pneumoniae DSM2026
-
? + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+ Klebsiella pneumoniae
-
4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+ Pantoea agglomerans
-
4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+ Clostridium pasteurianum
-
4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+ Levilactobacillus brevis
-
4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+ Clostridium butyricum
-
4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+ Citrobacter freundii
-
4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+ Lentilactobacillus buchneri
-
4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+ Clostridium perfringens
-
4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+ Thermotoga maritima
-
4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+ Limosilactobacillus reuteri
-
4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+ Klebsiella pneumoniae
-
1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+ Pantoea agglomerans
-
1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+ Clostridium pasteurianum
-
1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+ Levilactobacillus brevis
-
1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+ Clostridium butyricum
-
1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+ Citrobacter freundii
-
1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+ Lentilactobacillus buchneri
-
1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+ Clostridium perfringens
-
1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+ Thermotoga maritima
-
1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+ Limosilactobacillus reuteri
-
1-butanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Klebsiella pneumoniae
-
propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Pantoea agglomerans
-
propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Clostridium pasteurianum
-
propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Levilactobacillus brevis
-
propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Clostridium butyricum
-
propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Citrobacter freundii
-
propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Lentilactobacillus buchneri
-
propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Clostridium perfringens
-
propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Thermotoga maritima
-
propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Limosilactobacillus reuteri
-
propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Clostridium butyricum E5
-
propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Citrobacter freundii DSM 30040
-
propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+ Klebsiella pneumoniae DSM2026
-
propanal + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Klebsiella pneumoniae
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Pantoea agglomerans
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Clostridium pasteurianum
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Levilactobacillus brevis
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Clostridium butyricum
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Citrobacter freundii
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Lentilactobacillus buchneri
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Clostridium perfringens
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Thermotoga maritima
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Limosilactobacillus reuteri
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Clostridium butyricum E5
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Citrobacter freundii DSM 30040
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+ Klebsiella pneumoniae DSM2026
-
glyceraldehyde + NADH + H+
-
r
1.1.1.202 additional information Clostridium pasteurianum the enzyme can also use 1,4-butanediol, 1-butyl alcohol, 1-propanol, glycerol, or 1,2-propylene glycol as substrate. The optimal substrate is 3-hydroxypropanal in the catalytic reduction reaction, and the optimal substrate is propane-1,3-diol in the catalytic oxidation reaction ?
-
?
1.1.1.202 additional information Clostridium butyricum the enzyme can also use 1,4-butanediol, 1-butyl alcohol, 1-propanol, glycerol, or 1,2-propylene glycol as substrate. The optimal substrate is 3-hydroxypropanal in the catalytic reduction reaction, and the optimal substrate is propane-1,3-diol in the catalytic oxidation reaction ?
-
?
1.1.1.202 additional information Clostridium butyricum E5 the enzyme can also use 1,4-butanediol, 1-butyl alcohol, 1-propanol, glycerol, or 1,2-propylene glycol as substrate. The optimal substrate is 3-hydroxypropanal in the catalytic reduction reaction, and the optimal substrate is propane-1,3-diol in the catalytic oxidation reaction ?
-
?
1.1.1.202 propane-1,3-diol + NAD+ Klebsiella pneumoniae
-
3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+ Pantoea agglomerans
-
3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+ Clostridium pasteurianum
-
3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+ Levilactobacillus brevis
-
3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+ Clostridium butyricum
-
3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+ Citrobacter freundii
-
3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+ Lentilactobacillus buchneri
-
3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+ Clostridium perfringens
-
3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+ Thermotoga maritima
-
3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+ Limosilactobacillus reuteri
-
3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+ Clostridium butyricum E5
-
3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+ Citrobacter freundii DSM 30040
-
3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+ Klebsiella pneumoniae DSM2026
-
3-hydroxypropanal + NADH + H+
-
r

Organism

EC Number Organism UniProt Comment Textmining
1.1.1.202 Citrobacter freundii
-
-
-
1.1.1.202 Citrobacter freundii DSM 30040
-
-
-
1.1.1.202 Clostridium butyricum
-
-
-
1.1.1.202 Clostridium butyricum E5
-
-
-
1.1.1.202 Clostridium pasteurianum
-
-
-
1.1.1.202 Clostridium perfringens
-
-
-
1.1.1.202 Klebsiella pneumoniae
-
-
-
1.1.1.202 Klebsiella pneumoniae DSM2026
-
-
-
1.1.1.202 Lentilactobacillus buchneri
-
-
-
1.1.1.202 Levilactobacillus brevis
-
-
-
1.1.1.202 Limosilactobacillus reuteri
-
-
-
1.1.1.202 Pantoea agglomerans
-
-
-
1.1.1.202 Thermotoga maritima
-
-
-

Specific Activity [micromol/min/mg]

EC Number Specific Activity Minimum [µmol/min/mg] Specific Activity Maximum [µmol/min/mg] Comment Organism
1.1.1.202 3.42
-
pH and temperature not specified in the publication Pantoea agglomerans
1.1.1.202 4.51
-
pH and temperature not specified in the publication Clostridium butyricum
1.1.1.202 7.28
-
pH and temperature not specified in the publication Levilactobacillus brevis
1.1.1.202 9.85
-
pH and temperature not specified in the publication Klebsiella pneumoniae
1.1.1.202 11
-
pH and temperature not specified in the publication Citrobacter freundii
1.1.1.202 37
-
pH and temperature not specified in the publication Klebsiella pneumoniae

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
1.1.1.202 1,2-propylene glycol + NAD+
-
Klebsiella pneumoniae ? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+
-
Pantoea agglomerans ? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+
-
Clostridium pasteurianum ? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+
-
Levilactobacillus brevis ? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+
-
Clostridium butyricum ? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+
-
Citrobacter freundii ? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+
-
Lentilactobacillus buchneri ? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+
-
Clostridium perfringens ? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+
-
Thermotoga maritima ? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+
-
Limosilactobacillus reuteri ? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+
-
Citrobacter freundii DSM 30040 ? + NADH + H+
-
r
1.1.1.202 1,2-propylene glycol + NAD+
-
Klebsiella pneumoniae DSM2026 ? + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+
-
Klebsiella pneumoniae 4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+
-
Pantoea agglomerans 4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+
-
Clostridium pasteurianum 4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+
-
Levilactobacillus brevis 4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+
-
Clostridium butyricum 4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+
-
Citrobacter freundii 4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+
-
Lentilactobacillus buchneri 4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+
-
Clostridium perfringens 4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+
-
Thermotoga maritima 4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1,4-butanediol + NAD+
-
Limosilactobacillus reuteri 4-hydroxybutanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+
-
Klebsiella pneumoniae 1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+
-
Pantoea agglomerans 1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+
-
Clostridium pasteurianum 1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+
-
Levilactobacillus brevis 1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+
-
Clostridium butyricum 1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+
-
Citrobacter freundii 1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+
-
Lentilactobacillus buchneri 1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+
-
Clostridium perfringens 1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+
-
Thermotoga maritima 1-butanal + NADH + H+
-
r
1.1.1.202 1-butyl alcohol + NAD+
-
Limosilactobacillus reuteri 1-butanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Klebsiella pneumoniae propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Pantoea agglomerans propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Clostridium pasteurianum propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Levilactobacillus brevis propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Clostridium butyricum propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Citrobacter freundii propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Lentilactobacillus buchneri propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Clostridium perfringens propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Thermotoga maritima propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Limosilactobacillus reuteri propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Clostridium butyricum E5 propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Citrobacter freundii DSM 30040 propanal + NADH + H+
-
r
1.1.1.202 1-propanol + NAD+
-
Klebsiella pneumoniae DSM2026 propanal + NADH + H+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Klebsiella pneumoniae propane-1,3-diol + NAD+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Pantoea agglomerans propane-1,3-diol + NAD+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Clostridium pasteurianum propane-1,3-diol + NAD+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Levilactobacillus brevis propane-1,3-diol + NAD+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Clostridium butyricum propane-1,3-diol + NAD+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Citrobacter freundii propane-1,3-diol + NAD+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Lentilactobacillus buchneri propane-1,3-diol + NAD+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Clostridium perfringens propane-1,3-diol + NAD+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Thermotoga maritima propane-1,3-diol + NAD+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Limosilactobacillus reuteri propane-1,3-diol + NAD+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Clostridium butyricum E5 propane-1,3-diol + NAD+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Citrobacter freundii DSM 30040 propane-1,3-diol + NAD+
-
r
1.1.1.202 3-hydroxypropanal + NADH + H+
-
Klebsiella pneumoniae DSM2026 propane-1,3-diol + NAD+
-
r
1.1.1.202 glycerol + NAD+
-
Klebsiella pneumoniae glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+
-
Pantoea agglomerans glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+
-
Clostridium pasteurianum glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+
-
Levilactobacillus brevis glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+
-
Clostridium butyricum glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+
-
Citrobacter freundii glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+
-
Lentilactobacillus buchneri glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+
-
Clostridium perfringens glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+
-
Thermotoga maritima glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+
-
Limosilactobacillus reuteri glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+
-
Clostridium butyricum E5 glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+
-
Citrobacter freundii DSM 30040 glyceraldehyde + NADH + H+
-
r
1.1.1.202 glycerol + NAD+
-
Klebsiella pneumoniae DSM2026 glyceraldehyde + NADH + H+
-
r
1.1.1.202 additional information the enzyme can also use 1,4-butanediol, 1-butyl alcohol, 1-propanol, glycerol, or 1,2-propylene glycol as substrate. The optimal substrate is 3-hydroxypropanal in the catalytic reduction reaction, and the optimal substrate is propane-1,3-diol in the catalytic oxidation reaction Clostridium pasteurianum ?
-
?
1.1.1.202 additional information the enzyme can also use 1,4-butanediol, 1-butyl alcohol, 1-propanol, glycerol, or 1,2-propylene glycol as substrate. The optimal substrate is 3-hydroxypropanal in the catalytic reduction reaction, and the optimal substrate is propane-1,3-diol in the catalytic oxidation reaction Clostridium butyricum ?
-
?
1.1.1.202 additional information the enzyme can also use 1,4-butanediol, 1-butyl alcohol, 1-propanol, glycerol, or 1,2-propylene glycol as substrate. The optimal substrate is 3-hydroxypropanal in the catalytic reduction reaction, and the optimal substrate is propane-1,3-diol in the catalytic oxidation reaction Clostridium butyricum E5 ?
-
?
1.1.1.202 propane-1,3-diol + NAD+
-
Klebsiella pneumoniae 3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+
-
Pantoea agglomerans 3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+
-
Clostridium pasteurianum 3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+
-
Levilactobacillus brevis 3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+
-
Clostridium butyricum 3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+
-
Citrobacter freundii 3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+
-
Lentilactobacillus buchneri 3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+
-
Clostridium perfringens 3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+
-
Thermotoga maritima 3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+
-
Limosilactobacillus reuteri 3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+
-
Clostridium butyricum E5 3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+
-
Citrobacter freundii DSM 30040 3-hydroxypropanal + NADH + H+
-
r
1.1.1.202 propane-1,3-diol + NAD+
-
Klebsiella pneumoniae DSM2026 3-hydroxypropanal + NADH + H+
-
r

Subunits

EC Number Subunits Comment Organism
1.1.1.202 oligomer x * 42000 Klebsiella pneumoniae
1.1.1.202 oligomer x * 42000 Clostridium butyricum
1.1.1.202 oligomer x * 38500 Pantoea agglomerans
1.1.1.202 oligomer x * 41000-46000 Levilactobacillus brevis
1.1.1.202 oligomer x * 41500 Klebsiella pneumoniae
1.1.1.202 oligomer x * 43400 Citrobacter freundii

Synonyms

EC Number Synonyms Comment Organism
1.1.1.202 1,3-propanediol-oxydoreductase
-
Klebsiella pneumoniae
1.1.1.202 1,3-propanediol-oxydoreductase
-
Pantoea agglomerans
1.1.1.202 1,3-propanediol-oxydoreductase
-
Clostridium pasteurianum
1.1.1.202 1,3-propanediol-oxydoreductase
-
Levilactobacillus brevis
1.1.1.202 1,3-propanediol-oxydoreductase
-
Clostridium butyricum
1.1.1.202 1,3-propanediol-oxydoreductase
-
Citrobacter freundii
1.1.1.202 1,3-propanediol-oxydoreductase
-
Lentilactobacillus buchneri
1.1.1.202 1,3-propanediol-oxydoreductase
-
Clostridium perfringens
1.1.1.202 1,3-propanediol-oxydoreductase
-
Thermotoga maritima
1.1.1.202 1,3-propanediol-oxydoreductase
-
Limosilactobacillus reuteri
1.1.1.202 DhaT
-
Klebsiella pneumoniae
1.1.1.202 DhaT
-
Pantoea agglomerans
1.1.1.202 DhaT
-
Clostridium pasteurianum
1.1.1.202 DhaT
-
Levilactobacillus brevis
1.1.1.202 DhaT
-
Clostridium butyricum
1.1.1.202 DhaT
-
Citrobacter freundii
1.1.1.202 DhaT
-
Lentilactobacillus buchneri
1.1.1.202 DhaT
-
Clostridium perfringens
1.1.1.202 DhaT
-
Thermotoga maritima
1.1.1.202 DhaT
-
Limosilactobacillus reuteri
1.1.1.202 PDOR
-
Klebsiella pneumoniae
1.1.1.202 PDOR
-
Pantoea agglomerans
1.1.1.202 PDOR
-
Clostridium pasteurianum
1.1.1.202 PDOR
-
Levilactobacillus brevis
1.1.1.202 PDOR
-
Clostridium butyricum
1.1.1.202 PDOR
-
Citrobacter freundii
1.1.1.202 PDOR
-
Lentilactobacillus buchneri
1.1.1.202 PDOR
-
Clostridium perfringens
1.1.1.202 PDOR
-
Thermotoga maritima
1.1.1.202 PDOR
-
Limosilactobacillus reuteri

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
1.1.1.202 30
-
-
Klebsiella pneumoniae
1.1.1.202 37
-
-
Pantoea agglomerans
1.1.1.202 37
-
-
Levilactobacillus brevis
1.1.1.202 37
-
-
Clostridium butyricum
1.1.1.202 37
-
-
Citrobacter freundii
1.1.1.202 55
-
-
Klebsiella pneumoniae

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
1.1.1.202 6.6
-
aldehyde reduction Clostridium pasteurianum
1.1.1.202 6.6
-
aldehyde reduction Levilactobacillus brevis
1.1.1.202 6.6
-
aldehyde reduction Clostridium butyricum
1.1.1.202 6.6
-
aldehyde reduction Lentilactobacillus buchneri
1.1.1.202 6.6
-
aldehyde reduction Limosilactobacillus reuteri
1.1.1.202 7.7
-
-
Citrobacter freundii
1.1.1.202 7.8
-
-
Pantoea agglomerans
1.1.1.202 9
-
alcohol oxidation Clostridium pasteurianum
1.1.1.202 9
-
alcohol oxidation Lentilactobacillus buchneri
1.1.1.202 9
-
alcohol oxidation Limosilactobacillus reuteri
1.1.1.202 9.1
-
alcohol oxidation Clostridium butyricum
1.1.1.202 9.5
-
alcohol oxidation Klebsiella pneumoniae
1.1.1.202 10
-
alcohol oxidation Klebsiella pneumoniae

Cofactor

EC Number Cofactor Comment Organism Structure
1.1.1.202 NAD+
-
Klebsiella pneumoniae
1.1.1.202 NAD+
-
Pantoea agglomerans
1.1.1.202 NAD+
-
Clostridium pasteurianum
1.1.1.202 NAD+
-
Levilactobacillus brevis
1.1.1.202 NAD+
-
Clostridium butyricum
1.1.1.202 NAD+
-
Citrobacter freundii
1.1.1.202 NAD+
-
Lentilactobacillus buchneri
1.1.1.202 NAD+
-
Clostridium perfringens
1.1.1.202 NAD+
-
Thermotoga maritima
1.1.1.202 NAD+
-
Limosilactobacillus reuteri
1.1.1.202 NADH
-
Klebsiella pneumoniae
1.1.1.202 NADH
-
Pantoea agglomerans
1.1.1.202 NADH
-
Clostridium pasteurianum
1.1.1.202 NADH
-
Levilactobacillus brevis
1.1.1.202 NADH
-
Clostridium butyricum
1.1.1.202 NADH
-
Citrobacter freundii
1.1.1.202 NADH
-
Lentilactobacillus buchneri
1.1.1.202 NADH
-
Clostridium perfringens
1.1.1.202 NADH
-
Thermotoga maritima
1.1.1.202 NADH
-
Limosilactobacillus reuteri

General Information

EC Number General Information Comment Organism
1.1.1.202 evolution PDOR belongs to the Fe-NAD-dependent alcohol dehydrogenase third family, and it is also a typical iron-ion activation-type dehydrogenase Klebsiella pneumoniae
1.1.1.202 evolution PDOR belongs to the Fe-NAD-dependent alcohol dehydrogenase third family, and it is also a typical iron-ion activation-type dehydrogenase Pantoea agglomerans
1.1.1.202 evolution PDOR belongs to the Fe-NAD-dependent alcohol dehydrogenase third family, and it is also a typical iron-ion activation-type dehydrogenase Clostridium pasteurianum
1.1.1.202 evolution PDOR belongs to the Fe-NAD-dependent alcohol dehydrogenase third family, and it is also a typical iron-ion activation-type dehydrogenase Levilactobacillus brevis
1.1.1.202 evolution PDOR belongs to the Fe-NAD-dependent alcohol dehydrogenase third family, and it is also a typical iron-ion activation-type dehydrogenase Clostridium butyricum
1.1.1.202 evolution PDOR belongs to the Fe-NAD-dependent alcohol dehydrogenase third family, and it is also a typical iron-ion activation-type dehydrogenase Citrobacter freundii
1.1.1.202 evolution PDOR belongs to the Fe-NAD-dependent alcohol dehydrogenase third family, and it is also a typical iron-ion activation-type dehydrogenase Lentilactobacillus buchneri
1.1.1.202 evolution PDOR belongs to the Fe-NAD-dependent alcohol dehydrogenase third family, and it is also a typical iron-ion activation-type dehydrogenase Clostridium perfringens
1.1.1.202 evolution PDOR belongs to the Fe-NAD-dependent alcohol dehydrogenase third family, and it is also a typical iron-ion activation-type dehydrogenase Thermotoga maritima
1.1.1.202 evolution PDOR belongs to the Fe-NAD-dependent alcohol dehydrogenase third family, and it is also a typical iron-ion activation-type dehydrogenase Limosilactobacillus reuteri
1.1.1.202 malfunction accumulation of 3-HPA can inhibit the activity of glycerol dehydratase to prevent the growth of bacteria and result in reducing the production of propane-1,3-diol, leading to a major influence in the production of propane-1,3-diol Clostridium pasteurianum
1.1.1.202 malfunction accumulation of 3-hydroxypropanal can inhibit the activity of glycerol dehydratase to prevent the growth of bacteria and result in reducing the production of propane-1,3-diol, leading to a major influence in the production of propane-1,3-diol Klebsiella pneumoniae
1.1.1.202 malfunction accumulation of 3-hydroxypropanal can inhibit the activity of glycerol dehydratase to prevent the growth of bacteria and result in reducing the production of propane-1,3-diol, leading to a major influence in the production of propane-1,3-diol Pantoea agglomerans
1.1.1.202 malfunction accumulation of 3-hydroxypropanal can inhibit the activity of glycerol dehydratase to prevent the growth of bacteria and result in reducing the production of propane-1,3-diol, leading to a major influence in the production of propane-1,3-diol Levilactobacillus brevis
1.1.1.202 malfunction accumulation of 3-hydroxypropanal can inhibit the activity of glycerol dehydratase to prevent the growth of bacteria and result in reducing the production of propane-1,3-diol, leading to a major influence in the production of propane-1,3-diol Clostridium butyricum
1.1.1.202 malfunction accumulation of 3-hydroxypropanal can inhibit the activity of glycerol dehydratase to prevent the growth of bacteria and result in reducing the production of propane-1,3-diol, leading to a major influence in the production of propane-1,3-diol Citrobacter freundii
1.1.1.202 malfunction accumulation of 3-hydroxypropanal can inhibit the activity of glycerol dehydratase to prevent the growth of bacteria and result in reducing the production of propane-1,3-diol, leading to a major influence in the production of propane-1,3-diol Lentilactobacillus buchneri
1.1.1.202 malfunction accumulation of 3-hydroxypropanal can inhibit the activity of glycerol dehydratase to prevent the growth of bacteria and result in reducing the production of propane-1,3-diol, leading to a major influence in the production of propane-1,3-diol Clostridium perfringens
1.1.1.202 malfunction accumulation of 3-hydroxypropanal can inhibit the activity of glycerol dehydratase to prevent the growth of bacteria and result in reducing the production of propane-1,3-diol, leading to a major influence in the production of propane-1,3-diol Thermotoga maritima
1.1.1.202 malfunction accumulation of 3-hydroxypropanal can inhibit the activity of glycerol dehydratase to prevent the growth of bacteria and result in reducing the production of propane-1,3-diol, leading to a major influence in the production of propane-1,3-diol Limosilactobacillus reuteri
1.1.1.202 metabolism glycerol dehydratase, 1,3-propanediol dehydrogenase, and glycerol dehydrogenase are key enzymes in glycerol bioconversion into 1,3-propanediol and dihydroxyacetone Klebsiella pneumoniae
1.1.1.202 metabolism glycerol dehydratase, 1,3-propanediol dehydrogenase, and glycerol dehydrogenase are key enzymes in glycerol bioconversion into 1,3-propanediol and dihydroxyacetone Pantoea agglomerans
1.1.1.202 metabolism glycerol dehydratase, 1,3-propanediol dehydrogenase, and glycerol dehydrogenase are key enzymes in glycerol bioconversion into 1,3-propanediol and dihydroxyacetone Clostridium pasteurianum
1.1.1.202 metabolism glycerol dehydratase, 1,3-propanediol dehydrogenase, and glycerol dehydrogenase are key enzymes in glycerol bioconversion into 1,3-propanediol and dihydroxyacetone Levilactobacillus brevis
1.1.1.202 metabolism glycerol dehydratase, 1,3-propanediol dehydrogenase, and glycerol dehydrogenase are key enzymes in glycerol bioconversion into 1,3-propanediol and dihydroxyacetone Clostridium butyricum
1.1.1.202 metabolism glycerol dehydratase, 1,3-propanediol dehydrogenase, and glycerol dehydrogenase are key enzymes in glycerol bioconversion into 1,3-propanediol and dihydroxyacetone Citrobacter freundii
1.1.1.202 metabolism glycerol dehydratase, 1,3-propanediol dehydrogenase, and glycerol dehydrogenase are key enzymes in glycerol bioconversion into 1,3-propanediol and dihydroxyacetone Lentilactobacillus buchneri
1.1.1.202 metabolism glycerol dehydratase, 1,3-propanediol dehydrogenase, and glycerol dehydrogenase are key enzymes in glycerol bioconversion into 1,3-propanediol and dihydroxyacetone Clostridium perfringens
1.1.1.202 metabolism glycerol dehydratase, 1,3-propanediol dehydrogenase, and glycerol dehydrogenase are key enzymes in glycerol bioconversion into 1,3-propanediol and dihydroxyacetone Thermotoga maritima
1.1.1.202 metabolism glycerol dehydratase, 1,3-propanediol dehydrogenase, and glycerol dehydrogenase are key enzymes in glycerol bioconversion into 1,3-propanediol and dihydroxyacetone Limosilactobacillus reuteri