Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Dulcey, C.E.; Dekimpe, V.; Fauvelle, D.A.; Milot, S.; Groleau, M.C.; Doucet, N.; Rahme, L.G.; Lepine, F.; Deziel, E.
    The end of an old hypothesis: the Pseudomonas signaling molecules 4-hydroxy-2-alkylquinolines derive from fatty acids, not 3-ketofatty acids (2013), Chem. Biol., 20, 1481-1491.
    View publication on PubMedView publication on EuropePMC

Organism

EC Number Organism UniProt Comment Textmining
2.3.1.B38 Pseudomonas aeruginosa A0A0H2Z7A3 and A0A0H2Z7K6 A0A0H2Z7A3 i.e. subunit PqsC, and A0A0H2Z7K6, i.e. subunit PqsB
-
2.3.1.B38 Pseudomonas aeruginosa UCBPP-PA14 A0A0H2Z7A3 and A0A0H2Z7K6 A0A0H2Z7A3 i.e. subunit PqsC, and A0A0H2Z7K6, i.e. subunit PqsB
-
2.3.1.230 Pseudomonas aeruginosa A0A0H2Z7U1 cf. EC 2.3.1.180
-
2.3.1.230 Pseudomonas aeruginosa UCBPP-PA14 A0A0H2Z7U1 cf. EC 2.3.1.180
-
2.3.1.262 Pseudomonas aeruginosa P20582 cf. 2.3.1.230
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
2.3.1.262 anthraniloyl-CoA + malonyl-CoA
-
Pseudomonas aeruginosa 2-aminobenzoylacetyl-CoA + CoA + CO2 overall reaction ?

Synonyms

EC Number Synonyms Comment Organism
2.3.1.B38 PqsB
-
Pseudomonas aeruginosa
2.3.1.B38 PqsC
-
Pseudomonas aeruginosa
2.3.1.230 PqsD
-
Pseudomonas aeruginosa

General Information

EC Number General Information Comment Organism
2.3.1.B38 physiological function 4-hydroxy-2-alkylquinoline biosynthesis, which requires the PqsABCD enzymes, proceeds by a two-step pathway: PqsD mediates the synthesis of 2-aminobenzoylacetate from anthraniloyl-coenzyme A and malonyl-coenzyme A, then the decarboxylating coupling of 2-aminobenzoylacetate to an octanoate group linked to PqsC produces 4-hydroxy-2-heptylquinoline, the direct precursor of 3,4-dihydroxy-2-heptylquinoline. PqsB is tightly associated with PqsC and required for the second step. None of the pqsA-, pqsB-, pqsC-, and pqs- mutants produces measurable amounts of 4-hydroxy-2-alkylquinolines, and PqsB and PqsC have to be present simultaneously to transform the intermediate into 4-hydroxy-2-heptylquinoline Pseudomonas aeruginosa
2.3.1.230 physiological function 4-hydroxy-2-alkylquinoline biosynthesis, which requires the PqsABCD enzymes, proceeds by a two-step pathway: PqsD mediates the synthesis of 2-aminobenzoylacetate from anthraniloyl-coenzyme A and malonyl-coenzyme A, then the decarboxylating coupling of 2-aminobenzoylacetate to an octanoate group linked to PqsC produces 4-hydroxy-2-heptylquinoline, the direct precursor of 3,4-dihydroxy-2-heptylquinoline. PqsB is tightly associated with PqsC and required for the second step. None of the pqsA-, pqsB-, pqsC-, and pqs- mutants produces measurable amounts of 4-hydroxy-2-alkylquinolines Pseudomonas aeruginosa
2.3.1.262 physiological function 4-hydroxy-2-alkylquinolines biosynthesis requires the PqsABCD enzymes and proceeds by a two-step pathway: First, PqsD mediates the synthesis of 2-aminobenzoylacetate from anthraniloyl-CoA and malonyl-CoA, then the decarboxylating coupling of 2-aminobenzoylacetate to an octanoate group linked to PqsC produces 4-hydroxy-2-heptylquinoline, the direct precursor of Pseudomonas quinolone signal. PqsB is tightly associated with PqsC and required for the second step Pseudomonas aeruginosa