Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Corda, D.; Mosca, M.; Ohshima, N.; Grauso, L.; Yanaka, N.; Mariggio, S.
    The emerging physiological roles of the glycerophosphodiesterase family (2014), FEBS J., 281, 998-1016.
    View publication on PubMed

Application

EC Number Application Comment Organism
3.1.4.46 diagnostics the enzyme is used for the serological diagnosis of patients with tick-borne relapsing fever because the presence of antibodies against this spirochete has been detected upon infection, and for the setting-up of molecular and serologic techniques for the diagnosis of relapsing fever borreliosis Borrelia hermsii
3.1.4.46 drug development the enzyme might be a promising target for anti-malaria drug development Plasmodium falciparum
3.1.4.46 environmental protection the enzyme might be useful in the bioremediation of soil, through the detoxification of organophosphate pesticides and products of the degradation of nerve agents Klebsiella aerogenes
3.1.4.46 medicine the enzyme has immunogenic potential as a vaccine. Improvement of the GlpQ-based vaccine formulation, a DNA-based vaccine constructed by fusing Treponema pallidum GlpQ with interleukin-2, using chitosan nanoparticles as the vector, effectively attenuated the development of syphilitic lesions Treponema pallidum

Cloned(Commentary)

EC Number Cloned (Comment) Organism
3.1.4.46 13 potential homologues are identified and subdivided into two groups: the first comprising proteins with only one GP-PDE domain or canonical type A enzymes, AtGDPD1-6, and the second including proteins with two putative GP-PDE domains, type B enzymes AtGDPDL1-7 Arabidopsis thaliana
3.1.4.46 constitutive enzyme, transgenic enzyme expression can complement the enzyme UgpQ in a gene ugpQ-deleted strain of Escherichia coli Staphylococcus aureus
3.1.4.46 GDE2, maps to 11q13.4-13.5, and contains 17 exons and 16 introns, overexpression of a the tagged GDE2 in COS-7, HEK-293cells, and in HeLa cell endoplasmic reticulum, as well as at the plasma membrane, depending on cell confluence, with a predominant plasma-membrane localization in confluent Homo sapiens
3.1.4.46 gene glpQ, phylogenetic analysis Escherichia coli
3.1.4.46 gene gpdQ, DNA and amino acid seuence determination and analysis Klebsiella aerogenes
3.1.4.46 gene ugpQ, phylogenetic analysis Escherichia coli
3.1.4.46 gene YPL110c Saccharomyces cerevisiae
3.1.4.46 gene YPL206c Saccharomyces cerevisiae
3.1.4.46 the genome encodes seven genes, glpQ1-3 and ugpQ1-4 Streptomyces coelicolor
3.1.4.46 YqiK is regulated by the same operon yqiHIK as other hydrolytic enzymes Bacillus subtilis

Crystallization (Commentary)

EC Number Crystallization (Comment) Organism
3.1.4.46 crystal structure analysis Klebsiella aerogenes
3.1.4.46 crystal structure analysis Agrobacterium tumefaciens
3.1.4.46 crystal structure analysis Caldanaerobacter subterraneus subsp. tengcongensis
3.1.4.46 crystal structure analysis of the TM1621 protein Thermotoga maritima

Protein Variants

EC Number Protein Variants Comment Organism
3.1.4.46 additional information through directed evolution, the activity of GpdQ towards larger and nonphysiological substrates can be enhanced Klebsiella aerogenes

Localization

EC Number Localization Comment Organism GeneOntology No. Textmining
3.1.4.46 chloroplast plastid-localized isozyme AtGDPD1 Arabidopsis thaliana 9507
-
3.1.4.46 cytoplasm
-
Saccharomyces cerevisiae 5737
-
3.1.4.46 cytoplasm
-
Bacillus subtilis 5737
-
3.1.4.46 cytoplasm isozymes UgpQ1-4 Streptomyces coelicolor 5737
-
3.1.4.46 cytosol
-
Escherichia coli 5829
-
3.1.4.46 extracellular isozymes GlpQ1-3 are secreted Streptomyces coelicolor
-
-
3.1.4.46 membrane isozyme GDE2 contains a 43-amino acid intracellular N-terminal region, six transmembrane domains, an intracellular C-terminal domain of 82-amino acid residues and two 13-amino acid intracellular connecting loops between the transmembrane domains Homo sapiens 16020
-
3.1.4.46 membrane membrane fraction, mainly plasma membrane Rattus norvegicus 16020
-
3.1.4.46 membrane the enzyme is a hydrophilic lipoprotein that is also assumed to be anchored by N-terminal lipids to the periplasmic leaflet(s) of the peptidoglycan cytoplasmic membrane, and not to be exposed on the outer membrane of the pathogen Treponema pallidum 16020
-
3.1.4.46 membrane the enzyme is most probably bound to the periplasmic side of the inner or outer membrane Borrelia hermsii 16020
-
3.1.4.46 additional information lipoprotein D ís not surface-exposed Pasteurella multocida
-
-
3.1.4.46 additional information the enzyme contains a 20-amino acid signal peptide typical of lipoproteins Haemophilus influenzae
-
-
3.1.4.46 additional information the enzyme sequence has no signal sequences or hydrophobic motifs common to membrane proteins, but enzyme activity is detected almost exclusively in the membrane fraction Mycoplasma hyorhinis
-
-
3.1.4.46 outer membrane a surface-exposed membrane lipoprotein Haemophilus influenzae 19867
-
3.1.4.46 outer membrane the enzyme resides on the outer leaflet of the outer membrane Treponema pallidum 19867
-
3.1.4.46 periplasm
-
Escherichia coli
-
-

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
3.1.4.46 Ca2+ required for activity Escherichia coli
3.1.4.46 Ca2+ a calcium atom is chelated by three conserved residues and a glycerol molecule bound in the catalytic groove Caldanaerobacter subterraneus subsp. tengcongensis
3.1.4.46 Mg2+ dependent on Plasmodium falciparum
3.1.4.46 Mg2+ isozyme At-GDPD1 is Mg2+-dependent Arabidopsis thaliana
3.1.4.46 additional information the enzyme requires divalent cations for activity Escherichia coli

Molecular Weight [Da]

EC Number Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
3.1.4.46 27000
-
x * 27000 Escherichia coli
3.1.4.46 37000
-
x * 37000 Saccharomyces cerevisiae
3.1.4.46 138000
-
-
Saccharomyces cerevisiae

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
3.1.4.46 additional information Homo sapiens isozyme GDE2-mediated hydrolysis of the RECK GPI anchor is not a phospholipase D-like hydrolysis, which suggests a different attack of the phosphodiester bond compared to that reported for the other GDE2 substrate sn-glycero-3-phosphocholine ?
-
?
3.1.4.46 additional information Saccharomyces cerevisiae the enzyme catalyzes cleavage of phosphatidylglycerol to diacylglycerol and glycerophosphate ?
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O Rattus norvegicus
-
choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O Saccharomyces cerevisiae
-
choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O Homo sapiens
-
choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O Borrelia hermsii
-
choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O Arabidopsis thaliana isozyme At-GDPD1 choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoethanolamine + H2O Rattus norvegicus
-
ethanolamine + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoethanolamine + H2O Arabidopsis thaliana isozyme At-GDPD1 ethanolamine + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoglycerol + H2O Arabidopsis thaliana isozyme At-GDPD1 glycerol + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoinositol + H2O Homo sapiens
-
inositol + sn-glycerol 3-phosphate
-
?

Organism

EC Number Organism UniProt Comment Textmining
3.1.4.46 Agrobacterium tumefaciens
-
-
-
3.1.4.46 Arabidopsis thaliana
-
enzymes AtGDPD1-6 and AtGDPDL1-7
-
3.1.4.46 Bacillus pumilus
-
-
-
3.1.4.46 Bacillus pumilus DSM 27
-
-
-
3.1.4.46 Bacillus subtilis P54527
-
-
3.1.4.46 Borrelia hermsii Q45201
-
-
3.1.4.46 Caldanaerobacter subterraneus subsp. tengcongensis
-
-
-
3.1.4.46 Escherichia coli P09394 gene glpQ
-
3.1.4.46 Escherichia coli P10908 gene ugpQ
-
3.1.4.46 Haemophilus influenzae Q06282
-
-
3.1.4.46 Haemophilus influenzae DSM 11121 Q06282
-
-
3.1.4.46 Homo sapiens Q8WTR4 GDE2 (also named GDPD5)
-
3.1.4.46 Homo sapiens Q9NPB8
-
-
3.1.4.46 Klebsiella aerogenes
-
gene gpdQ
-
3.1.4.46 Lupinus albus
-
two isozymes
-
3.1.4.46 Mus musculus
-
-
-
3.1.4.46 Musca domestica
-
-
-
3.1.4.46 Mycoplasma hyorhinis E0TL71
-
-
3.1.4.46 Mycoplasma pneumoniae P75367 MPN420 or GlpQ; gene glpQ, the genome encodes two potential enzymes (MPN420 or GlpQ, and MPN566), although only GlpQ is functional
-
3.1.4.46 Pasteurella multocida Q79LP3
-
-
3.1.4.46 Plasmodium falciparum
-
-
-
3.1.4.46 Rattus norvegicus
-
-
-
3.1.4.46 Saccharomyces cerevisiae
-
gene YPL206c
-
3.1.4.46 Saccharomyces cerevisiae Q02979 Gde1p; gene YPL110c
-
3.1.4.46 Staphylococcus aureus Q99387 constitutive enzyme
-
3.1.4.46 Streptomyces coelicolor
-
the genome encodes seven genes that are putative GP-PDEs, GlpQ1-3 and UgpQ1-4
-
3.1.4.46 Thermotoga maritima
-
-
-
3.1.4.46 Treponema pallidum O30405
-
-

Posttranslational Modification

EC Number Posttranslational Modification Comment Organism
3.1.4.46 lipoprotein a surface-exposed membrane lipoprotein, the enzyme contains a 20-amino acid signal peptide typical of lipoproteins Haemophilus influenzae
3.1.4.46 lipoprotein lipoprotein D has enzyme activity similar to other bacterial enzyme, which is modulated by, but not dependent on, its N-terminal lipidation Pasteurella multocida
3.1.4.46 lipoprotein the enzyme is a hydrophilic lipoprotein that is also assumed to be anchored by N-terminal lipids to the periplasmic leaflet(s) of the peptidoglycan cytoplasmic membrane Treponema pallidum

Source Tissue

EC Number Source Tissue Comment Organism Textmining
3.1.4.46 brain high expression level Homo sapiens
-
3.1.4.46 brain the brain enzyme is regionally and developmentally regulated Rattus norvegicus
-
3.1.4.46 kidney
-
Rattus norvegicus
-
3.1.4.46 larva
-
Musca domestica
-
3.1.4.46 liver
-
Rattus norvegicus
-
3.1.4.46 additional information GDE2 is widely expressed, with relative low levels in the kidney and prostate Homo sapiens
-
3.1.4.46 neuron mature motor neurons and not in undifferentiated progenitors Homo sapiens
-
3.1.4.46 skeletal muscle
-
Homo sapiens
-
3.1.4.46 uterus in uterine secretion Rattus norvegicus
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
3.1.4.46 bis(glycerophospho)glycerol + H2O low activity Escherichia coli ?
-
?
3.1.4.46 cardiolipin + H2O low activity Escherichia coli ?
-
?
3.1.4.46 additional information high substrate specificity Mus musculus ?
-
?
3.1.4.46 additional information high substrate specificity Rattus norvegicus ?
-
?
3.1.4.46 additional information high substrate specificity Homo sapiens ?
-
?
3.1.4.46 additional information isozyme GDE2-mediated hydrolysis of the RECK GPI anchor is not a phospholipase D-like hydrolysis, which suggests a different attack of the phosphodiester bond compared to that reported for the other GDE2 substrate sn-glycero-3-phosphocholine Homo sapiens ?
-
?
3.1.4.46 additional information the enzyme catalyzes cleavage of phosphatidylglycerol to diacylglycerol and glycerophosphate Saccharomyces cerevisiae ?
-
?
3.1.4.46 additional information recombinant isozyme AtGPDPL1 shows limited enzymatic activity toward glycerophosphodiesters Arabidopsis thaliana ?
-
?
3.1.4.46 additional information the enzyme has a broad substrate specificity. It hydrolyzes glycerophosphodiester bonds through its recognition of the glycerophospho moiety, but it does not hydrolyze other types of bonds, such as that of bis(p-nitrophenyl)phosphate. No activity towards phosphatidyl-DL-glycerol or lysophosphatidyl-DL-glycerol Escherichia coli ?
-
?
3.1.4.46 additional information the enzyme has a very broad substrate specificity, it catalyzes the hydrolysis not only of glycerophosphoethanolamine, but also of phosphomonoesters, diesters and triesters, in addition to phosphothiolates. The enzyme can hydrolyze several organophosphates Klebsiella aerogenes ?
-
?
3.1.4.46 additional information the enzyme is active towards more complex substrates, even if their final product is always glycerol 3-phosphate. It hydrolyzes phosphodiester bonds between adjacent glycerol units. Substrates are polyglycerophosphates, such as purified cell-wall teichoic acid, as well as deacylated, unsubstituted lipoteichoic acid, di(glycerophospho)glycerol (deacylated cardiolipin) and mono(glycerophospho)glycerol Bacillus pumilus ?
-
?
3.1.4.46 additional information the enzyme is active towards more complex substrates, even if their final product is always glycerol 3-phosphate. It hydrolyzes phosphodiester bonds between adjacent glycerol units. Substrates are polyglycerophosphates, such as purified cell-wall teichoic acid, as well as deacylated, unsubstituted lipoteichoic acid, di(glycerophospho)glycerol (deacylated cardiolipin) and mono(glycerophospho)glycerol Bacillus pumilus DSM 27 ?
-
?
3.1.4.46 sn-glycero-3-phospho-L-serine
-
Escherichia coli L-serine + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O
-
Rattus norvegicus choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O
-
Saccharomyces cerevisiae choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O
-
Arabidopsis thaliana choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O
-
Escherichia coli choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O
-
Homo sapiens choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O
-
Borrelia hermsii choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O preferred substrate Musca domestica choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O isozyme At-GDPD1 Arabidopsis thaliana choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphocholine + H2O the brain enzyme is specific for Rattus norvegicus choline + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoethanolamine + H2O
-
Rattus norvegicus ethanolamine + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoethanolamine + H2O
-
Musca domestica ethanolamine + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoethanolamine + H2O
-
Escherichia coli ethanolamine + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoethanolamine + H2O isozyme At-GDPD1 Arabidopsis thaliana ethanolamine + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoglycerol + H2O
-
Musca domestica glycerol + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoglycerol + H2O
-
Escherichia coli glycerol + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoglycerol + H2O isozyme At-GDPD1 Arabidopsis thaliana glycerol + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoinositol + H2O
-
Musca domestica inositol + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoinositol + H2O
-
Escherichia coli inositol + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoinositol + H2O
-
Homo sapiens inositol + sn-glycerol 3-phosphate
-
?
3.1.4.46 sn-glycero-3-phosphoserine
-
Musca domestica serine + sn-glycerol 3-phosphate
-
?

Subunits

EC Number Subunits Comment Organism
3.1.4.46 ? x * 37000 Saccharomyces cerevisiae
3.1.4.46 ? x * 27000 Escherichia coli
3.1.4.46 hexamer the T2047enzyme forms a hexamer as a trimer of dimers, with a channel passing through the center of the assembly Agrobacterium tumefaciens
3.1.4.46 More the GP-PDE domain localized at the C terminus Saccharomyces cerevisiae

Synonyms

EC Number Synonyms Comment Organism
3.1.4.46 GDE
-
Rattus norvegicus
3.1.4.46 Gde1p
-
Saccharomyces cerevisiae
3.1.4.46 GDE2
-
Homo sapiens
3.1.4.46 GDE5
-
Homo sapiens
3.1.4.46 GDPD5
-
Homo sapiens
3.1.4.46 GDPD6
-
Homo sapiens
3.1.4.46 GlpQ
-
Escherichia coli
3.1.4.46 GlpQ
-
Haemophilus influenzae
3.1.4.46 GlpQ
-
Treponema pallidum
3.1.4.46 GlpQ
-
Pasteurella multocida
3.1.4.46 GlpQ
-
Mycoplasma pneumoniae
3.1.4.46 GlpQ1
-
Streptomyces coelicolor
3.1.4.46 GlpQ2
-
Streptomyces coelicolor
3.1.4.46 GlpQ3
-
Streptomyces coelicolor
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Mus musculus
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Rattus norvegicus
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Saccharomyces cerevisiae
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Arabidopsis thaliana
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Klebsiella aerogenes
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Lupinus albus
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Streptomyces coelicolor
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Bacillus pumilus
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Plasmodium falciparum
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Agrobacterium tumefaciens
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Thermotoga maritima
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Musca domestica
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Caldanaerobacter subterraneus subsp. tengcongensis
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Escherichia coli
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Homo sapiens
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Staphylococcus aureus
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Haemophilus influenzae
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Borrelia hermsii
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Treponema pallidum
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Pasteurella multocida
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Mycoplasma pneumoniae
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Mycoplasma hyorhinis
3.1.4.46 glycerophosphodiester phosphodiesterase
-
Bacillus subtilis
3.1.4.46 GP-PDE
-
Mus musculus
3.1.4.46 GP-PDE
-
Rattus norvegicus
3.1.4.46 GP-PDE
-
Saccharomyces cerevisiae
3.1.4.46 GP-PDE
-
Arabidopsis thaliana
3.1.4.46 GP-PDE
-
Klebsiella aerogenes
3.1.4.46 GP-PDE
-
Lupinus albus
3.1.4.46 GP-PDE
-
Streptomyces coelicolor
3.1.4.46 GP-PDE
-
Bacillus pumilus
3.1.4.46 GP-PDE
-
Plasmodium falciparum
3.1.4.46 GP-PDE
-
Agrobacterium tumefaciens
3.1.4.46 GP-PDE
-
Thermotoga maritima
3.1.4.46 GP-PDE
-
Musca domestica
3.1.4.46 GP-PDE
-
Caldanaerobacter subterraneus subsp. tengcongensis
3.1.4.46 GP-PDE
-
Escherichia coli
3.1.4.46 GP-PDE
-
Homo sapiens
3.1.4.46 GP-PDE
-
Staphylococcus aureus
3.1.4.46 GP-PDE
-
Haemophilus influenzae
3.1.4.46 GP-PDE
-
Borrelia hermsii
3.1.4.46 GP-PDE
-
Treponema pallidum
3.1.4.46 GP-PDE
-
Pasteurella multocida
3.1.4.46 GP-PDE
-
Mycoplasma pneumoniae
3.1.4.46 GP-PDE
-
Mycoplasma hyorhinis
3.1.4.46 GP-PDE
-
Bacillus subtilis
3.1.4.46 GPCPD1
-
Homo sapiens
3.1.4.46 GPD
-
Borrelia hermsii
3.1.4.46 GPD protein
-
Mycoplasma hyorhinis
3.1.4.46 GpdQ
-
Klebsiella aerogenes
3.1.4.46 HPD
-
Haemophilus influenzae
3.1.4.46 lipoprotein D
-
Pasteurella multocida
3.1.4.46 MPN420
-
Mycoplasma pneumoniae
3.1.4.46 PfGDPD
-
Plasmodium falciparum
3.1.4.46 Pgc1p
-
Saccharomyces cerevisiae
3.1.4.46 Protein D
-
Haemophilus influenzae
3.1.4.46 T2047
-
Agrobacterium tumefaciens
3.1.4.46 TM1621
-
Thermotoga maritima
3.1.4.46 ttGDD
-
Caldanaerobacter subterraneus subsp. tengcongensis
3.1.4.46 UGP1
-
Streptomyces coelicolor
3.1.4.46 Ugp2
-
Streptomyces coelicolor
3.1.4.46 UGP3
-
Streptomyces coelicolor
3.1.4.46 Ugp4
-
Streptomyces coelicolor
3.1.4.46 UgpQ
-
Escherichia coli
3.1.4.46 YqiK
-
Bacillus subtilis

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
3.1.4.46 7.2
-
-
Musca domestica
3.1.4.46 7.5
-
-
Escherichia coli
3.1.4.46 9
-
-
Escherichia coli

Expression

EC Number Organism Comment Expression
3.1.4.46 Homo sapiens osmotic stress conditions resulting from high salt concentrations cause a decrease in the sioyzme GDE2 mRNA half-life, with the consequent lowering of GDE2 protein levels and a decrease in glycero-3-phosphocholine hydrolysis in transgenic murine mIMCD3 cells down
3.1.4.46 Escherichia coli expression of the UgpQ protein is significantly induced in phosphate-starved wild-type Escherichia coli up
3.1.4.46 Homo sapiens GDE2 up-regulation upon retinoic-acid treatment up
3.1.4.46 Bacillus subtilis high-salinity growth conditions induce the up-regulation of the transcription of the operon yqiHIK encoding the enzyme up
3.1.4.46 Saccharomyces cerevisiae increased enzyme expression in microarray studies under low-phosphate conditions up
3.1.4.46 Arabidopsis thaliana salt and osmotic stress induce up-regulation of AtGDPDL genes, while AtGDPDs genes are up-regulated by inorganic phosphate deprivation up
3.1.4.46 Lupinus albus the isozymes are induced by phosphate deprivation up

General Information

EC Number General Information Comment Organism
3.1.4.46 evolution phylogenetic analysis, overview Mus musculus
3.1.4.46 evolution phylogenetic analysis, overview Rattus norvegicus
3.1.4.46 evolution phylogenetic analysis, overview Arabidopsis thaliana
3.1.4.46 evolution phylogenetic analysis, overview Lupinus albus
3.1.4.46 evolution phylogenetic analysis, overview Streptomyces coelicolor
3.1.4.46 evolution phylogenetic analysis, overview Bacillus pumilus
3.1.4.46 evolution phylogenetic analysis, overview Musca domestica
3.1.4.46 evolution phylogenetic analysis, overview Caldanaerobacter subterraneus subsp. tengcongensis
3.1.4.46 evolution phylogenetic analysis, overview Homo sapiens
3.1.4.46 evolution phylogenetic analysis, overview Staphylococcus aureus
3.1.4.46 evolution phylogenetic analysis, overview Saccharomyces cerevisiae
3.1.4.46 evolution phylogenetic analysis, overview Haemophilus influenzae
3.1.4.46 evolution phylogenetic analysis, overview Borrelia hermsii
3.1.4.46 evolution phylogenetic analysis, overview Treponema pallidum
3.1.4.46 evolution phylogenetic analysis, overview Pasteurella multocida
3.1.4.46 evolution phylogenetic analysis, overview Mycoplasma pneumoniae
3.1.4.46 evolution phylogenetic analysis, overview Mycoplasma hyorhinis
3.1.4.46 evolution phylogenetic analysis, overview Bacillus subtilis
3.1.4.46 evolution phylogenetic analysis, overview. A common feature of this enzyme family is the presence of the classical triosephosphate isomerase barrel fold Thermotoga maritima
3.1.4.46 evolution phylogenetic analysis, overview. Escherichia coli GlpQ and UgpQ possess a significant similarity, suggesting a common evolutionary origin Escherichia coli
3.1.4.46 evolution phylogenetic analysis, overview. PfGDPD shows clear homology with bacterial GP-PDEs Plasmodium falciparum
3.1.4.46 evolution phylogenetic analysis, overview. The enzyme Pgc1p belongs to the superfamily of phospholipase-C-like enzymes Saccharomyces cerevisiae
3.1.4.46 evolution phylogenetic analysis, overview. The enzyme shows a structure unusual for the enzyme family, the T2047enzyme of Agrobacterium tumefaciens forms a hexamer and, in particular, a trimer of dimers, with a channel passing through the center of the assembly Agrobacterium tumefaciens
3.1.4.46 evolution phylogenetic analysis, overview. The phosphodiesterase GpdQ is unrelated to the Escherichia coli enzyme UgpQ. The crystal structure of GpdQ emphasizes its difference compared to all other bacterial GP-PDEs with respect to the absence of the conserved triosephosphate isomerase barrel fold in the catalytic site. GpdQ is clustered separately in the phylogenetic tree and appears as a structurally distinct GP-PDE, its secondary structure prediction suggests that it more properly belongs to the alpha/beta-sandwich metallo-dependent phosphoesterase family Klebsiella aerogenes
3.1.4.46 malfunction ablating GDE2 expression in the spinal cord using small-interfering RNAs results in the loss of post-mitotic motor neurons and an increase in cell death Homo sapiens
3.1.4.46 malfunction deletion of the YPL110c gene leads to the massive accumulation of glycero-3-phosphocholine Saccharomyces cerevisiae
3.1.4.46 malfunction deletion of the yqiHIK operon impairs the growth of Bacillus subtilis at high salinity Bacillus subtilis
3.1.4.46 malfunction inactivation of gene glpQ results in reduced bacteria growth, loss of hydrogen peroxide production and a complete loss of Mycoplasma pneumoniae cytotoxicity towards HeLa cells Mycoplasma pneumoniae
3.1.4.46 malfunction isozyme GDE5 expression down-regulation in several types of skeletal muscle atrophies is induced by aging and denervation Homo sapiens
3.1.4.46 malfunction loss-of-function of the plastid-localized isozyme AtGDPD1 induces a decrease of enzyme activity, glycerol 3-phosphate and inorganic phosphate content, and seedling growth rate compared to the wild-type plant Arabidopsis thaliana
3.1.4.46 additional information absence of the conserved triosephosphate isomerase barrel fold in the catalytic site, the secondary structure shows an alpha/beta-sandwich Klebsiella aerogenes
3.1.4.46 additional information lipoprotein D has enzyme activity similar to other bacterial enzyme, which is modulated by, but not dependent on, its N-terminal lipidation Pasteurella multocida
3.1.4.46 additional information proposal of a mechanism of catalysis through two reaction steps, with the glycerol and the phosphate moieties forming a cyclic phosphate intermediate that is stabilized by the calcium ion Caldanaerobacter subterraneus subsp. tengcongensis
3.1.4.46 additional information the brain enzyme is regionally and developmentally regulated Rattus norvegicus
3.1.4.46 additional information the enzyme TM1621 structure suggests that the biologically relevant form is a monomer composed of 11 beta-strands, 10 alpha-helices and four 310-helices Thermotoga maritima
3.1.4.46 additional information the GP-PDE domain localized at the C terminus Saccharomyces cerevisiae
3.1.4.46 additional information the organism encodes two potential enzymes (MPN420 or GlpQ, and MPN566), although only GlpQ is functional. MPN566 has no enzymatic activity, and inactivation of its gene does not result in any detectable phenotype Mycoplasma pneumoniae
3.1.4.46 physiological function enzyme Pgc1p controls the phosphatidylglycerol content of the cell membranes by cleavage of phosphatidylglycerol to diacylglycerol and glycerophosphate Saccharomyces cerevisiae
3.1.4.46 physiological function isozyme GDE2 is directly linked to cell differentiation, which triggers motor neuron differentiation, and it acts as an osmoregulated enzyme. GDE2 promotion of neurogenesis follows a different molecular mechanism compared to that postulated for GDE2 osmoregulation of kidney cells, overview. GDE2 up-regulation upon retinoic-acid treatment is sufficient to induce neurite formation that is blocked upon GDE2 downregulation by siRNAs. Isozmye GDE2 is involved in the regulation of neuronal transcriptional programs Homo sapiens
3.1.4.46 physiological function isozyme GDE5 inhibits skeletal muscle development independent of its enzymatic activity. Isozyme GDE5 expression in brain can contribute to variations in cortical surface area. Decreased isozyme GDE5 expression might represent an adaptation response to counteract the pathology, overview Homo sapiens
3.1.4.46 physiological function lipoprotein D is not surface-exposed and is not a virulence factor useful for vaccine design Pasteurella multocida
3.1.4.46 physiological function plastid-localized isozyme AtGDPD1 is devoted to the glycerophosphodiester degradation pathway as a source of inorganic phosphate Arabidopsis thaliana
3.1.4.46 physiological function the enzyme activity contributes to bacterial pathogenicity, overview. The enzyme has all of the properties necessary for its application as an antigenically active carrier protein for conjugate vaccines, mainly because it is a surface-exposed membrane lipoprotein that is highly conserved among different Haemophilus influenzae strains Haemophilus influenzae
3.1.4.46 physiological function the enzyme is considered to be essential during the phase of metamorphosis, when the larvae enter the pupal stage and the organism extensively hydrolyzes its cellular constituents and reassembles the components into the tissues of the adult organism Musca domestica
3.1.4.46 physiological function the enzyme is required for glycerol 3-phosphate production starting from deacylated phospholipids. This metabolic pathway appears to contribute to cell proliferation during host infection, which leads to an increased cell density of Borrelia hermsii in the host blood Borrelia hermsii
3.1.4.46 physiological function the enzyme is responsible for glycero-3-phosphocholine hydrolysis, which is used as a phosphate source. It might also act by binding potential partners involved in phosphate metabolism Saccharomyces cerevisiae
3.1.4.46 physiological function the enzyme might contribute to the damage to the human host cell membranes by Mycoplasma hyorhinis, that is involved in human gastric cancer Mycoplasma hyorhinis
3.1.4.46 physiological function the enzyme might have a role in osmoprotection Bacillus subtilis
3.1.4.46 physiological function the functional glycerophosphodiester phosphodiesterase also controls the expression of a set of genes that encode lipoproteins, the glycerol facilitator and a metal ion ABC transporter Mycoplasma pneumoniae
3.1.4.46 physiological function the primary physiological function of UgpQ is the use of glycerophosphodiesters as a source of phosphate, an activity that is performed more efficiently by UgpQ than by homologue GlpQ. The enzyme might have a role in bacterial pathogenicity Escherichia coli
3.1.4.46 physiological function the primary physiological function of UgpQ is the use of glycerophosphodiesters as a source of phosphate, an activity that is performed more efficiently by UgpQ than by homologue GlpQ. The ugp-encoded transport system represents another Escherichia coli transport system for sn-glycerol 3-phosphate Escherichia coli
3.1.4.46 physiological function the two isozymes are phosphate-deprivation induced and regulate root hair development and density, suggesting their role in plant acclimation to phosphate deprivation Lupinus albus