Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Kim, S.; Lee, S.B.
    Soluble expression of archaeal proteins in Escherichia coli by using fusion-partners (2008), Protein Expr. Purif., 62, 116-119.
    View publication on PubMed

Cloned(Commentary)

EC Number Cloned (Comment) Organism
2.7.1.178 produced as inclusion bodies in Escherichia coli when polyhistidine is used as a fusion tag. To reduce inclusion body formation in Escherichia coli, the enzyme is fused with three partners, thioredoxin, glutathione-S-transferase, and N-utilization substance A. With the use of fusion-partners, the solubility of the archaeal protein is remarkably enhanced, and the soluble fraction of the recombinant protein is increased in this order: thioredoxin > glutathione-S-transferase > N-utilization substance A. In the case of recombinant enzyme, the enzyme activity of the Trx-fused protein is 200-fold higher than that of the polyhistidine-fusion protein Saccharolobus solfataricus
4.2.1.39 vectors for constructing different fusion proteins are used, pET-21a, 6xHis, pET-32a, thioredoxin, Trx, pET-42a, glutathione-S-transferase, GST, and pET-43.1a, N-utilization substance A, NusA Saccharolobus solfataricus
4.2.1.140 produced as inclusion bodies in Escherichia coli when polyhistidine is used as a fusion tag. To reduce inclusion body formation in Escherichia coli, the enzyme is fused with three partners, thioredoxin, glutathione-S-transferase, and N-utilization substance A. With the use of fusion-partners, the solubility of the archaeal protein is remarkably enhanced, and the soluble fraction of the recombinant protein is increased in this order: thioredoxin > glutathione-S-transferase > N-utilization substance A. In the case of recombinant enzyme, the enzyme activity of the Trx-fused protein is 200-fold higher than that of the polyhistidine-fusion protein Saccharolobus solfataricus

Molecular Weight [Da]

EC Number Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
4.2.1.39 44730
-
rGNAD, His-tagged, calculated Saccharolobus solfataricus
4.2.1.39 45000
-
rGNAD, His-tagged, determined by SDS-PAGE Saccharolobus solfataricus
4.2.1.39 56000
-
rGNAD, Trx-fusion, determined by SDS-PAGE Saccharolobus solfataricus
4.2.1.39 71000
-
rGNAD, GST-fusion, determined by SDS-PAGE Saccharolobus solfataricus

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
4.2.1.39 D-gluconate Saccharolobus solfataricus
-
2-dehydro-3-deoxy-D-gluconate + H2O
-
?

Organism

EC Number Organism UniProt Comment Textmining
2.7.1.178 Saccharolobus solfataricus Q97U29
-
-
4.2.1.39 Saccharolobus solfataricus
-
-
-
4.2.1.140 Saccharolobus solfataricus
-
-
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
4.2.1.39 D-gluconate
-
Saccharolobus solfataricus 2-dehydro-3-deoxy-D-gluconate + H2O
-
?

Synonyms

EC Number Synonyms Comment Organism
2.7.1.178 2-keto-3-deoxy-D-gluconate kinase
-
Saccharolobus solfataricus
2.7.1.178 KDGK
-
Saccharolobus solfataricus
4.2.1.39 D-gluconate dehydratase
-
Saccharolobus solfataricus
4.2.1.39 gluconate dehydratase
-
Saccharolobus solfataricus
4.2.1.39 GNAD
-
Saccharolobus solfataricus
4.2.1.140 D-gluconate dehydratase
-
Saccharolobus solfataricus
4.2.1.140 GNAD
-
Saccharolobus solfataricus

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
2.7.1.178 60
-
assay at Saccharolobus solfataricus
4.2.1.39 30
-
standard assay condition Saccharolobus solfataricus

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
2.7.1.178 7.2
-
assay at Saccharolobus solfataricus
4.2.1.39 7.5
-
standard assay condition Saccharolobus solfataricus