Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Chou, H.T.; Kwon, D.H.; Hegazy, M.; Lu, C.D.
    Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1 (2008), J. Bacteriol., 190, 1966-1975.
    View publication on PubMedView publication on EuropePMC

Activating Compound

EC Number Activating Compound Comment Organism Structure
3.5.1.53 additional information induction of aphA and aphB by exogenous agmatine and acetylputrescine Pseudomonas aeruginosa

Cloned(Commentary)

EC Number Cloned (Comment) Organism
3.5.1.53 overexpression of gene aphA in Escherichia coli Pseudomonas aeruginosa

Protein Variants

EC Number Protein Variants Comment Organism
2.6.1.2 additional information a mutant strain is severely hampered in polyamine utilization, overview Pseudomonas aeruginosa

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
3.5.1.53 Co2+ activates Pseudomonas aeruginosa
3.5.1.53 Mg2+ activates Pseudomonas aeruginosa

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
2.6.1.2 additional information Pseudomonas aeruginosa the acetylpolyamine amidohydrolase regulator alanine transaminase and racemase coupled with SpuC, the major putrescine-pyruvate transaminase, are key components to maintaining alanine homeostasis. The alanine-pyruvate cycle is indispensable for polyamine utilization, corresponding mutant strains are severely hampered in polyamine utilization, overview ?
-
?
3.5.1.53 additional information Pseudomonas aeruginosa the alanine-pyruvate cycle is indispensable for polyamine utilization, detailed transcriptome profile analysis of Pseudomonas aeruginosa in response to agmatine and putrescine, overview ?
-
?
3.5.1.53 N-carbamoylputrescine + H2O Pseudomonas aeruginosa the two acetylpolyamine amidohydrolases, AphA and AphB, are involved in the conversion of agmatine into putrescine, catabolic pathways of agmatine and putrescine, overview putrescine + CO2 + NH3
-
?

Organism

EC Number Organism UniProt Comment Textmining
2.6.1.2 Pseudomonas aeruginosa
-
encoded in the dadRAX locus
-
3.5.1.53 Pseudomonas aeruginosa
-
genes aphA and aphB or PA1409 and PA0321
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
2.6.1.2 additional information the acetylpolyamine amidohydrolase regulator alanine transaminase and racemase coupled with SpuC, the major putrescine-pyruvate transaminase, are key components to maintaining alanine homeostasis. The alanine-pyruvate cycle is indispensable for polyamine utilization, corresponding mutant strains are severely hampered in polyamine utilization, overview Pseudomonas aeruginosa ?
-
?
3.5.1.53 additional information the alanine-pyruvate cycle is indispensable for polyamine utilization, detailed transcriptome profile analysis of Pseudomonas aeruginosa in response to agmatine and putrescine, overview Pseudomonas aeruginosa ?
-
?
3.5.1.53 N-acetylputrescin + H2O
-
Pseudomonas aeruginosa putrescine + acetate
-
?
3.5.1.53 N-carbamoylputrescine + H2O
-
Pseudomonas aeruginosa putrescine + CO2 + NH3
-
?
3.5.1.53 N-carbamoylputrescine + H2O the two acetylpolyamine amidohydrolases, AphA and AphB, are involved in the conversion of agmatine into putrescine, catabolic pathways of agmatine and putrescine, overview Pseudomonas aeruginosa putrescine + CO2 + NH3
-
?

Synonyms

EC Number Synonyms Comment Organism
2.6.1.2 alanine transaminase
-
Pseudomonas aeruginosa
3.5.1.53 acetylpolyamine amidohydrolase
-
Pseudomonas aeruginosa
3.5.1.53 AphA
-
Pseudomonas aeruginosa
3.5.1.53 AphB
-
Pseudomonas aeruginosa

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
3.5.1.53 37
-
assay at Pseudomonas aeruginosa

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
3.5.1.53 7.8
-
assay at Pseudomonas aeruginosa