Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Hardie, D.G.
    Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease (2008), FEBS Lett., 582, 81-89.
    View publication on PubMed

Activating Compound

EC Number Activating Compound Comment Organism Structure
2.7.11.31 5'-AMP
-
Drosophila melanogaster
2.7.11.31 5'-AMP
-
Saccharomyces cerevisiae
2.7.11.31 5'-AMP
-
Arabidopsis thaliana
2.7.11.31 5'-AMP
-
Giardia intestinalis
2.7.11.31 5'-AMP
-
Trypanosoma brucei
2.7.11.31 5'-AMP
-
Dictyostelium discoideum
2.7.11.31 5'-AMP
-
Schizosaccharomyces pombe
2.7.11.31 5'-AMP
-
Caenorhabditis elegans
2.7.11.31 5'-AMP
-
Physcomitrium patens
2.7.11.31 5'-AMP up to 10fold activation, AMP also promotes net phosphorylation at a critical threonine residue Thr172 within the kinase domain that can generate a further 100fold activation, the combined effect being 1000fold Mus musculus
2.7.11.31 5'-AMP up to 10fold activation, AMP also promotes net phosphorylation at a critical threonine residue Thr172 within the kinase domain that can generate a further 100fold activation, the combined effect being 1000fold Homo sapiens
2.7.11.31 5'-AMP up to 10fold activation, AMP also promotes net phosphorylation at a critical threonine residue Thr172 within the kinase domain that can generate a further 100fold activation, the combined effect being 1000fold Rattus norvegicus
2.7.11.31 leptin the classical adipokine, released from adipocytes, stimulates the alpha2 isoform of AMPK and hence fatty acid oxidation in skeletal muscle Mus musculus
2.7.11.31 leptin the classical adipokine, released from adipocytes, stimulates the alpha2 isoform of AMPK and hence fatty acid oxidation in skeletal muscle Homo sapiens
2.7.11.31 leptin the classical adipokine, released from adipocytes, stimulates the alpha2 isoform of AMPK and hence fatty acid oxidation in skeletal muscle Rattus norvegicus
2.7.11.31 metformin
-
Mus musculus
2.7.11.31 metformin
-
Homo sapiens
2.7.11.31 metformin
-
Rattus norvegicus
2.7.11.31 additional information activating phosphorylation of AMPK at Thr172 of the alpha-subunit, e.g. by CaMKKbeta or LBK1, dephosphorylation by phosphatase PP2C Homo sapiens
2.7.11.31 additional information activating phosphorylation of AMPK at Thr172 of the alpha-subunit, e.g. by CaMKKbeta or LBK1, inhibiting dephosphorylation by phosphatase PP2C Mus musculus
2.7.11.31 additional information activating phosphorylation of AMPK at Thr172 of the alpha-subunit, e.g. by CaMKKbeta or LBK1, inhibiting dephosphorylation by phosphatase PP2C Rattus norvegicus
2.7.11.31 thiazolidinediones
-
Mus musculus
2.7.11.31 thiazolidinediones
-
Homo sapiens
2.7.11.31 thiazolidinediones
-
Rattus norvegicus

Application

EC Number Application Comment Organism
2.7.11.31 drug development pharmacological activators of AMPK can act as treatments for diabetes and the metabolic syndrome Homo sapiens

Cloned(Commentary)

EC Number Cloned (Comment) Organism
2.7.11.31 alpha, beta and subunit encoding genes, phylogenetic trees Drosophila melanogaster
2.7.11.31 alpha, beta and subunit encoding genes, phylogenetic trees Mus musculus
2.7.11.31 alpha, beta and subunit encoding genes, phylogenetic trees Homo sapiens
2.7.11.31 alpha, beta and subunit encoding genes, phylogenetic trees Rattus norvegicus
2.7.11.31 alpha, beta and subunit encoding genes, phylogenetic trees Saccharomyces cerevisiae
2.7.11.31 alpha, beta and subunit encoding genes, phylogenetic trees Arabidopsis thaliana
2.7.11.31 alpha, beta and subunit encoding genes, phylogenetic trees Giardia intestinalis
2.7.11.31 alpha, beta and subunit encoding genes, phylogenetic trees Trypanosoma brucei
2.7.11.31 alpha, beta and subunit encoding genes, phylogenetic trees Dictyostelium discoideum
2.7.11.31 alpha, beta and subunit encoding genes, phylogenetic trees Schizosaccharomyces pombe
2.7.11.31 alpha, beta and subunit encoding genes, phylogenetic trees Caenorhabditis elegans
2.7.11.31 alpha, beta and subunit encoding genes, phylogenetic trees Physcomitrium patens

Protein Variants

EC Number Protein Variants Comment Organism
2.7.11.31 additional information activating mutations in AMPK can cause heart disease, detailed overview Homo sapiens
2.7.11.31 additional information construction of AMPK deficient fa/fa rats as a model for the metabolic syndrome, phenotype, overview. Activating mutations in AMPK can cause heart disease, detailed overview Rattus norvegicus
2.7.11.31 additional information construction of AMPK deficient ob/ob mice as a model for the metabolic syndrome, phenotype, overview. Activating mutations in AMPK can cause heart disease, detailed overview Mus musculus

Inhibitors

EC Number Inhibitors Comment Organism Structure
2.7.11.31 additional information activating phosphorylation of AMPK at Thr172 of the alpha-subunit, e.g. by CaMKKbeta or LBK1, inhibiting dephosphorylation by phosphatase PP2C Homo sapiens
2.7.11.31 additional information activating phosphorylation of AMPK at Thr172 of the alpha-subunit, e.g. by CaMKKbeta or LBK1, inhibiting dephosphorylation by phosphatase PP2C Mus musculus
2.7.11.31 additional information activating phosphorylation of AMPK at Thr172 of the alpha-subunit, e.g. by CaMKKbeta or LBK1, inhibiting dephosphorylation by phosphatase PP2C Rattus norvegicus

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
2.7.11.31 Mg2+
-
Drosophila melanogaster
2.7.11.31 Mg2+
-
Mus musculus
2.7.11.31 Mg2+
-
Homo sapiens
2.7.11.31 Mg2+
-
Rattus norvegicus
2.7.11.31 Mg2+
-
Saccharomyces cerevisiae
2.7.11.31 Mg2+
-
Arabidopsis thaliana
2.7.11.31 Mg2+
-
Giardia intestinalis
2.7.11.31 Mg2+
-
Trypanosoma brucei
2.7.11.31 Mg2+
-
Dictyostelium discoideum
2.7.11.31 Mg2+
-
Schizosaccharomyces pombe
2.7.11.31 Mg2+
-
Caenorhabditis elegans
2.7.11.31 Mg2+
-
Physcomitrium patens

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
2.7.11.31 additional information Mus musculus AMPK regulates the energy balance both at the cellular and whole body level, disorders of it are obesity, type 2 diabetes and the metabolic syndrome, overview. Activating mutations in AMPK can cause heart disease. AMPK is regulated by the AMP/ATP ratio and upstream kinases, e.g. CaMKKbeta and LBK1, overview. AMPK activation inhibits activation of the mammalian target-of-rapamycin pathway by the insulin/insulin-like growth factor-1 pathway, probably via phosphorylation of TSC2, an upstream regulator of mTOR ?
-
?
2.7.11.31 additional information Homo sapiens AMPK regulates the energy balance both at the cellular and whole body level, disorders of it are obesity, type 2 diabetes and the metabolic syndrome, overview. Activating mutations in AMPK can cause heart disease. AMPK is regulated by the AMP/ATP ratio and upstream kinases, e.g. CaMKKbeta and LBK1, overview. AMPK activation inhibits activation of the mammalian target-of-rapamycin pathway by the insulin/insulin-like growth factor-1 pathway, probably via phosphorylation of TSC2, an upstream regulator of mTOR ?
-
?
2.7.11.31 additional information Rattus norvegicus AMPK regulates the energy balance both at the cellular and whole body level, disorders of it are obesity, type 2 diabetes and the metabolic syndrome, overview. Activating mutations in AMPK can cause heart disease. AMPK is regulated by the AMP/ATP ratio and upstream kinases, e.g. CaMKKbeta and LBK1, overview. AMPK activation inhibits activation of the mammalian target-of-rapamycin pathway by the insulin/insulin-like growth factor-1 pathway, probably via phosphorylation of TSC2, an upstream regulator of mTOR ?
-
?

Organism

EC Number Organism UniProt Comment Textmining
2.7.11.31 Arabidopsis thaliana
-
-
-
2.7.11.31 Caenorhabditis elegans
-
-
-
2.7.11.31 Dictyostelium discoideum
-
-
-
2.7.11.31 Drosophila melanogaster
-
-
-
2.7.11.31 Giardia intestinalis
-
-
-
2.7.11.31 Homo sapiens
-
-
-
2.7.11.31 Mus musculus
-
-
-
2.7.11.31 Physcomitrium patens
-
-
-
2.7.11.31 Rattus norvegicus
-
-
-
2.7.11.31 Saccharomyces cerevisiae
-
-
-
2.7.11.31 Schizosaccharomyces pombe
-
-
-
2.7.11.31 Trypanosoma brucei
-
-
-

Posttranslational Modification

EC Number Posttranslational Modification Comment Organism
2.7.11.31 phosphoprotein activating phosphorylation of AMPK at Thr172 of the alpha-subunit, e.g. by CaMKKbeta or LBK1, dephosphorylation by phosphatase PP2C Mus musculus
2.7.11.31 phosphoprotein activating phosphorylation of AMPK at Thr172 of the alpha-subunit, e.g. by CaMKKbeta or LBK1, dephosphorylation by phosphatase PP2C Homo sapiens
2.7.11.31 phosphoprotein activating phosphorylation of AMPK at Thr172 of the alpha-subunit, e.g. by CaMKKbeta or LBK1, dephosphorylation by phosphatase PP2C Rattus norvegicus

Source Tissue

EC Number Source Tissue Comment Organism Textmining
2.7.11.31 adipocyte
-
Mus musculus
-
2.7.11.31 adipocyte
-
Homo sapiens
-
2.7.11.31 adipocyte
-
Rattus norvegicus
-
2.7.11.31 heart
-
Mus musculus
-
2.7.11.31 heart
-
Homo sapiens
-
2.7.11.31 heart
-
Rattus norvegicus
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
2.7.11.31 additional information AMPK regulates the energy balance both at the cellular and whole body level, disorders of it are obesity, type 2 diabetes and the metabolic syndrome, overview. Activating mutations in AMPK can cause heart disease. AMPK is regulated by the AMP/ATP ratio and upstream kinases, e.g. CaMKKbeta and LBK1, overview. AMPK activation inhibits activation of the mammalian target-of-rapamycin pathway by the insulin/insulin-like growth factor-1 pathway, probably via phosphorylation of TSC2, an upstream regulator of mTOR Mus musculus ?
-
?
2.7.11.31 additional information AMPK regulates the energy balance both at the cellular and whole body level, disorders of it are obesity, type 2 diabetes and the metabolic syndrome, overview. Activating mutations in AMPK can cause heart disease. AMPK is regulated by the AMP/ATP ratio and upstream kinases, e.g. CaMKKbeta and LBK1, overview. AMPK activation inhibits activation of the mammalian target-of-rapamycin pathway by the insulin/insulin-like growth factor-1 pathway, probably via phosphorylation of TSC2, an upstream regulator of mTOR Homo sapiens ?
-
?
2.7.11.31 additional information AMPK regulates the energy balance both at the cellular and whole body level, disorders of it are obesity, type 2 diabetes and the metabolic syndrome, overview. Activating mutations in AMPK can cause heart disease. AMPK is regulated by the AMP/ATP ratio and upstream kinases, e.g. CaMKKbeta and LBK1, overview. AMPK activation inhibits activation of the mammalian target-of-rapamycin pathway by the insulin/insulin-like growth factor-1 pathway, probably via phosphorylation of TSC2, an upstream regulator of mTOR Rattus norvegicus ?
-
?

Subunits

EC Number Subunits Comment Organism
2.7.11.31 trimer AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits Drosophila melanogaster
2.7.11.31 trimer AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits Saccharomyces cerevisiae
2.7.11.31 trimer AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits Arabidopsis thaliana
2.7.11.31 trimer AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits Giardia intestinalis
2.7.11.31 trimer AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits Trypanosoma brucei
2.7.11.31 trimer AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits Dictyostelium discoideum
2.7.11.31 trimer AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits Schizosaccharomyces pombe
2.7.11.31 trimer AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits Caenorhabditis elegans
2.7.11.31 trimer AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits Physcomitrium patens
2.7.11.31 trimer AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits, with multiple genes encoding each subunit in mammals, alpha1, alpha2, beta1, beta2, gamma1, gamma2, gamma3 Mus musculus
2.7.11.31 trimer AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits, with multiple genes encoding each subunit in mammals, alpha1, alpha2, beta1, beta2, gamma1, gamma2, gamma3 Homo sapiens
2.7.11.31 trimer AMPK exists as heterotrimeric complexes comprising catalytic alpha subunits and regulatory beta and gamma subunits, with multiple genes encoding each subunit in mammals, alpha1, alpha2, beta1, beta2, gamma1, gamma2, gamma3 Rattus norvegicus

Synonyms

EC Number Synonyms Comment Organism
2.7.11.31 AMP-activated protein kinase
-
Drosophila melanogaster
2.7.11.31 AMP-activated protein kinase
-
Mus musculus
2.7.11.31 AMP-activated protein kinase
-
Homo sapiens
2.7.11.31 AMP-activated protein kinase
-
Rattus norvegicus
2.7.11.31 AMP-activated protein kinase
-
Saccharomyces cerevisiae
2.7.11.31 AMP-activated protein kinase
-
Arabidopsis thaliana
2.7.11.31 AMP-activated protein kinase
-
Giardia intestinalis
2.7.11.31 AMP-activated protein kinase
-
Trypanosoma brucei
2.7.11.31 AMP-activated protein kinase
-
Dictyostelium discoideum
2.7.11.31 AMP-activated protein kinase
-
Schizosaccharomyces pombe
2.7.11.31 AMP-activated protein kinase
-
Caenorhabditis elegans
2.7.11.31 AMP-activated protein kinase
-
Physcomitrium patens
2.7.11.31 AMPK
-
Drosophila melanogaster
2.7.11.31 AMPK
-
Mus musculus
2.7.11.31 AMPK
-
Homo sapiens
2.7.11.31 AMPK
-
Rattus norvegicus
2.7.11.31 AMPK
-
Saccharomyces cerevisiae
2.7.11.31 AMPK
-
Arabidopsis thaliana
2.7.11.31 AMPK
-
Giardia intestinalis
2.7.11.31 AMPK
-
Trypanosoma brucei
2.7.11.31 AMPK
-
Dictyostelium discoideum
2.7.11.31 AMPK
-
Schizosaccharomyces pombe
2.7.11.31 AMPK
-
Caenorhabditis elegans
2.7.11.31 AMPK
-
Physcomitrium patens

Cofactor

EC Number Cofactor Comment Organism Structure
2.7.11.31 ATP
-
Drosophila melanogaster
2.7.11.31 ATP
-
Mus musculus
2.7.11.31 ATP
-
Homo sapiens
2.7.11.31 ATP
-
Rattus norvegicus
2.7.11.31 ATP
-
Saccharomyces cerevisiae
2.7.11.31 ATP
-
Arabidopsis thaliana
2.7.11.31 ATP
-
Giardia intestinalis
2.7.11.31 ATP
-
Trypanosoma brucei
2.7.11.31 ATP
-
Dictyostelium discoideum
2.7.11.31 ATP
-
Schizosaccharomyces pombe
2.7.11.31 ATP
-
Caenorhabditis elegans
2.7.11.31 ATP
-
Physcomitrium patens