Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Goldberg, A.L.; Moerschell, R.P.; Chung, C.H.; Maurizi, M.R.
    ATP-dependent protease La (lon) from Escherichia coli (1994), Methods Enzymol., 244, 350-375.
    View publication on PubMed

Activating Compound

EC Number Activating Compound Comment Organism Structure
3.4.21.53 adenosine 5'-(3-thiotriphosphate) i.e. adenosine 5'-O-(thiotriphosphate) or ATP-gamma-S, activation Escherichia coli
3.4.21.53 adenosine 5'-(3-thiotriphosphate) not bovine serum albumin hydrolysis Escherichia coli
3.4.21.53 adenosine 5'-(3-thiotriphosphate) activates, hydrolysis of casein or glutaryl-Ala-Ala-Phe-methoxynaphthylamide Escherichia coli
3.4.21.53 Adenyl-5'-yl imidodiphosphate i.e. AMP-PNP, activation Escherichia coli
3.4.21.53 adenyl-5'-yl methylene diphosphonate i.e. AMP-PCP, activation Escherichia coli
3.4.21.53 casein ATP hydrolysis Escherichia coli
3.4.21.53 casein ATP hydrolysis Rattus norvegicus
3.4.21.53 Denatured albumin activation, ATP hydrolysis Escherichia coli
3.4.21.53 Globin ATP hydrolysis Escherichia coli
3.4.21.53 GTP activation Escherichia coli
3.4.21.53 GTP less efficient than ATP Escherichia coli
3.4.21.53 additional information enzyme hydroylzes proteins and ATP in a coupled process Brevibacillus brevis
3.4.21.53 additional information enzyme hydroylzes proteins and ATP in a coupled process Escherichia coli
3.4.21.53 additional information enzyme hydroylzes proteins and ATP in a coupled process Rattus norvegicus
3.4.21.53 additional information enzyme hydroylzes proteins and ATP in a coupled process Saccharomyces cerevisiae
3.4.21.53 additional information enzyme hydroylzes proteins and ATP in a coupled process Myxococcus xanthus
3.4.21.53 additional information nonhydrolyzable ATP-analogs are much less effective than ATP in supporting hydrolysis of large proteins Brevibacillus brevis
3.4.21.53 additional information nonhydrolyzable ATP-analogs are much less effective than ATP in supporting hydrolysis of large proteins Escherichia coli
3.4.21.53 additional information nonhydrolyzable ATP-analogs are much less effective than ATP in supporting hydrolysis of large proteins Rattus norvegicus
3.4.21.53 additional information nonhydrolyzable ATP-analogs are much less effective than ATP in supporting hydrolysis of large proteins Saccharomyces cerevisiae
3.4.21.53 additional information nonhydrolyzable ATP-analogs are much less effective than ATP in supporting hydrolysis of large proteins Myxococcus xanthus
3.4.21.53 additional information no activation by ubiquitin Brevibacillus brevis
3.4.21.53 additional information no activation by ubiquitin Escherichia coli
3.4.21.53 additional information no activation by ubiquitin Rattus norvegicus
3.4.21.53 additional information no activation by ubiquitin Saccharomyces cerevisiae
3.4.21.53 additional information no activation by ubiquitin Myxococcus xanthus
3.4.21.53 additional information no activation by mRNA, tRNA, poly(rA), (dT)10 Brevibacillus brevis
3.4.21.53 additional information no activation by mRNA, tRNA, poly(rA), (dT)10 Escherichia coli
3.4.21.53 additional information no activation by mRNA, tRNA, poly(rA), (dT)10 Rattus norvegicus
3.4.21.53 additional information no activation by mRNA, tRNA, poly(rA), (dT)10 Saccharomyces cerevisiae
3.4.21.53 additional information no activation by mRNA, tRNA, poly(rA), (dT)10 Myxococcus xanthus
3.4.21.53 Poly(dT) activation Escherichia coli
3.4.21.53 Poly(rC) activation Escherichia coli
3.4.21.53 Poly(rU) activation Escherichia coli
3.4.21.53 single stranded DNA ATP and protein hydrolysis Escherichia coli

Inhibitors

EC Number Inhibitors Comment Organism Structure
3.4.21.53 3,4-dichloroisocoumarin
-
Escherichia coli
3.4.21.53 ADP
-
Escherichia coli
3.4.21.53 ADP
-
Rattus norvegicus
3.4.21.53 Bacteriophage T4 protease inhibitor PinA
-
Escherichia coli
3.4.21.53 benzyloxycarbonyl-Gly-Leu-Phe chloromethyl ketone
-
Escherichia coli
3.4.21.53 benzyloxycarbonyl-Phe chloromethyl ketone
-
Escherichia coli
3.4.21.53 Dansyl fluoride protein and ATP hydrolysis Escherichia coli
3.4.21.53 diisopropyl fluorophosphate
-
Escherichia coli
3.4.21.53 diisopropyl fluorophosphate
-
Rattus norvegicus
3.4.21.53 glycerol above 5% Escherichia coli
3.4.21.53 iodoacetamide
-
Escherichia coli
3.4.21.53 iodoacetamide
-
Rattus norvegicus
3.4.21.53 N-ethylmaleimide
-
Escherichia coli
3.4.21.53 N-ethylmaleimide
-
Rattus norvegicus
3.4.21.53 N-ethylmaleimide
-
Saccharomyces cerevisiae
3.4.21.53 tosyl-Lys chloromethyl ketone weak, casein as substrate, no inhibition with glutaryl-Ala-Ala-Phe methoxynaphthylamide as substrate Escherichia coli
3.4.21.53 tosyl-Phe chloromethyl ketone
-
Escherichia coli
3.4.21.53 vanadate decavanadate (not orthovanadate) Escherichia coli
3.4.21.53 vanadate
-
Rattus norvegicus

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
3.4.21.53 0.05
-
ATP ATP hydrolysis and protein hydrolysis, value below Escherichia coli

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
3.4.21.53 Ca2+ with equal efficiency in peptide hydrolysis (not protein hydrolysis) Escherichia coli
3.4.21.53 Ca2+ less effective in caseinolysis Escherichia coli
3.4.21.53 Ca2+ poor substitute for Mg2+ in ATP hydrolysis Escherichia coli
3.4.21.53 Ca2+ activation, as Ca2+-ATP Escherichia coli
3.4.21.53 Ca2+ slight Escherichia coli
3.4.21.53 diphosphate activation Escherichia coli
3.4.21.53 Mg2+ requirement Brevibacillus brevis
3.4.21.53 Mg2+ requirement Escherichia coli
3.4.21.53 Mg2+ requirement Rattus norvegicus
3.4.21.53 Mg2+ requirement Saccharomyces cerevisiae
3.4.21.53 Mg2+ requirement Myxococcus xanthus
3.4.21.53 Mg2+ ATP hydrolysis and protease activity Brevibacillus brevis
3.4.21.53 Mg2+ ATP hydrolysis and protease activity Escherichia coli
3.4.21.53 Mg2+ ATP hydrolysis and protease activity Rattus norvegicus
3.4.21.53 Mg2+ ATP hydrolysis and protease activity Saccharomyces cerevisiae
3.4.21.53 Mg2+ ATP hydrolysis and protease activity Myxococcus xanthus
3.4.21.53 Triphosphate activation Escherichia coli

Molecular Weight [Da]

EC Number Molecular Weight [Da] Molecular Weight Maximum [Da] Comment Organism
3.4.21.53 additional information
-
E. coli enzyme behaves as apparent tetramer or octamer on gel filtration Brevibacillus brevis
3.4.21.53 additional information
-
E. coli enzyme behaves as apparent tetramer or octamer on gel filtration Escherichia coli
3.4.21.53 additional information
-
E. coli enzyme behaves as apparent tetramer or octamer on gel filtration Rattus norvegicus
3.4.21.53 additional information
-
E. coli enzyme behaves as apparent tetramer or octamer on gel filtration Saccharomyces cerevisiae
3.4.21.53 additional information
-
E. coli enzyme behaves as apparent tetramer or octamer on gel filtration Myxococcus xanthus
3.4.21.53 additional information
-
amino acid sequence compared to other Lon-protein sequences Brevibacillus brevis
3.4.21.53 additional information
-
amino acid sequence compared to other Lon-protein sequences Escherichia coli
3.4.21.53 additional information
-
amino acid sequence compared to other Lon-protein sequences Rattus norvegicus
3.4.21.53 additional information
-
amino acid sequence compared to other Lon-protein sequences Saccharomyces cerevisiae
3.4.21.53 additional information
-
amino acid sequence compared to other Lon-protein sequences Myxococcus xanthus
3.4.21.53 88000
-
x * 88000, calculated from nucleotide sequence Escherichia coli
3.4.21.53 94000
-
x * 94000, SDS-PAGE Escherichia coli
3.4.21.53 800000
-
E. coli, gel filtration Escherichia coli
3.4.21.53 840000 900000 E. coli, calculated from sedimentation coefficient and Stokes radius Escherichia coli

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
3.4.21.53 Abnormal puromucyl peptides + H2O Escherichia coli not in vitro ?
-
?
3.4.21.53 Canavanine-containing proteins + H2O Escherichia coli not in vitro ?
-
?
3.4.21.53 additional information Escherichia coli ATP-dependent serine protease ?
-
?
3.4.21.53 additional information Rattus norvegicus ATP-dependent serine protease ?
-
?
3.4.21.53 additional information Escherichia coli essential for growth of yeast on nonfermentable carbon sources ?
-
?
3.4.21.53 Mutant form of alkaline phosphatase PhoA61 + H2O Escherichia coli not in vitro ?
-
?
3.4.21.53 Proteins with highly abnormal conformation + H2O Escherichia coli one of the heat-shock proteins under control of rpoH operon(htp R) ?
-
?
3.4.21.53 Proteins with highly abnormal conformation + H2O Escherichia coli catalyzes inital step in the degradation of proteins with abnormal conformation as may result from nonsense or missense mutations, biosynthetic errors or intracellular denaturation ?
-
?

Organism

EC Number Organism UniProt Comment Textmining
3.4.21.53 Brevibacillus brevis
-
-
-
3.4.21.53 Escherichia coli
-
-
-
3.4.21.53 Myxococcus xanthus
-
-
-
3.4.21.53 Rattus norvegicus
-
-
-
3.4.21.53 Saccharomyces cerevisiae
-
-
-

Reaction

EC Number Reaction Comment Organism Reaction ID
3.4.21.53 hydrolysis of proteins in presence of ATP hydrolysis of proteins in presence of ATP, mechanism Brevibacillus brevis
3.4.21.53 hydrolysis of proteins in presence of ATP hydrolysis of proteins in presence of ATP, mechanism Escherichia coli
3.4.21.53 hydrolysis of proteins in presence of ATP hydrolysis of proteins in presence of ATP, mechanism Rattus norvegicus
3.4.21.53 hydrolysis of proteins in presence of ATP hydrolysis of proteins in presence of ATP, mechanism Saccharomyces cerevisiae
3.4.21.53 hydrolysis of proteins in presence of ATP hydrolysis of proteins in presence of ATP, mechanism Myxococcus xanthus

Source Tissue

EC Number Source Tissue Comment Organism Textmining
3.4.21.53 liver
-
Rattus norvegicus
-

Specific Activity [micromol/min/mg]

EC Number Specific Activity Minimum [µmol/min/mg] Specific Activity Maximum [µmol/min/mg] Comment Organism
3.4.21.53 additional information
-
-
Saccharomyces cerevisiae
3.4.21.53 additional information
-
0.05167 mg casein/mg enzyme/min (Escherichia coli) Escherichia coli

Storage Stability

EC Number Storage Stability Organism
3.4.21.53 -70°C, in 20-30 glycerol, many months, with prolonged storage the enzyme exhibits ATP-independent peptidase activity Escherichia coli

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
3.4.21.53 Abnormal puromucyl peptides + H2O not in vitro Escherichia coli ?
-
?
3.4.21.53 ATP + H2O
-
Escherichia coli phosphate + ADP
-
?
3.4.21.53 Bacteriophage lambda protein N + H2O
-
Escherichia coli Hydrolyzed bacteriophage lambda protein N
-
?
3.4.21.53 Canavanine-containing proteins + H2O not in vitro Escherichia coli ?
-
?
3.4.21.53 casein + H2O alpha-casein Brevibacillus brevis hydrolyzed casein
-
?
3.4.21.53 casein + H2O alpha-casein Escherichia coli hydrolyzed casein
-
?
3.4.21.53 casein + H2O alpha-casein Rattus norvegicus hydrolyzed casein
-
?
3.4.21.53 casein + H2O alpha-casein Saccharomyces cerevisiae hydrolyzed casein
-
?
3.4.21.53 casein + H2O alpha-casein Myxococcus xanthus hydrolyzed casein
-
?
3.4.21.53 casein + H2O methylcasein Brevibacillus brevis hydrolyzed casein
-
?
3.4.21.53 casein + H2O methylcasein Escherichia coli hydrolyzed casein
-
?
3.4.21.53 casein + H2O methylcasein Rattus norvegicus hydrolyzed casein
-
?
3.4.21.53 casein + H2O methylcasein Saccharomyces cerevisiae hydrolyzed casein
-
?
3.4.21.53 casein + H2O methylcasein Myxococcus xanthus hydrolyzed casein
-
?
3.4.21.53 casein + H2O beta-casein Brevibacillus brevis hydrolyzed casein
-
?
3.4.21.53 casein + H2O beta-casein Escherichia coli hydrolyzed casein
-
?
3.4.21.53 casein + H2O beta-casein Rattus norvegicus hydrolyzed casein
-
?
3.4.21.53 casein + H2O beta-casein Saccharomyces cerevisiae hydrolyzed casein
-
?
3.4.21.53 casein + H2O beta-casein Myxococcus xanthus hydrolyzed casein
-
?
3.4.21.53 Denatured albumin + H2O
-
Escherichia coli ?
-
?
3.4.21.53 Denatured bovine serum albumin + H2O
-
Escherichia coli ?
-
?
3.4.21.53 Fluorogenic peptides + H2O
-
Escherichia coli ?
-
?
3.4.21.53 Globin + H2O
-
Escherichia coli ?
-
?
3.4.21.53 Glucagon + H2O
-
Escherichia coli Hydrolyzed glucagon
-
?
3.4.21.53 Glutaryl-Ala-Ala-Ala-methoxynaphthylamide + H2O hydrolyzed at 3-4% the rate of glutaryl-Ala-Ala-Phe-methoxynaphthylamide Escherichia coli Glutaryl-Ala-Ala-Ala + methoxynaphthylamine
-
?
3.4.21.53 Glutaryl-Ala-Ala-Phe-methoxynaphthylamide + H2O
-
Escherichia coli Glutaryl-Ala-Ala-Phe + methoxynaphthylamine
-
?
3.4.21.53 Glutaryl-Gly-Gly-Pro-methoxynaphthylamide + H2O hydrolyzed at 6% the rate of glutaryl-Ala-Ala-Phe-methoxynaphthylamide Escherichia coli Glutaryl-Gly-Gly-Pro + methoxynaphthylamine
-
?
3.4.21.53 additional information ATP-dependent serine protease Escherichia coli ?
-
?
3.4.21.53 additional information ATP-dependent serine protease Rattus norvegicus ?
-
?
3.4.21.53 additional information mutant enzyme in which active site Ser-679 is replaced by Ala lacks peptidase but retains ATPase activity Escherichia coli ?
-
?
3.4.21.53 additional information essential for growth of yeast on nonfermentable carbon sources Escherichia coli ?
-
?
3.4.21.53 Mutant form of alkaline phosphatase PhoA61 + H2O not in vitro Escherichia coli ?
-
?
3.4.21.53 Oxidized insulin B-chain + H2O cleavage sites Escherichia coli Hydrolyzed insulin B-chain
-
?
3.4.21.53 Proteins with highly abnormal conformation + H2O one of the heat-shock proteins under control of rpoH operon(htp R) Escherichia coli ?
-
?
3.4.21.53 Proteins with highly abnormal conformation + H2O catalyzes inital step in the degradation of proteins with abnormal conformation as may result from nonsense or missense mutations, biosynthetic errors or intracellular denaturation Escherichia coli ?
-
?
3.4.21.53 Succinyl-Ala-Ala-Phe-methoxynaphthylamide + H2O best substrate Escherichia coli Succinyl-Ala-Ala-Phe + methoxynaphthylamine
-
?
3.4.21.53 Succinyl-Ala-Ala-Phe-methoxynaphthylamide + H2O hydrolyzed at 137% the rate of glutaryl-Ala-Ala-Phe-methoxynaphthylamide Escherichia coli Succinyl-Ala-Ala-Phe + methoxynaphthylamine
-
?
3.4.21.53 Succinyl-Phe-Ala-Phe-methoxynaphthylamide + H2O
-
Escherichia coli Succinyl-Phe-Ala-Phe + methoxynaphthylamine
-
?
3.4.21.53 Unfolded polypeptides + H2O broad specificity Escherichia coli short peptides of 5-15 amino acids
-
?

Subunits

EC Number Subunits Comment Organism
3.4.21.53 multimer x * 88000, calculated from nucleotide sequence Escherichia coli
3.4.21.53 multimer x * 94000, SDS-PAGE Escherichia coli

Temperature Stability [°C]

EC Number Temperature Stability Minimum [°C] Temperature Stability Maximum [°C] Comment Organism
3.4.21.53 21
-
rapid loss of activity in the absence of glycerol. ATP, AMP-PNP or ADP stabilizes, E. coli Escherichia coli
3.4.21.53 37
-
rapid denaturation, ATP, AMP-PNP or ADP stabilizes, E. coli Escherichia coli

Cofactor

EC Number Cofactor Comment Organism Structure
3.4.21.53 ATP requirement Escherichia coli
3.4.21.53 ATP two ATP molecules are hydrolyzed for each peptide bond cleaved in proteins Escherichia coli
3.4.21.53 ATP ATP-dependent protease Brevibacillus brevis
3.4.21.53 ATP ATP-dependent protease Escherichia coli
3.4.21.53 ATP ATP-dependent protease Rattus norvegicus
3.4.21.53 ATP ATP-dependent protease Saccharomyces cerevisiae
3.4.21.53 ATP ATP-dependent protease Myxococcus xanthus
3.4.21.53 ATP enzyme tetramer has high and low affinity binding sites for ATP Escherichia coli
3.4.21.53 CTP activation Escherichia coli
3.4.21.53 CTP activation Rattus norvegicus
3.4.21.53 CTP less efficient than ATP Escherichia coli
3.4.21.53 CTP less efficient than ATP Rattus norvegicus
3.4.21.53 dATP activation Escherichia coli
3.4.21.53 UTP activation Escherichia coli
3.4.21.53 UTP activation Rattus norvegicus