BRENDA - Enzyme Database
show all sequences of 7.6.2.8

Single-molecule visualization of conformational changes and substrate transport in the vitamin B12 ABC importer BtuCD-F

Goudsmits, J.M.H.; Slotboom, D.J.; van Oijen, A.M.; Nat. Commun. 8, 1652 (2017)

Data extracted from this reference:

Cloned(Commentary)
Cloned (Commentary)
Organism
genes btuC, btuD, and btuF, recombinant expression of wild-type and mutant BtuCD-F complex components
Escherichia coli
Engineering
Protein Variants
Commentary
Organism
D141C
site-directed mutagenesis of BtuF on a residue pointing outward in the middle of the alpha-helix connecting the two lobes, the mutation allows for specific coupling of fluorescent labels to each of these proteins
Escherichia coli
E159Q
site-directed mutagenesis of BtuD, an ATPase impaired mutant
Escherichia coli
additional information
the mutations and labels on BtuF and BtuC have no critical effect on ATP hydrolysis and transport activity
Escherichia coli
Q111C
site-directed mutagenesis of BtuC on the periplasmic loop connecting transmembrane (TM) helix 3 and 4
Escherichia coli
W115L
site-directed mutagenesis of BtuC to remove any quenching effects of this tryptophan on the fluorescent probes
Escherichia coli
General Stability
General Stability
Organism
evaluation of the stability of the liposome-reconstituted BtuCD-F complex during ATP hydrolysis
Escherichia coli
Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
membrane
-
Escherichia coli
16020
-
periplasm
-
Escherichia coli
-
-
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Mg2+
required
Escherichia coli
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ID
ATP + H2O + vitamin B12-[cobalamin-binding protein][side 1]
Escherichia coli
-
ADP + phosphate + vitamin B12[side 2] + [cobalamin-binding protein][side 1]
-
-
?
Organism
Organism
UniProt
Commentary
Textmining
Escherichia coli
P06609 AND P06611 AND P37028
genes btuC, btuD, and btuF encoding for vitamin B12 import system permease protein BtuC, vitamin B12 import ATP-binding protein BtuD, and vitamin B12-binding protein BtuF
-
Reaction
Reaction
Commentary
Organism
Reaction ID
ATP + H2O + vitamin B12-[cobalamin-binding protein][side 1] = ADP + phosphate + vitamin B12[side 2] + [cobalamin-binding protein][side 1]
the substrate resides in a different place than the BtuF-binding pocket. Upon binding and hydrolysis of ATP, the complex returns to state III. The transporter can cycle multiple times between states III and IV without releasing vitamin B12, resulting in a much higher ATPase rate than transport rate. This cycling is equivalent to the cycling between states I and II in the absence of substrate. Occasionally, a vitamin B12 molecule is released on the cytoplasmic side of the membrane via a proposed intermediate state. When the binding location becomes vacant, a new vitamin B12 molecule is bound rapidly. ATPase activity and transport are uncoupled and ATP hydrolysis is continuously required to (unproductively) reset the transporter
Escherichia coli
Renatured (Commentary)
Renatured (Commentary)
Organism
purified BtuCD-F complex is functionally reconstituted in liposomes
Escherichia coli
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
Substrate Product ID
ATP + H2O + vitamin B12-[cobalamin-binding protein][side 1]
-
751661
Escherichia coli
ADP + phosphate + vitamin B12[side 2] + [cobalamin-binding protein][side 1]
-
-
-
?
additional information
a vitamin B12 molecule remains bound to the liposome-reconstituted transporter complex for tens of seconds, during which several ATP hydrolysis cycles can take place, before it is being transported across the membrane. Measurements of fluorescence changes on BtuCD induced by BtuF and ATP, transport of single vitamin B12 molecules, overview
751661
Escherichia coli
?
-
-
-
-
Subunits
Subunits
Commentary
Organism
More
the homodimer BtuC spans the membrane and the two identical cytosolic ATPase domains BtuD form a sandwich dimer that couple chemical energy of two ATP molecules into structural changes of the full complex. A single substrate-binding protein (SBP) BtuF completes the transporter. BtuCD-F forms a stable complex in the ground state, analysis of crystal structures, PDB ID 2QI9 and 4DBL
Escherichia coli
Synonyms
Synonyms
Commentary
Organism
BtuC
-
Escherichia coli
BtuCD-F
-
Escherichia coli
BtuD
-
Escherichia coli
BtuF
-
Escherichia coli
vitamin B12 ABC importer
-
Escherichia coli
vitamin B12 import ATP-binding protein
-
Escherichia coli
vitamin B12 import system permease protein
-
Escherichia coli
vitamin B12-binding protein
-
Escherichia coli
Cofactor
Cofactor
Commentary
Organism
Structure
ATP
-
Escherichia coli
Cloned(Commentary) (protein specific)
Commentary
Organism
genes btuC, btuD, and btuF, recombinant expression of wild-type and mutant BtuCD-F complex components
Escherichia coli
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
ATP
-
Escherichia coli
Engineering (protein specific)
Protein Variants
Commentary
Organism
D141C
site-directed mutagenesis of BtuF on a residue pointing outward in the middle of the alpha-helix connecting the two lobes, the mutation allows for specific coupling of fluorescent labels to each of these proteins
Escherichia coli
E159Q
site-directed mutagenesis of BtuD, an ATPase impaired mutant
Escherichia coli
additional information
the mutations and labels on BtuF and BtuC have no critical effect on ATP hydrolysis and transport activity
Escherichia coli
Q111C
site-directed mutagenesis of BtuC on the periplasmic loop connecting transmembrane (TM) helix 3 and 4
Escherichia coli
W115L
site-directed mutagenesis of BtuC to remove any quenching effects of this tryptophan on the fluorescent probes
Escherichia coli
General Stability (protein specific)
General Stability
Organism
evaluation of the stability of the liposome-reconstituted BtuCD-F complex during ATP hydrolysis
Escherichia coli
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
membrane
-
Escherichia coli
16020
-
periplasm
-
Escherichia coli
-
-
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Mg2+
required
Escherichia coli
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ID
ATP + H2O + vitamin B12-[cobalamin-binding protein][side 1]
Escherichia coli
-
ADP + phosphate + vitamin B12[side 2] + [cobalamin-binding protein][side 1]
-
-
?
Renatured (Commentary) (protein specific)
Commentary
Organism
purified BtuCD-F complex is functionally reconstituted in liposomes
Escherichia coli
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ID
ATP + H2O + vitamin B12-[cobalamin-binding protein][side 1]
-
751661
Escherichia coli
ADP + phosphate + vitamin B12[side 2] + [cobalamin-binding protein][side 1]
-
-
-
?
additional information
a vitamin B12 molecule remains bound to the liposome-reconstituted transporter complex for tens of seconds, during which several ATP hydrolysis cycles can take place, before it is being transported across the membrane. Measurements of fluorescence changes on BtuCD induced by BtuF and ATP, transport of single vitamin B12 molecules, overview
751661
Escherichia coli
?
-
-
-
-
Subunits (protein specific)
Subunits
Commentary
Organism
More
the homodimer BtuC spans the membrane and the two identical cytosolic ATPase domains BtuD form a sandwich dimer that couple chemical energy of two ATP molecules into structural changes of the full complex. A single substrate-binding protein (SBP) BtuF completes the transporter. BtuCD-F forms a stable complex in the ground state, analysis of crystal structures, PDB ID 2QI9 and 4DBL
Escherichia coli
General Information
General Information
Commentary
Organism
evolution
Escherichia coli vitamin B12 transporter BtuCD-F is a type II importer and belongs to the ATP-binding cassette (ABC) transporter superfamily
Escherichia coli
additional information
the homodimer BtuC spans the membrane and the two identical cytosolic ATPase domains BtuD form a sandwich dimer that couple chemical energy of two ATP molecules into structural changes of the full complex. A single substrate-binding protein (SBP) completes the transporter. The SBP belongs to cluster A or class III and exhibits relatively small conformational changes upon substrate binding. Modeling of the transport mechanism of BtuCD-F transporters embedded in lipid bilayers at the single molecule level, overview
Escherichia coli
physiological function
ATP-binding cassette (ABC) transporters form the largest class of active membrane transport proteins. Binding and hydrolysis of ATP by their highly conserved nucleotide-binding domains drive conformational changes of the complex that mediate transport of substrate across the membrane. The transporter complex of vitamin B12 importer BtuCD-F from Escherichia coli is consisting of a periplasmic soluble binding protein BtuF that binds the ligand and the transmembrane and ATPase domains BtuCD mediating translocation
Escherichia coli
General Information (protein specific)
General Information
Commentary
Organism
evolution
Escherichia coli vitamin B12 transporter BtuCD-F is a type II importer and belongs to the ATP-binding cassette (ABC) transporter superfamily
Escherichia coli
additional information
the homodimer BtuC spans the membrane and the two identical cytosolic ATPase domains BtuD form a sandwich dimer that couple chemical energy of two ATP molecules into structural changes of the full complex. A single substrate-binding protein (SBP) completes the transporter. The SBP belongs to cluster A or class III and exhibits relatively small conformational changes upon substrate binding. Modeling of the transport mechanism of BtuCD-F transporters embedded in lipid bilayers at the single molecule level, overview
Escherichia coli
physiological function
ATP-binding cassette (ABC) transporters form the largest class of active membrane transport proteins. Binding and hydrolysis of ATP by their highly conserved nucleotide-binding domains drive conformational changes of the complex that mediate transport of substrate across the membrane. The transporter complex of vitamin B12 importer BtuCD-F from Escherichia coli is consisting of a periplasmic soluble binding protein BtuF that binds the ligand and the transmembrane and ATPase domains BtuCD mediating translocation
Escherichia coli
Other publictions for EC 7.6.2.8
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Synonyms
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
749978
Agarwal
Mechanistic basis of vitamin ...
Vibrio cholerae serotype O1, Vibrio cholerae serotype O1 ATCC 39541, Vibrio cholerae serotype O1 Classical Ogawa 395, Vibrio cholerae serotype O1 O395
Biochim. Biophys. Acta
1867
140-151
2019
-
-
1
1
-
-
-
-
1
1
-
16
-
6
-
-
-
-
-
-
-
-
20
-
1
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
-
-
-
-
-
-
1
1
-
16
-
-
-
-
-
-
-
-
20
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
749821
Okamoto
Characterization of human ATP ...
Homo sapiens
Biochem. Biophys. Res. Commun.
496
1122-1127
2018
-
-
1
-
-
-
1
-
2
1
-
1
-
3
-
-
1
-
1
-
-
-
2
-
1
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
1
-
-
2
1
-
1
-
-
-
1
1
-
-
-
2
-
1
-
-
-
1
-
-
-
-
2
2
-
-
-
750412
Santos
Functional and structural cha ...
Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842, Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, Lactobacillus delbrueckii subsp. bulgaricus JCM 1002, Lactobacillus delbrueckii subsp. bulgaricus NBRC 13953, Lactobacillus delbrueckii subsp. bulgaricus NCIMB 11778
eLife
7
e35828
2018
-
-
1
1
-
-
6
1
1
1
-
12
-
8
-
-
-
-
-
-
-
-
18
1
5
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
-
-
-
6
-
1
1
1
-
12
-
-
-
-
-
-
-
-
18
1
1
-
-
-
1
-
-
-
-
2
2
-
-
-
751644
Schmitt
Vitamin B12 import is all abo ...
Escherichia coli
Nat. Chem. Biol.
14
640-641
2018
-
-
-
-
-
-
-
-
1
1
-
1
-
1
-
-
-
1
-
-
-
-
1
-
2
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
751670
Rempel
Cysteine-mediated decyanation ...
Thiobacillus denitrificans
Nat. Commun.
9
3038
2018
-
-
1
1
-
-
-
-
1
1
-
2
-
1
-
-
1
-
-
-
-
-
4
-
4
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
-
-
-
-
-
-
1
1
-
2
-
-
-
1
-
-
-
-
4
-
1
-
-
-
1
-
-
-
-
3
3
-
-
-
751661
Goudsmits
Single-molecule visualization ...
Escherichia coli
Nat. Commun.
8
1652
2017
-
-
1
-
5
1
-
-
2
1
-
1
-
1
-
-
-
1
1
-
-
-
2
1
8
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
5
1
-
-
-
-
2
1
-
1
-
-
-
-
1
-
-
-
2
1
-
-
-
-
-
-
-
-
-
3
3
-
-
-
752215
Mireku
Structural basis of nanobody- ...
Escherichia coli
Sci. Rep.
7
14296
2017
-
-
1
1
-
-
1
-
1
1
-
1
-
3
-
-
1
-
-
-
-
-
1
-
2
1
-
-
-
1
-
-
1
1
-
-
-
-
1
1
1
-
-
-
1
1
-
1
1
-
1
-
-
-
1
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
752221
Mireku
Conformational change of a tr ...
Escherichia coli
Sci. Rep.
7
41575
2017
-
-
1
1
8
-
-
-
-
1
-
2
-
2
-
-
1
-
1
-
-
-
3
-
2
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
8
-
-
-
-
-
-
1
-
2
-
-
-
1
1
-
-
-
3
-
1
-
-
-
1
-
-
-
-
3
3
-
-
-
750063
Priess
Release of entropic spring re ...
Escherichia coli
Biophys. J.
110
2407-2418
2016
-
-
-
1
1
-
-
-
1
1
-
1
-
2
-
-
-
-
-
-
-
-
1
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
751956
Pan
ATP hydrolysis induced confor ...
Escherichia coli
PLoS ONE
11
e0166980
2016
-
-
-
-
-
-
-
-
2
1
-
1
-
1
-
-
-
-
-
-
-
-
1
1
3
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
2
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
752200
Kawaguchi
Translocation of the ABC tran ...
Homo sapiens
Sci. Rep.
6
30183
2016
-
-
1
-
1
-
-
-
3
-
-
1
-
1
-
-
-
-
-
-
-
-
1
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
3
-
-
1
-
-
-
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
2
2
-
-
-
734003
Su
Conformational motions and fun ...
Escherichia coli
Int. J. Mol. Sci.
16
17933-17951
2015
-
-
-
-
-
-
-
-
2
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
734281
Joseph
Conformational cycle of the vi ...
Escherichia coli
J. Biol. Chem.
289
3176-3185
2014
-
-
1
-
-
-
-
-
-
-
-
1
-
2
-
-
1
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
734760
Korkhov
Structure of AMP-PNP-bound Btu ...
Escherichia coli
Nat. Struct. Mol. Biol.
21
1097-1099
2014
-
-
1
1
1
-
-
-
-
-
-
1
-
2
-
-
1
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
734820
Gopinath
A vitamin B12 transporter in M ...
Mycobacterium tuberculosis
Open Biology
3
120175
2013
-
-
-
-
-
-
-
-
1
-
-
1
-
3
-
-
-
-
-
-
-
-
1
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
719509
Korkhov
Asymmetric states of vitamin B ...
Escherichia coli
FEBS Lett.
586
972-976
2012
-
-
1
1
1
-
-
-
2
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
720849
Weng
-
The conformational transition ...
Escherichia coli
PLoS ONE
7
e305465
2012
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
734771
Korkhov
Structure of AMP-PNP-bound vit ...
Escherichia coli
Nature
490
367-372
2012
-
-
-
1
2
-
-
-
1
-
-
1
-
2
-
-
1
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
2
-
-
-
-
-
1
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
719930
Di Bartolo
In vitro folding and assembly ...
Escherichia coli
J. Biol. Chem.
286
18807-18815
2011
-
-
1
-
-
-
2
2
-
-
1
-
-
2
-
-
-
-
1
-
-
-
1
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
2
-
-
1
-
-
-
-
-
1
-
-
-
1
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
719987
Joseph
Transmembrane gate movements i ...
Escherichia coli
J. Biol. Chem.
286
41008-41017
2011
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713095
Lewinson
A distinct mechanism for the A ...
Escherichia coli
Nat. Struct. Mol. Biol.
17
332-338
2010
-
-
1
-
-
-
-
-
-
-
-
3
-
3
-
-
-
-
-
-
-
-
3
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713485
Kandt
Holo-BtuF stabilizes the open ...
Escherichia coli
Proteins
78
738-753
2010
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713505
Sun
Molecular dynamics simulation ...
Escherichia coli
Sci. China C Life Sci.
53
620-630
2010
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696776
Weng
Asymmetric conformational flex ...
Haemophilus influenzae
Biophys. J.
96
1918-1930
2009
-
-
-
1
-
-
-
-
1
-
-
2
-
1
-
-
-
-
-
-
-
-
2
2
2
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
697950
Goetz
Distinct gate conformations of ...
Escherichia coli
FEBS Lett.
583
266-270
2009
-
-
1
1
3
-
-
-
2
1
-
1
-
4
-
-
1
-
-
-
-
-
2
1
1
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
3
-
-
-
-
-
2
1
-
1
-
-
-
1
-
-
-
-
2
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
685614
Liu
Study on the mechanism of the ...
Escherichia coli
Biophys. Chem.
135
19-24
2008
-
-
-
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
1
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685626
Weng
The conformational coupling an ...
Escherichia coli
Biophys. J.
94
612-621
2008
-
-
-
-
-
-
-
-
2
-
-
1
-
2
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685135
Ivetac
Dynamics and function in a bac ...
Escherichia coli
Biochemistry
46
2767-2778
2007
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
1
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685616
Sonne
Simulation of the coupling bet ...
Escherichia coli
Biophys. J.
92
2727-2734
2007
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
1
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
690056
Hvorup
Asymmetry in the structure of ...
Escherichia coli
Science
317
1387-1390
2007
-
-
-
1
-
-
-
-
2
-
-
1
-
3
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685066
Kandt
Opening and closing motions in ...
Escherichia coli
Biochemistry
45
13284-13292
2006
-
-
-
-
-
-
-
-
1
-
-
1
-
3
-
-
-
-
-
-
1
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
667642
Borths
In vitro functional characteri ...
Escherichia coli
Biochemistry
44
16301-16309
2005
1
-
1
-
-
1
2
-
3
-
-
-
-
2
-
-
1
-
-
-
5
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
2
-
-
3
-
-
-
-
-
-
1
-
-
5
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210327
Kadner
Vitamin B12 transport in Esche ...
Escherichia coli
Mol. Microbiol.
12
2027-2033
1990
-
-
1
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210328
Rioux
Vitamin B12 transport in Esche ...
Escherichia coli
Mol. Gen. Genet.
217
301-308
1989
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210331
Rioux
Two outer membrane transport s ...
Salmonella enterica subsp. enterica serovar Typhimurium
J. Bacteriol.
171
2986-2993
1989
-
-
1
-
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210326
Friedrich
Nucleotide sequence of the btu ...
Escherichia coli
J. Bacteriol.
167
928-934
1986
-
-
1
-
-
-
-
-
2
-
3
1
-
3
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
3
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210329
De Vaux
Identification of the btuCED p ...
Escherichia coli
J. Bacteriol.
167
920-927
1986
-
-
-
-
-
-
-
-
2
-
4
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
4
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210330
De Vaux
Transport of vitamin B12 in Es ...
Escherichia coli
J. Bacteriol.
162
888-896
1985
-
-
1
-
-
-
-
-
-
-
-
1
-
4
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-