BRENDA - Enzyme Database
show all sequences of 7.6.2.8

Conformational change of a tryptophan residue in BtuF facilitates binding and transport of cobinamide by the vitamin B12 transporter BtuCD-F

Mireku, S.A.; Ruetz, M.; Zhou, T.; Korkhov, V.M.; Kraeutler, B.; Locher, K.P.; Sci. Rep. 7, 41575 (2017)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
recombinant expression of N-terminally His10-tagged BtuCD in Escherichia coli, recombinant expression of wild-type and mutant His6-tagged BtuF variants in Escherichia coli
Escherichia coli
Crystallization (Commentary)
Crystallization
Organism
analysis of the cobinamide (Cbi)-bound BtuF crystal structure model, PDB ID 5M29, crystal structures of Cbi-bound BtuF mutants W66F, W66Y and W66L, sitting drop vapor diffusion technique, mixing of 20 mg/ml protein in 10 mM Tris pH 8 and 100 mM NaCl, with precipitant solution containing 1% w/v tryptone, 50 mM HEPES, pH 7.0, and 12% w/v PEG 3350, 1-2 weeks, 20°C, X-ray diffraction structure determination and analysis at 1.5-1.7 A resolution, molecular replacement using the BtuF structure (PDB ID 1N2Z) as search model
Escherichia coli
Engineering
Amino acid exchange
Commentary
Organism
additional information
site-directed mutagenesis of tryptophan residue W66 in the substrate binding cleft , the affinity for cobinamide of the W66X mutants is lower except for W66F. Three mutants with impaired Cbi binding (W66A, W66R, and W66E) and one with high binding affinity (W66F) are used for transport assays. Despite having lower Cbi binding affinities, Cbi transport is hardly affected by W66X substitution
Escherichia coli
W66A
site-directed mutagenesis, reduces the affinity for cobinamide severalfold compared to wild-type
Escherichia coli
W66E
site-directed mutagenesis, reduces the affinity for cobinamide severalfold compared to wild-type
Escherichia coli
W66F
site-directed mutagenesis, does not reduce the affinity for cobinamide severalfold compared to wild-type
Escherichia coli
W66H
site-directed mutagenesis, reduces the affinity for cobinamide 10fold compared to wild-type
Escherichia coli
W66L
site-directed mutagenesis, reduces the affinity for cobinamide 3fold compared to wild-type
Escherichia coli
W66R
site-directed mutagenesis, reduces the affinity for cobinamide 10fold compared to wild-type
Escherichia coli
W66Y
site-directed mutagenesis, reduces the affinity for cobinamide severalfold compared to wild-type
Escherichia coli
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Mg2+
required
Escherichia coli
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ATP + H2O + cobinamide-[cobalamin-binding protein][side 1]
Escherichia coli
-
ADP + phosphate + cobinamide[side 2] + [cobalamin-binding protein][side 1]
-
-
?
ATP + H2O + vitamin B12-[cobalamin-binding protein][side 1]
Escherichia coli
-
ADP + phosphate + vitamin B12[side 2] + [cobalamin-binding protein][side 1]
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Escherichia coli
P06609 AND P06611 AND P37028
genes btuC, btuD, and btuF encoding for vitamin B12 import system permease protein BtuC, vitamin B12 import ATP-binding protein BtuD, and vitamin B12-binding protein BtuF
-
Purification (Commentary)
Commentary
Organism
recombinant N-terminally His10-tagged BtuCD from Escherichia coli and recombinant wild-type and mutant His6-tagged BtuF variants from Escherichia coli by nickel affinity chromatography
Escherichia coli
Renatured (Commentary)
Commentary
Organism
liposome reconstitution of recombinant purified BtuCD
Escherichia coli
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ATP + H2O + cobinamide-[cobalamin-binding protein][side 1]
-
752221
Escherichia coli
ADP + phosphate + cobinamide[side 2] + [cobalamin-binding protein][side 1]
-
-
-
?
ATP + H2O + vitamin B12-[cobalamin-binding protein][side 1]
-
752221
Escherichia coli
ADP + phosphate + vitamin B12[side 2] + [cobalamin-binding protein][side 1]
-
-
-
?
additional information
BtuCD-F catalyzes the uptake of cobinamide, a cobalamin precursor, and cobalamin. BtuCD-catalyzed in vitro transport of cyano-cobinamide and of cobalamin is ATP- and BtuF-dependent. Tryptophan residue W66 of BtuF is involved in the substrate binding of cobalamin
752221
Escherichia coli
?
-
-
-
-
Temperature Optimum [°C]
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
22
-
assay at
Escherichia coli
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7.5
-
assay at
Escherichia coli
Cofactor
Cofactor
Commentary
Organism
Structure
ATP
-
Escherichia coli
Cloned(Commentary) (protein specific)
Commentary
Organism
recombinant expression of N-terminally His10-tagged BtuCD in Escherichia coli, recombinant expression of wild-type and mutant His6-tagged BtuF variants in Escherichia coli
Escherichia coli
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
ATP
-
Escherichia coli
Crystallization (Commentary) (protein specific)
Crystallization
Organism
analysis of the cobinamide (Cbi)-bound BtuF crystal structure model, PDB ID 5M29, crystal structures of Cbi-bound BtuF mutants W66F, W66Y and W66L, sitting drop vapor diffusion technique, mixing of 20 mg/ml protein in 10 mM Tris pH 8 and 100 mM NaCl, with precipitant solution containing 1% w/v tryptone, 50 mM HEPES, pH 7.0, and 12% w/v PEG 3350, 1-2 weeks, 20°C, X-ray diffraction structure determination and analysis at 1.5-1.7 A resolution, molecular replacement using the BtuF structure (PDB ID 1N2Z) as search model
Escherichia coli
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
additional information
site-directed mutagenesis of tryptophan residue W66 in the substrate binding cleft , the affinity for cobinamide of the W66X mutants is lower except for W66F. Three mutants with impaired Cbi binding (W66A, W66R, and W66E) and one with high binding affinity (W66F) are used for transport assays. Despite having lower Cbi binding affinities, Cbi transport is hardly affected by W66X substitution
Escherichia coli
W66A
site-directed mutagenesis, reduces the affinity for cobinamide severalfold compared to wild-type
Escherichia coli
W66E
site-directed mutagenesis, reduces the affinity for cobinamide severalfold compared to wild-type
Escherichia coli
W66F
site-directed mutagenesis, does not reduce the affinity for cobinamide severalfold compared to wild-type
Escherichia coli
W66H
site-directed mutagenesis, reduces the affinity for cobinamide 10fold compared to wild-type
Escherichia coli
W66L
site-directed mutagenesis, reduces the affinity for cobinamide 3fold compared to wild-type
Escherichia coli
W66R
site-directed mutagenesis, reduces the affinity for cobinamide 10fold compared to wild-type
Escherichia coli
W66Y
site-directed mutagenesis, reduces the affinity for cobinamide severalfold compared to wild-type
Escherichia coli
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Mg2+
required
Escherichia coli
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ATP + H2O + cobinamide-[cobalamin-binding protein][side 1]
Escherichia coli
-
ADP + phosphate + cobinamide[side 2] + [cobalamin-binding protein][side 1]
-
-
?
ATP + H2O + vitamin B12-[cobalamin-binding protein][side 1]
Escherichia coli
-
ADP + phosphate + vitamin B12[side 2] + [cobalamin-binding protein][side 1]
-
-
?
Purification (Commentary) (protein specific)
Commentary
Organism
recombinant N-terminally His10-tagged BtuCD from Escherichia coli and recombinant wild-type and mutant His6-tagged BtuF variants from Escherichia coli by nickel affinity chromatography
Escherichia coli
Renatured (Commentary) (protein specific)
Commentary
Organism
liposome reconstitution of recombinant purified BtuCD
Escherichia coli
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ATP + H2O + cobinamide-[cobalamin-binding protein][side 1]
-
752221
Escherichia coli
ADP + phosphate + cobinamide[side 2] + [cobalamin-binding protein][side 1]
-
-
-
?
ATP + H2O + vitamin B12-[cobalamin-binding protein][side 1]
-
752221
Escherichia coli
ADP + phosphate + vitamin B12[side 2] + [cobalamin-binding protein][side 1]
-
-
-
?
additional information
BtuCD-F catalyzes the uptake of cobinamide, a cobalamin precursor, and cobalamin. BtuCD-catalyzed in vitro transport of cyano-cobinamide and of cobalamin is ATP- and BtuF-dependent. Tryptophan residue W66 of BtuF is involved in the substrate binding of cobalamin
752221
Escherichia coli
?
-
-
-
-
Temperature Optimum [°C] (protein specific)
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
22
-
assay at
Escherichia coli
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7.5
-
assay at
Escherichia coli
General Information
General Information
Commentary
Organism
malfunction
substitution of W66 in BtuF with tyrosine or leucine reduced the affinity 3fold compared to wild-type, and a change to histidine or arginine reduces it more than 10fold
Escherichia coli
additional information
the crystal structure of cobinamide-bound BtuF reveals a conformational change of a tryptophan residue W66 in the substrate binding cleft compared to the structure of cobalamin-bound BtuF, molecular dynamics simulations. BtuF is a class III periplasmic substrate binding protein
Escherichia coli
physiological function
ATP-binding cassette (ABC) transporters are a large family of integral membrane proteins and involved in nutrient uptake, drug extrusion, and lipid homeostasis. They use the energy of ATP binding and hydrolysis to power substrate transport across the lipid bilayer. BtuCD-F is an ABC transporter that mediates cobalamin (Cbl) uptake into Escherichia coli, Escherichia coli is unable to synthesize Cbl de novo. BtuCD-F might also be involved in the uptake of cobinamide, a cobalamin precursor. Precursor cobinamide (Cbi) lacks the 5,6-dimethylbenzimidazole (DMB) moiety and sugar-phosphate linker and is therefore smaller than Cbl. BtuCD-catalyzed in vitro transport of cyano-cobinamide is ATP- and BtuF-dependent. BtuF residue W66 is important for high affinity Cbi binding, but not for substrate delivery or transport
Escherichia coli
General Information (protein specific)
General Information
Commentary
Organism
malfunction
substitution of W66 in BtuF with tyrosine or leucine reduced the affinity 3fold compared to wild-type, and a change to histidine or arginine reduces it more than 10fold
Escherichia coli
additional information
the crystal structure of cobinamide-bound BtuF reveals a conformational change of a tryptophan residue W66 in the substrate binding cleft compared to the structure of cobalamin-bound BtuF, molecular dynamics simulations. BtuF is a class III periplasmic substrate binding protein
Escherichia coli
physiological function
ATP-binding cassette (ABC) transporters are a large family of integral membrane proteins and involved in nutrient uptake, drug extrusion, and lipid homeostasis. They use the energy of ATP binding and hydrolysis to power substrate transport across the lipid bilayer. BtuCD-F is an ABC transporter that mediates cobalamin (Cbl) uptake into Escherichia coli, Escherichia coli is unable to synthesize Cbl de novo. BtuCD-F might also be involved in the uptake of cobinamide, a cobalamin precursor. Precursor cobinamide (Cbi) lacks the 5,6-dimethylbenzimidazole (DMB) moiety and sugar-phosphate linker and is therefore smaller than Cbl. BtuCD-catalyzed in vitro transport of cyano-cobinamide is ATP- and BtuF-dependent. BtuF residue W66 is important for high affinity Cbi binding, but not for substrate delivery or transport
Escherichia coli
Other publictions for EC 7.6.2.8
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
749978
Agarwal
Mechanistic basis of vitamin ...
Vibrio cholerae serotype O1, Vibrio cholerae serotype O1 ATCC 39541, Vibrio cholerae serotype O1 Classical Ogawa 395, Vibrio cholerae serotype O1 O395
Biochim. Biophys. Acta
1867
140-151
2019
-
-
1
1
-
-
-
-
1
1
-
16
-
8
-
-
-
-
-
-
-
-
20
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
-
-
-
-
-
-
1
1
-
16
-
-
-
-
-
-
-
-
20
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
749821
Okamoto
Characterization of human ATP ...
Homo sapiens
Biochem. Biophys. Res. Commun.
496
1122-1127
2018
-
-
1
-
-
-
1
-
2
1
-
1
-
3
-
-
1
-
1
-
-
-
2
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
1
-
-
2
1
-
1
-
-
-
1
1
-
-
-
2
-
1
-
-
-
1
-
-
-
-
2
2
-
-
-
750412
Santos
Functional and structural cha ...
Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842, Lactobacillus delbrueckii subsp. bulgaricus DSM 20081, Lactobacillus delbrueckii subsp. bulgaricus JCM 1002, Lactobacillus delbrueckii subsp. bulgaricus NBRC 13953, Lactobacillus delbrueckii subsp. bulgaricus NCIMB 11778
eLife
7
e35828
2018
-
-
1
1
-
-
6
1
1
1
-
12
-
8
-
-
-
-
-
-
-
-
18
1
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
-
-
-
6
-
1
1
1
-
12
-
-
-
-
-
-
-
-
18
1
1
-
-
-
1
-
-
-
-
2
2
-
-
-
751644
Schmitt
Vitamin B12 import is all abo ...
Escherichia coli
Nat. Chem. Biol.
14
640-641
2018
-
-
-
-
-
-
-
-
1
1
-
1
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
751670
Rempel
Cysteine-mediated decyanation ...
Thiobacillus denitrificans
Nat. Commun.
9
3038
2018
-
-
1
1
-
-
-
-
1
1
-
2
-
1
-
-
1
-
-
-
-
-
4
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
-
-
-
-
-
-
1
1
-
2
-
-
-
1
-
-
-
-
4
-
1
-
-
-
1
-
-
-
-
3
3
-
-
-
751661
Goudsmits
Single-molecule visualization ...
Escherichia coli
Nat. Commun.
8
1652
2017
-
-
1
-
5
1
-
-
2
1
-
1
-
1
-
-
-
1
1
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
5
1
-
-
-
-
2
1
-
1
-
-
-
-
1
-
-
-
2
1
-
-
-
-
-
-
-
-
-
3
3
-
-
-
752215
Mireku
Structural basis of nanobody- ...
Escherichia coli
Sci. Rep.
7
14296
2017
-
-
1
1
-
-
1
-
1
1
-
1
-
3
-
-
1
-
-
-
-
-
1
-
1
-
-
-
1
-
-
1
1
-
-
-
-
1
1
1
-
-
-
1
1
-
1
1
-
1
-
-
-
1
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
752221
Mireku
Conformational change of a tr ...
Escherichia coli
Sci. Rep.
7
41575
2017
-
-
1
1
8
-
-
-
-
1
-
2
-
2
-
-
1
-
1
-
-
-
3
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
8
-
-
-
-
-
-
1
-
2
-
-
-
1
1
-
-
-
3
-
1
-
-
-
1
-
-
-
-
3
3
-
-
-
750063
Priess
Release of entropic spring re ...
Escherichia coli
Biophys. J.
110
2407-2418
2016
-
-
-
1
1
-
-
-
1
1
-
1
-
2
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
751956
Pan
ATP hydrolysis induced confor ...
Escherichia coli
PLoS ONE
11
e0166980
2016
-
-
-
-
-
-
-
-
2
1
-
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
2
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
752200
Kawaguchi
Translocation of the ABC tran ...
Homo sapiens
Sci. Rep.
6
30183
2016
-
-
1
-
1
-
-
-
3
-
-
1
-
1
-
-
-
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
3
-
-
1
-
-
-
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
2
2
-
-
-
734003
Su
Conformational motions and fun ...
Escherichia coli
Int. J. Mol. Sci.
16
17933-17951
2015
-
-
-
-
-
-
-
-
2
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
734281
Joseph
Conformational cycle of the vi ...
Escherichia coli
J. Biol. Chem.
289
3176-3185
2014
-
-
1
-
-
-
-
-
-
-
-
1
-
2
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
734760
Korkhov
Structure of AMP-PNP-bound Btu ...
Escherichia coli
Nat. Struct. Mol. Biol.
21
1097-1099
2014
-
-
1
1
1
-
-
-
-
-
-
1
-
2
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
734820
Gopinath
A vitamin B12 transporter in M ...
Mycobacterium tuberculosis
Open Biology
3
120175
2013
-
-
-
-
-
-
-
-
1
-
-
1
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
719509
Korkhov
Asymmetric states of vitamin B ...
Escherichia coli
FEBS Lett.
586
972-976
2012
-
-
1
1
1
-
-
-
2
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
720849
Weng
-
The conformational transition ...
Escherichia coli
PLoS ONE
7
e305465
2012
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
734771
Korkhov
Structure of AMP-PNP-bound vit ...
Escherichia coli
Nature
490
367-372
2012
-
-
-
1
2
-
-
-
1
-
-
1
-
2
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
2
-
-
-
-
-
1
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
719930
Di Bartolo
In vitro folding and assembly ...
Escherichia coli
J. Biol. Chem.
286
18807-18815
2011
-
-
1
-
-
-
2
2
-
-
1
-
-
2
-
-
-
-
1
-
-
-
1
1
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
2
-
-
1
-
-
-
-
-
1
-
-
-
1
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
719987
Joseph
Transmembrane gate movements i ...
Escherichia coli
J. Biol. Chem.
286
41008-41017
2011
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713095
Lewinson
A distinct mechanism for the A ...
Escherichia coli
Nat. Struct. Mol. Biol.
17
332-338
2010
-
-
1
-
-
-
-
-
-
-
-
3
-
3
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713485
Kandt
Holo-BtuF stabilizes the open ...
Escherichia coli
Proteins
78
738-753
2010
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713505
Sun
Molecular dynamics simulation ...
Escherichia coli
Sci. China C Life Sci.
53
620-630
2010
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696776
Weng
Asymmetric conformational flex ...
Haemophilus influenzae
Biophys. J.
96
1918-1930
2009
-
-
-
1
-
-
-
-
1
-
-
2
-
1
-
-
-
-
-
-
-
-
2
2
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
697950
Goetz
Distinct gate conformations of ...
Escherichia coli
FEBS Lett.
583
266-270
2009
-
-
1
1
3
-
-
-
2
1
-
1
-
4
-
-
1
-
-
-
-
-
2
1
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
3
-
-
-
-
-
2
1
-
1
-
-
-
1
-
-
-
-
2
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
685614
Liu
Study on the mechanism of the ...
Escherichia coli
Biophys. Chem.
135
19-24
2008
-
-
-
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685626
Weng
The conformational coupling an ...
Escherichia coli
Biophys. J.
94
612-621
2008
-
-
-
-
-
-
-
-
2
-
-
1
-
2
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685135
Ivetac
Dynamics and function in a bac ...
Escherichia coli
Biochemistry
46
2767-2778
2007
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685616
Sonne
Simulation of the coupling bet ...
Escherichia coli
Biophys. J.
92
2727-2734
2007
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
690056
Hvorup
Asymmetry in the structure of ...
Escherichia coli
Science
317
1387-1390
2007
-
-
-
1
-
-
-
-
2
-
-
1
-
3
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
685066
Kandt
Opening and closing motions in ...
Escherichia coli
Biochemistry
45
13284-13292
2006
-
-
-
-
-
-
-
-
1
-
-
1
-
3
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
667642
Borths
In vitro functional characteri ...
Escherichia coli
Biochemistry
44
16301-16309
2005
1
-
1
-
-
1
2
-
3
-
-
-
-
2
-
-
1
-
-
-
5
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
2
-
-
3
-
-
-
-
-
-
1
-
-
5
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210327
Kadner
Vitamin B12 transport in Esche ...
Escherichia coli
Mol. Microbiol.
12
2027-2033
1990
-
-
1
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210328
Rioux
Vitamin B12 transport in Esche ...
Escherichia coli
Mol. Gen. Genet.
217
301-308
1989
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210331
Rioux
Two outer membrane transport s ...
Salmonella enterica subsp. enterica serovar Typhimurium
J. Bacteriol.
171
2986-2993
1989
-
-
1
-
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210326
Friedrich
Nucleotide sequence of the btu ...
Escherichia coli
J. Bacteriol.
167
928-934
1986
-
-
1
-
-
-
-
-
2
-
3
1
-
3
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
3
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210329
De Vaux
Identification of the btuCED p ...
Escherichia coli
J. Bacteriol.
167
920-927
1986
-
-
-
-
-
-
-
-
2
-
4
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
4
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
210330
De Vaux
Transport of vitamin B12 in Es ...
Escherichia coli
J. Bacteriol.
162
888-896
1985
-
-
1
-
-
-
-
-
-
-
-
1
-
4
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-