BRENDA - Enzyme Database
show all sequences of 7.2.2.8

Copper directs ATP7B to the apical domain of hepatic cells via basolateral endosomes

Nyasae, L.K.; Schell, M.J.; Hubbard, A.L.; Traffic 15, 1344-1365 (2014)

Data extracted from this reference:

Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
apical plasma membrane
luminal acidification is required for the cell to redirect ATP7B to the apical domain and maintain it there under conditions of high Cu. Deacidification prevents Cu-directed delivery to apical domain
Homo sapiens
16324
-
endosome
Cu2+ directs ATP7B to the apical domain of hepatic cells via basolateral endosomes
Homo sapiens
5768
-
plasma membrane
enzyme localization at high copper concentration; enzyme localization at high copper concentration. Deacidification prevents Cu-directed delivery to apical domain
Homo sapiens
5886
-
trans-Golgi network
enzyme localization at low copper concentration; enzyme localization at low copper concentration
Homo sapiens
5802
-
vesicle
; Cu induces an increase in the number of ATP7B vesicles, which traverse large basolateral endosomes en route to the apical domain
Homo sapiens
31982
-
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Cu2+
copper directs ATP7B to the apical domain of hepatic cells via basolateral endosomes; copper directs ATP7B to the apical domain of hepatic cells via basolateral endosomes
Homo sapiens
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Homo sapiens
P35670
ATP7B
-
Homo sapiens
Q04656
ATP7A
-
Source Tissue
Source Tissue
Commentary
Organism
Textmining
hepatocyte
Cu-regulated localization in hepatocytes
Homo sapiens
-
liver
Cu2+ directs ATP7B to the apical domain of hepatic cells via basolateral endosomes
Homo sapiens
-
additional information
Cu-directed trafficking of both endogenous and exogenous ATP7B
Homo sapiens
-
WIF-B cell
Cu levels regulate the reversible trafficking of endogenous ATP7B in polarized WIF-B cells
Homo sapiens
-
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
apical plasma membrane
luminal acidification is required for the cell to redirect ATP7B to the apical domain and maintain it there under conditions of high Cu. Deacidification prevents Cu-directed delivery to apical domain
Homo sapiens
16324
-
endosome
Cu2+ directs ATP7B to the apical domain of hepatic cells via basolateral endosomes
Homo sapiens
5768
-
plasma membrane
enzyme localization at high copper concentration. Deacidification prevents Cu-directed delivery to apical domain
Homo sapiens
5886
-
plasma membrane
enzyme localization at high copper concentration
Homo sapiens
5886
-
trans-Golgi network
enzyme localization at low copper concentration
Homo sapiens
5802
-
vesicle
Cu induces an increase in the number of ATP7B vesicles, which traverse large basolateral endosomes en route to the apical domain
Homo sapiens
31982
-
vesicle
-
Homo sapiens
31982
-
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Cu2+
copper directs ATP7B to the apical domain of hepatic cells via basolateral endosomes
Homo sapiens
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
hepatocyte
Cu-regulated localization in hepatocytes
Homo sapiens
-
liver
Cu2+ directs ATP7B to the apical domain of hepatic cells via basolateral endosomes
Homo sapiens
-
additional information
Cu-directed trafficking of both endogenous and exogenous ATP7B
Homo sapiens
-
WIF-B cell
Cu levels regulate the reversible trafficking of endogenous ATP7B in polarized WIF-B cells
Homo sapiens
-
General Information
General Information
Commentary
Organism
malfunction
Menkes disease results from loss-of-function mutations in ATP7A; Wilson's disease results from loss-of-function mutations in ATP7B. Loss of ATP7B function leads to excess Cu accumulation in the brain, kidney and particularly in the liver, owing to defective biliary Cu excretion across the apical surface of hepatocytes. Wilson's disease mutation affects the intracellular trafficking of ATP7B, while having little effect on ATPase activity itself, indicating that a mislocalization of ATP7B is sufficient to cause the disease
Homo sapiens
additional information
Cu-directed trans-Golgi network-to-apical trafficking occurs via a basolateral compartment in hepatocytes in vivo
Homo sapiens
physiological function
cellular Cu homeostasis is highly regulated and is achieved in part by two intracellular Cu-transporting P-type ATPases, ATP7A and ATP7B. When Cu is low, the enzymes pump cytosolic Cu into the luminal spaces in the secretory pathway to supply Cu to newly synthesized cuproenzymes. When Cu is high, Cu ATPases exit the trans-Golgi network in vesicles and move near the plasma membrane, where they extrude Cu from the cell; cellular Cu homeostasis is highly regulated and is achieved in part by two intracellular Cu-transporting P-type ATPases, ATP7A and ATP7B. When Cu is low, the enzymes pump cytosolic Cu into the luminal spaces in the secretory pathway to supply Cu to newly synthesized cuproenzymes. When Cu is high, Cu ATPases exit the trans-Golgi network in vesicles and move near the plasma membrane, where they extrude Cu from the cell. Cu induces an increase in the number of ATP7B vesicles, which traverse large basolateral endosomes en route to the apical domain
Homo sapiens
General Information (protein specific)
General Information
Commentary
Organism
malfunction
Wilson's disease results from loss-of-function mutations in ATP7B. Loss of ATP7B function leads to excess Cu accumulation in the brain, kidney and particularly in the liver, owing to defective biliary Cu excretion across the apical surface of hepatocytes. Wilson's disease mutation affects the intracellular trafficking of ATP7B, while having little effect on ATPase activity itself, indicating that a mislocalization of ATP7B is sufficient to cause the disease
Homo sapiens
malfunction
Menkes disease results from loss-of-function mutations in ATP7A
Homo sapiens
additional information
Cu-directed trans-Golgi network-to-apical trafficking occurs via a basolateral compartment in hepatocytes in vivo
Homo sapiens
physiological function
cellular Cu homeostasis is highly regulated and is achieved in part by two intracellular Cu-transporting P-type ATPases, ATP7A and ATP7B. When Cu is low, the enzymes pump cytosolic Cu into the luminal spaces in the secretory pathway to supply Cu to newly synthesized cuproenzymes. When Cu is high, Cu ATPases exit the trans-Golgi network in vesicles and move near the plasma membrane, where they extrude Cu from the cell. Cu induces an increase in the number of ATP7B vesicles, which traverse large basolateral endosomes en route to the apical domain
Homo sapiens
physiological function
cellular Cu homeostasis is highly regulated and is achieved in part by two intracellular Cu-transporting P-type ATPases, ATP7A and ATP7B. When Cu is low, the enzymes pump cytosolic Cu into the luminal spaces in the secretory pathway to supply Cu to newly synthesized cuproenzymes. When Cu is high, Cu ATPases exit the trans-Golgi network in vesicles and move near the plasma membrane, where they extrude Cu from the cell
Homo sapiens
Other publictions for EC 7.2.2.8
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
749535
Ashino
Copper transporter ATP7A inte ...
Rattus norvegicus
Am. J. Physiol. Cell Physiol.
315
C850-C862
2018
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
749770
Sudhahar
Akt2 (protein kinase B beta) ...
Homo sapiens, Mus musculus
Arterioscler. Thromb. Vasc. Biol.
38
529-541
2018
-
2
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
749929
Autzen
Interactions of a bacterial C ...
Legionella pneumophila subsp. pneumophila, Legionella pneumophila subsp. pneumophila DSM 7513
Biochemistry
57
4063-4073
2018
2
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
750328
Fang
Differential reactivity of me ...
Homo sapiens
Chemistry
24
8999-9003
2018
-
-
1
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
750684
Pierson
The function of ATPase copper ...
Mus musculus
Gastroenterology
154
168-180.e5
2018
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
751122
Yi
Interaction between the AAA A ...
Homo sapiens
J. Biol. Chem.
293
7606-7617
2018
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
751262
Bossak
The Cu(II) affinity of the N- ...
Homo sapiens
J. Inorg. Biochem.
182
230-237
2018
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
751286
Acevedo
Effect of structural modifica ...
Homo sapiens
J. Med. Chem.
61
711-723
2018
-
-
-
-
-
-
2
-
1
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
751708
Senovilla
Medicago truncatula copper tr ...
Medicago truncatula
New Phytol.
218
696-709
2018
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
751978
Petrov
Xenon-inhibition of the MscL ...
Enterococcus hirae, Enterococcus hirae DSM 20160
PLoS ONE
13
e0198110
2018
-
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
6
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
6
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
752057
Purohit
Cu+-specific CopB transporter ...
Sphaerobacter thermophilus
Proc. Natl. Acad. Sci. USA
115
2108-2113
2018
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
752245
Yu
The Structure of metal bindin ...
Homo sapiens
Sci. Rep.
8
581
2018
-
-
-
1
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
750407
Comstra
The interactome of the copper ...
Drosophila melanogaster, Homo sapiens
eLife
6
e24722
2017
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
750735
Ladomersky
Host and pathogen copper-tran ...
Mus musculus, Salmonella enterica subsp. enterica serovar Typhimurium, Salmonella enterica subsp. enterica serovar Typhimurium SL1344
Infect. Immun.
85
e00351-17
2017
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
750917
Wijekoon
Copper ATPase CopA from Esche ...
Escherichia coli
J. Am. Chem. Soc.
139
4266-4269
2017
-
-
1
-
-
-
1
-
1
1
-
-
-
1
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
751096
Jayakanthan
Human copper transporter ATP7 ...
Homo sapiens
J. Biol. Chem.
292
18760-18774
2017
-
-
1
1
1
-
-
-
1
-
2
-
-
1
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
1
-
-
-
-
-
1
-
2
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
751167
Zhu
A role for the ATP7A copper t ...
Mus musculus
J. Cancer
8
1952-1958
2017
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
751473
Ponnandai Shanmugavel
Probing functional roles of W ...
Homo sapiens
Metallomics
9
981-988
2017
-
1
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
751552
Meydan
Programmed ribosomal frameshi ...
Escherichia coli
Mol. Cell
65
207-219
2017
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
752318
Rupp
Host cell copper transporters ...
Homo sapiens
Virol. J.
14
1-12
2017
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
749805
Mondol
Copper binding triggers compa ...
Homo sapiens
Biochem. Biophys. Res. Commun.
470
663-669
2016
-
-
-
-
-
-
-
-
-
2
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
749955
Bredeston
The promiscuous phosphomonoes ...
Archaeoglobus fulgidus
Biochim. Biophys. Acta
1858
1471-1478
2016
1
-
-
-
-
-
-
2
-
2
-
-
-
2
-
-
-
-
-
-
-
-
2
-
1
-
-
2
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
-
-
-
-
2
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
749966
Hilario-Souza
Modulation of hepatic copper- ...
Homo sapiens
Biochim. Biophys. Acta
1862
2086-2097
2016
1
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
750064
Gronberg
Membrane anchoring and ion-en ...
Legionella pneumophila subsp. pneumophila, Legionella pneumophila subsp. pneumophila DSM 7513
Biophys. J.
111
2417-2429
2016
-
-
-
1
6
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
751166
Li
The role of copper transporte ...
Homo sapiens
J. Cancer
7
2085-2092
2016
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
751261
Schwab
Sequence proximity between Cu ...
Homo sapiens
J. Inorg. Biochem.
158
70-76
2016
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
751471
Ha
Knockdown of copper-transport ...
Homo sapiens, Rattus norvegicus
Metallomics
8
963-972
2016
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
751472
Zhu
Multiple di-leucines in the A ...
Mus musculus
Metallomics
8
993-1001
2016
-
-
1
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
734662
Jain
Polarized sorting of the coppe ...
Homo sapiens
Mol. Biol. Cell
26
218-228
2015
-
-
1
-
-
-
-
-
5
-
-
-
-
1
-
-
1
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
1
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
734725
Drees
Distinct functions of serial m ...
Escherichia coli
Mol. Microbiol.
97
423-438
2015
1
-
-
-
2
-
-
-
-
1
-
1
-
4
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
733097
Kaler
Translational research investi ...
Homo sapiens
Ann. N. Y. Acad. Sci.
1314
64-68
2014
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
734269
Padilla-Benavides
Mechanism of ATPase-mediated C ...
Escherichia coli
J. Biol. Chem.
289
20492-20501
2014
-
-
1
-
11
-
-
1
-
1
-
1
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
11
-
-
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
3
3
-
-
-
734282
Huang
Interactions between metal-bin ...
Homo sapiens
J. Biol. Chem.
289
32682-32693
2014
-
-
1
-
-
-
-
-
5
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
5
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
734718
Kenthirapalan
Copper-transporting ATPase is ...
Plasmodium berghei, Plasmodium berghei ANKA, Toxoplasma gondii
Mol. Microbiol.
91
315-325
2014
-
-
2
-
1
-
-
-
4
1
-
2
-
5
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
4
1
-
2
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
735317
Nyasae
Copper directs ATP7B to the ap ...
Homo sapiens
Traffic
15
1344-1365
2014
-
-
-
-
-
-
-
-
5
1
-
-
-
2
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8
2
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
3
5
-
-
-
733059
Xie
Copper stabilizes the Menkes c ...
Homo sapiens
Am. J. Physiol. Cell Physiol.
304
C257-C262
2013
-
-
1
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
2
-
-
733703
Sudhahar
Copper transporter ATP7A prote ...
Mus musculus, Mus musculus C57/BL6J
Diabetes
62
3839-3850
2013
-
-
1
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
2
2
2
2
-
-
720396
Völlmecke
The ATPases CopA and CopB both ...
Saccharolobus solfataricus, Saccharolobus solfataricus PBL2025
Microbiology
158
1622-1633
2012
-
-
1
-
1
-
-
-
1
1
-
4
-
6
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
2
-
-
-
-
-
2
2
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
1
2
4
2
-
-
722821
Padilla-Benavides
The mechanism of Cu+ transport ...
Archaeoglobus fulgidus
J. Biol. Chem.
288
69-78
2012
-
-
1
-
8
-
-
1
1
-
-
1
-
4
-
-
1
-
-
-
-
-
2
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
15
-
-
-
-
1
1
-
-
1
-
-
-
2
-
-
-
-
2
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
725280
Maezato
Metal resistance and lithoauto ...
Metallosphaera sedula
J. Bacteriol.
194
6856-6863
2012
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
725488
Lewis
Distinctive features of cataly ...
Homo sapiens
J. Biol. Chem.
287
32717-32727
2012
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
733447
Gourdon
Structural models of the human ...
Homo sapiens
Biol. Chem.
393
205-216
2012
-
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
6
-
-
-
733691
Zhou
CopAb, the second N-terminal s ...
Bacillus subtilis 168, Bacillus subtilis
Dalton Trans.
41
5939-5948
2012
-
-
1
-
-
-
-
-
-
-
-
2
-
4
-
-
1
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
725904
Villafane
CopR of Sulfolobus solfataricu ...
Saccharolobus solfataricus, Saccharolobus solfataricus 98/2
Microbiology
157
2808-2817
2011
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
723738
Agarwal
Structure and interactions of ...
Archaeoglobus fulgidus
Proteins
78
2450-2458
2010
-
-
-
1
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
725000
Tadini-Buoninsegni
ATP dependent charge movement ...
Homo sapiens
FEBS Lett.
584
4619-4622
2010
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
725711
Roman
Reversible unfolding of a ther ...
Archaeoglobus fulgidus
J. Mol. Biol.
397
550-559
2010
-
-
1
-
-
-
-
-
-
-
-
-
1
1
-
-
1
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
725999
Gonzalez-Guerrero
Distinct functional roles of h ...
Pseudomonas aeruginosa
Mol. Microbiol.
78
1246-1258
2010
-
-
1
-
-
-
-
-
1
-
-
1
-
4
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
711847
Tsuda
Nucleotide recognition by CopA ...
Archaeoglobus fulgidus
EMBO J.
28
1782-1791
2009
-
-
1
1
1
-
-
-
-
1
-
1
-
2
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
1
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
712378
Pilankatta
High yield heterologous expres ...
Homo sapiens
J. Biol. Chem.
284
21307-21316
2009
-
-
1
-
2
-
-
-
1
1
1
1
-
1
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
1
1
1
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
724167
Villafane
Response to excess copper in t ...
Saccharolobus solfataricus, Saccharolobus solfataricus 98/2
Biochem. Biophys. Res. Commun.
385
67-71
2009
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
-
-
725389
Gonzalez-Guerrero
Chaperone-mediated Cu+ deliver ...
Archaeoglobus fulgidus
J. Biol. Chem.
284
20804-20811
2009
-
-
1
-
4
-
-
-
1
2
-
3
-
3
-
-
1
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
4
-
-
-
-
-
1
2
-
3
-
-
-
2
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
688411
Chintalapati
Membrane structure of CtrA3, a ...
Aquifex aeolicus
J. Mol. Biol.
378
581-595
2008
3
-
1
1
-
-
-
-
1
4
2
1
-
4
-
-
1
-
-
-
-
-
1
1
1
-
-
-
1
-
-
-
-
-
-
3
-
1
-
1
-
-
-
-
-
-
1
4
2
1
-
-
-
1
-
-
-
-
1
1
1
-
-
-
1
-
-
-
-
1
1
-
-
-
698784
Hatori
Intermediate phosphorylation r ...
Thermotoga maritima
J. Biol. Chem.
283
22541-22549
2008
-
-
1
-
1
-
-
-
-
1
-
1
-
1
-
1
1
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
1
-
-
1
1
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
721417
Cattoni
Thermal stability of CopA, a p ...
Archaeoglobus fulgidus
Arch. Biochem. Biophys.
471
198-206
2008
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
723624
Gonzalez-Guerrero
Mechanism of Cu+-transporting ...
Archaeoglobus fulgidus
Proc. Natl. Acad. Sci. USA
105
5992-5997
2008
-
-
1
-
-
-
-
-
-
-
-
1
-
2
-
-
1
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
680804
Hatori
Domain organization and moveme ...
Thermotoga maritima
J. Biol. Chem.
282
25213-25221
2007
-
-
1
-
-
-
4
1
1
2
1
2
-
2
-
-
1
-
-
-
-
-
2
1
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
4
-
1
1
2
1
2
-
-
-
1
-
-
-
-
2
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
721700
Yang
Activation of Archaeoglobus fu ...
Archaeoglobus fulgidus
Biochim. Biophys. Acta
1768
495-501
2007
1
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
669437
Sazinsky
Structure of the ATP binding d ...
Archaeoglobus fulgidus
J. Biol. Chem.
281
11161-11166
2006
-
-
1
1
-
-
-
-
-
-
-
1
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
721480
Rice
Role of metal-binding domains ...
Archaeoglobus fulgidus
Biochem. Biophys. Res. Commun.
348
124-131
2006
-
-
1
-
-
-
-
1
-
2
-
-
-
1
-
-
1
-
-
-
-
-
2
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
722642
Mandal
Identification of the transmem ...
Archaeoglobus fulgidus
J. Biol. Chem.
279
54802-54807
2004
-
-
-
-
16
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
721587
Mandal
Functional roles of metal bind ...
Archaeoglobus fulgidus
Biochemistry
42
11040-11047
2003
-
-
1
-
4
-
-
2
-
-
-
1
-
2
-
-
1
-
-
-
-
-
3
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
4
-
-
-
-
2
-
-
-
1
-
-
-
1
-
-
-
-
3
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
656102
Fan
Biochemical characterization o ...
Escherichia coli
J. Biol. Chem.
277
46987-46992
2002
-
-
-
-
4
-
3
3
-
5
-
2
-
1
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
3
-
3
-
5
-
2
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
656109
Mandal
Characterization of a thermoph ...
Archaeoglobus fulgidus
J. Biol. Chem.
277
7201-7208
2002
1
-
1
-
-
-
3
1
-
1
-
-
-
2
-
-
1
-
-
-
-
-
2
-
1
1
-
-
1
1
-
-
1
-
2
1
-
1
-
-
-
-
2
3
1
1
-
1
-
-
-
-
-
1
-
-
-
-
2
-
1
1
-
-
1
1
-
-
-
-
-
-
-
-
725695
Banci
Solution structure of the N-te ...
Bacillus subtilis
J. Mol. Biol.
317
415-429
2002
-
-
1
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-