BRENDA - Enzyme Database
show all sequences of 6.1.1.14

Glycyl-tRNA synthetase

Freist, W.; Logan, D.T.; Gauss, D.H.; Biol. Chem. Hoppe-Seyler 377, 343-356 (1996)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
-
Escherichia coli
Crystallization (Commentary)
Crystallization
Organism
-
Thermus thermophilus
Engineering
Amino acid exchange
Commentary
Organism
additional information
-
Escherichia coli
additional information
-
Homo sapiens
additional information
truncated enzyme forms with deletions of 12, 27, 46, and 55 N-terminal residues reduce the kcat value of the wild-type enzyme by a factor 5-10 in diphosphate exchange and aminoacylation activity, but does not significantly change the Km of the three substrates. Deletions of 108 N-terminal residues or the internal segments 111-164 and 110-309 cause complete loss of activity. Deletions from the C-terminus of 24, 38, 60, 163, and 328 residues result in inactive enzyme forms. Whereas the wild-type enzyme binds both tRNAGly and noncognate tRNAAla, the mutant lacking 55 N-terminal residues shows altered binding of tRNAGly and does not bind tRNAAla
Bombyx mori
Inhibitors
Inhibitors
Commentary
Organism
Structure
5,5'-dithiobis(2-nitrobenzoate)
-
Bombyx mori
Inorganic sulfide
activity is restored by addition of glutathione, cysteine or cysteamine
Bombyx mori
Nalidixic acid
-
Saccharomyces cerevisiae
Oxolinic acid
-
Saccharomyces cerevisiae
p-chloromercuribenzoate
-
Gallus gallus
p-chloromercuribenzoate
-
Staphylococcus aureus
KM Value [mM]
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
overview
Bombyx mori
additional information
-
additional information
overview
Escherichia coli
additional information
-
additional information
overview
Rattus norvegicus
additional information
-
additional information
overview
Saccharomyces cerevisiae
additional information
-
additional information
overview
Salmonella enterica subsp. enterica serovar Typhimurium
additional information
-
additional information
overview
Staphylococcus aureus
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Co2+
activates with 5% of the efficiency of ATP; can replace Mg2+ in activation
Staphylococcus aureus
Mg2+
cannot be effectively replaced by other bivalent cations or spermidine; required
Bombyx mori
Mg2+
-
Escherichia coli
Mg2+
required
Saccharomyces cerevisiae
Mg2+
can be replaced by Co2+ or Mn2+, with lower efficiency; optimal Mg2+/ATP ratio is 5:1; required
Staphylococcus aureus
Mn2+
can replace Mg2+ in activation
Escherichia coli
Mn2+
stimulates
Gallus gallus
Mn2+
stimulates
Rattus norvegicus
Mn2+
activates with 77% of the efficiency of Mg2+; can replace Mg2+ in activation
Staphylococcus aureus
PO43-
phosphorylation and dephosphorylation seem to be a means of regulation
Mus musculus
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ATP + glycine + tRNAGly
Salmonella enterica subsp. enterica serovar Typhimurium
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Gallus gallus
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Staphylococcus aureus
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Brevibacillus brevis
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Aliivibrio fischeri
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Alcaligenes faecalis
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
eukaryota
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Chlamydia trachomatis
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Haemophilus influenzae
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Mycoplasma genitalium
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Mus musculus
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Thermus thermophilus
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Escherichia coli
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Rattus norvegicus
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Saccharomyces cerevisiae
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Bos taurus
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Bombyx mori
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Geobacillus stearothermophilus
insertion of glycine into proteins
?
-
-
-
additional information
Salmonella enterica subsp. enterica serovar Typhimurium
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Gallus gallus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Staphylococcus aureus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Brevibacillus brevis
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Aliivibrio fischeri
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Alcaligenes faecalis
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
eukaryota
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Chlamydia trachomatis
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Haemophilus influenzae
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Mycoplasma genitalium
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Mus musculus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Thermus thermophilus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Escherichia coli
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Rattus norvegicus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Saccharomyces cerevisiae
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Bos taurus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Bombyx mori
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Geobacillus stearothermophilus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Alcaligenes faecalis
-
-
-
Aliivibrio fischeri
-
-
-
Bombyx mori
-
wild-type and truncated enzyme forms
-
Bos taurus
-
-
-
Brevibacillus brevis
-
-
-
Chlamydia trachomatis
-
-
-
Escherichia coli
-
-
-
eukaryota
-
-
-
Gallus gallus
-
-
-
Geobacillus stearothermophilus
-
-
-
Haemophilus influenzae
-
-
-
Homo sapiens
-
-
-
Mus musculus
-
-
-
Mycoplasma genitalium
-
-
-
Rattus norvegicus
-
-
-
Saccharomyces cerevisiae
-
-
-
Salmonella enterica subsp. enterica serovar Typhimurium
-
-
-
Staphylococcus aureus
-
-
-
Thermus thermophilus
-
-
-
Purification (Commentary)
Commentary
Organism
-
Escherichia coli
Reaction
Reaction
Commentary
Organism
ATP + glycine + tRNAGly = AMP + diphosphate + glycyl-tRNAGly
`half-of-the-sites' mechanism in aminoacylation
Bombyx mori
Source Tissue
Source Tissue
Commentary
Organism
Textmining
Ehrlich ascites carcinoma cell
-
Mus musculus
-
embryo
-
Gallus gallus
-
liver
-
Mus musculus
-
liver
-
Rattus norvegicus
-
liver
-
Bos taurus
-
skeletal muscle
-
Rattus norvegicus
-
uterus
-
Mus musculus
-
Yoshida AH-130 cell
-
Rattus norvegicus
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
AMP + ADP
-
133
Escherichia coli
P1,P3-bis(5'-adenosyl) triphosphate
-
133
Escherichia coli
-
AMP + ATP
-
133
Escherichia coli
P1,P4-bis(5'-adenosyl) tetraphosphate
-
133
Escherichia coli
-
AMP + phosphate
-
133
Escherichia coli
ADP
-
133
Escherichia coli
-
ATP + glycine + tRNAGly
-
133
Salmonella enterica subsp. enterica serovar Typhimurium
AMP + diphosphate + glycyl-tRNAGly
-
133
Salmonella enterica subsp. enterica serovar Typhimurium
-
ATP + glycine + tRNAGly
-
133
Gallus gallus
AMP + diphosphate + glycyl-tRNAGly
-
133
Gallus gallus
-
ATP + glycine + tRNAGly
-
133
Staphylococcus aureus
AMP + diphosphate + glycyl-tRNAGly
-
133
Staphylococcus aureus
-
ATP + glycine + tRNAGly
-
133
Brevibacillus brevis
AMP + diphosphate + glycyl-tRNAGly
-
133
Brevibacillus brevis
-
ATP + glycine + tRNAGly
-
133
Aliivibrio fischeri
AMP + diphosphate + glycyl-tRNAGly
-
133
Aliivibrio fischeri
-
ATP + glycine + tRNAGly
-
133
Alcaligenes faecalis
AMP + diphosphate + glycyl-tRNAGly
-
133
Alcaligenes faecalis
-
ATP + glycine + tRNAGly
-
133
eukaryota
AMP + diphosphate + glycyl-tRNAGly
-
133
eukaryota
-
ATP + glycine + tRNAGly
-
133
Chlamydia trachomatis
AMP + diphosphate + glycyl-tRNAGly
-
133
Chlamydia trachomatis
-
ATP + glycine + tRNAGly
-
133
Haemophilus influenzae
AMP + diphosphate + glycyl-tRNAGly
-
133
Haemophilus influenzae
-
ATP + glycine + tRNAGly
-
133
Mycoplasma genitalium
AMP + diphosphate + glycyl-tRNAGly
-
133
Mycoplasma genitalium
-
ATP + glycine + tRNAGly
-
133
Mus musculus
AMP + diphosphate + glycyl-tRNAGly
-
133
Mus musculus
-
ATP + glycine + tRNAGly
-
133
Thermus thermophilus
AMP + diphosphate + glycyl-tRNAGly
-
133
Thermus thermophilus
-
ATP + glycine + tRNAGly
-
133
Escherichia coli
AMP + diphosphate + glycyl-tRNAGly
-
133
Escherichia coli
-
ATP + glycine + tRNAGly
-
133
Homo sapiens
AMP + diphosphate + glycyl-tRNAGly
-
133
Homo sapiens
-
ATP + glycine + tRNAGly
-
133
Rattus norvegicus
AMP + diphosphate + glycyl-tRNAGly
-
133
Rattus norvegicus
-
ATP + glycine + tRNAGly
-
133
Saccharomyces cerevisiae
AMP + diphosphate + glycyl-tRNAGly
-
133
Saccharomyces cerevisiae
-
ATP + glycine + tRNAGly
-
133
Bos taurus
AMP + diphosphate + glycyl-tRNAGly
-
133
Bos taurus
-
ATP + glycine + tRNAGly
-
133
Geobacillus stearothermophilus
AMP + diphosphate + glycyl-tRNAGly
-
133
Geobacillus stearothermophilus
-
ATP + glycine + tRNAGly
the wild-type enzyme binds both tRNAGly and noncognate tRNAAla. The mutant lacking 55 N-terminal residues shows altered binding of tRNAGly and does not bind tRNAAla
133
Bombyx mori
AMP + diphosphate + glycyl-tRNAGly
-
133
Bombyx mori
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Salmonella enterica subsp. enterica serovar Typhimurium
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Gallus gallus
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Staphylococcus aureus
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Brevibacillus brevis
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Aliivibrio fischeri
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Alcaligenes faecalis
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
eukaryota
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Chlamydia trachomatis
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Haemophilus influenzae
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Mycoplasma genitalium
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Mus musculus
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Thermus thermophilus
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Escherichia coli
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Rattus norvegicus
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Saccharomyces cerevisiae
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Bos taurus
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Bombyx mori
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Geobacillus stearothermophilus
?
-
-
-
-
additional information
-
133
Staphylococcus aureus
?
-
-
-
-
additional information
-
133
Thermus thermophilus
?
-
-
-
-
additional information
-
133
Saccharomyces cerevisiae
?
-
-
-
-
additional information
-
133
Bombyx mori
?
-
-
-
-
additional information
formation of glycine hydroxamate
133
Gallus gallus
?
-
-
-
-
additional information
formation of glycine hydroxamate
133
Brevibacillus brevis
?
-
-
-
-
additional information
catalyzes the synthesis of P1,P4-di(adenosine)tetraphosphate (Ap4A), P1,P3-di(adenosine)triphosphate (Ap3A) and ADP from the enzyme bound glycyl adenylate
133
Escherichia coli
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Salmonella enterica subsp. enterica serovar Typhimurium
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Gallus gallus
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Staphylococcus aureus
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Brevibacillus brevis
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Aliivibrio fischeri
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Alcaligenes faecalis
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
eukaryota
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Chlamydia trachomatis
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Haemophilus influenzae
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Mycoplasma genitalium
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Mus musculus
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Thermus thermophilus
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Escherichia coli
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Rattus norvegicus
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Saccharomyces cerevisiae
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Bos taurus
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Bombyx mori
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Geobacillus stearothermophilus
?
-
-
-
-
Subunits
Subunits
Commentary
Organism
dimer
alpha2
Bombyx mori
dimer
-
Saccharomyces cerevisiae
dimer
alpha2
Thermus thermophilus
More
polypeptide is weakly associated with multienzyme complexes consisting of aminoacyl-tRNA synthetases
eukaryota
More
-
Homo sapiens
tetramer
alpha2,beta2
Brevibacillus brevis
tetramer
alpha2,beta2
Escherichia coli
tetramer
-
Saccharomyces cerevisiae
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7
8
-
Rattus norvegicus
Cloned(Commentary) (protein specific)
Commentary
Organism
-
Escherichia coli
Crystallization (Commentary) (protein specific)
Crystallization
Organism
-
Thermus thermophilus
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
additional information
-
Escherichia coli
additional information
-
Homo sapiens
additional information
truncated enzyme forms with deletions of 12, 27, 46, and 55 N-terminal residues reduce the kcat value of the wild-type enzyme by a factor 5-10 in diphosphate exchange and aminoacylation activity, but does not significantly change the Km of the three substrates. Deletions of 108 N-terminal residues or the internal segments 111-164 and 110-309 cause complete loss of activity. Deletions from the C-terminus of 24, 38, 60, 163, and 328 residues result in inactive enzyme forms. Whereas the wild-type enzyme binds both tRNAGly and noncognate tRNAAla, the mutant lacking 55 N-terminal residues shows altered binding of tRNAGly and does not bind tRNAAla
Bombyx mori
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
5,5'-dithiobis(2-nitrobenzoate)
-
Bombyx mori
Inorganic sulfide
activity is restored by addition of glutathione, cysteine or cysteamine
Bombyx mori
Nalidixic acid
-
Saccharomyces cerevisiae
Oxolinic acid
-
Saccharomyces cerevisiae
p-chloromercuribenzoate
-
Gallus gallus
p-chloromercuribenzoate
-
Staphylococcus aureus
KM Value [mM] (protein specific)
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
overview
Bombyx mori
additional information
-
additional information
overview
Escherichia coli
additional information
-
additional information
overview
Rattus norvegicus
additional information
-
additional information
overview
Saccharomyces cerevisiae
additional information
-
additional information
overview
Salmonella enterica subsp. enterica serovar Typhimurium
additional information
-
additional information
overview
Staphylococcus aureus
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Co2+
activates with 5% of the efficiency of ATP; can replace Mg2+ in activation
Staphylococcus aureus
Mg2+
cannot be effectively replaced by other bivalent cations or spermidine; required
Bombyx mori
Mg2+
-
Escherichia coli
Mg2+
required
Saccharomyces cerevisiae
Mg2+
can be replaced by Co2+ or Mn2+, with lower efficiency; optimal Mg2+/ATP ratio is 5:1; required
Staphylococcus aureus
Mn2+
can replace Mg2+ in activation
Escherichia coli
Mn2+
stimulates
Gallus gallus
Mn2+
stimulates
Rattus norvegicus
Mn2+
activates with 77% of the efficiency of Mg2+; can replace Mg2+ in activation
Staphylococcus aureus
PO43-
phosphorylation and dephosphorylation seem to be a means of regulation
Mus musculus
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ATP + glycine + tRNAGly
Salmonella enterica subsp. enterica serovar Typhimurium
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Gallus gallus
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Staphylococcus aureus
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Brevibacillus brevis
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Aliivibrio fischeri
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Alcaligenes faecalis
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
eukaryota
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Chlamydia trachomatis
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Haemophilus influenzae
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Mycoplasma genitalium
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Mus musculus
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Thermus thermophilus
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Escherichia coli
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Rattus norvegicus
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Saccharomyces cerevisiae
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Bos taurus
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Bombyx mori
insertion of glycine into proteins
?
-
-
-
ATP + glycine + tRNAGly
Geobacillus stearothermophilus
insertion of glycine into proteins
?
-
-
-
additional information
Salmonella enterica subsp. enterica serovar Typhimurium
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Gallus gallus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Staphylococcus aureus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Brevibacillus brevis
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Aliivibrio fischeri
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Alcaligenes faecalis
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
eukaryota
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Chlamydia trachomatis
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Haemophilus influenzae
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Mycoplasma genitalium
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Mus musculus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Thermus thermophilus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Escherichia coli
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Rattus norvegicus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Saccharomyces cerevisiae
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Bos taurus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Bombyx mori
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
additional information
Geobacillus stearothermophilus
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
?
-
-
-
Purification (Commentary) (protein specific)
Commentary
Organism
-
Escherichia coli
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
Ehrlich ascites carcinoma cell
-
Mus musculus
-
embryo
-
Gallus gallus
-
liver
-
Mus musculus
-
liver
-
Rattus norvegicus
-
liver
-
Bos taurus
-
skeletal muscle
-
Rattus norvegicus
-
uterus
-
Mus musculus
-
Yoshida AH-130 cell
-
Rattus norvegicus
-
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
AMP + ADP
-
133
Escherichia coli
P1,P3-bis(5'-adenosyl) triphosphate
-
133
Escherichia coli
-
AMP + ATP
-
133
Escherichia coli
P1,P4-bis(5'-adenosyl) tetraphosphate
-
133
Escherichia coli
-
AMP + phosphate
-
133
Escherichia coli
ADP
-
133
Escherichia coli
-
ATP + glycine + tRNAGly
-
133
Salmonella enterica subsp. enterica serovar Typhimurium
AMP + diphosphate + glycyl-tRNAGly
-
133
Salmonella enterica subsp. enterica serovar Typhimurium
-
ATP + glycine + tRNAGly
-
133
Gallus gallus
AMP + diphosphate + glycyl-tRNAGly
-
133
Gallus gallus
-
ATP + glycine + tRNAGly
-
133
Staphylococcus aureus
AMP + diphosphate + glycyl-tRNAGly
-
133
Staphylococcus aureus
-
ATP + glycine + tRNAGly
-
133
Brevibacillus brevis
AMP + diphosphate + glycyl-tRNAGly
-
133
Brevibacillus brevis
-
ATP + glycine + tRNAGly
-
133
Aliivibrio fischeri
AMP + diphosphate + glycyl-tRNAGly
-
133
Aliivibrio fischeri
-
ATP + glycine + tRNAGly
-
133
Alcaligenes faecalis
AMP + diphosphate + glycyl-tRNAGly
-
133
Alcaligenes faecalis
-
ATP + glycine + tRNAGly
-
133
eukaryota
AMP + diphosphate + glycyl-tRNAGly
-
133
eukaryota
-
ATP + glycine + tRNAGly
-
133
Chlamydia trachomatis
AMP + diphosphate + glycyl-tRNAGly
-
133
Chlamydia trachomatis
-
ATP + glycine + tRNAGly
-
133
Haemophilus influenzae
AMP + diphosphate + glycyl-tRNAGly
-
133
Haemophilus influenzae
-
ATP + glycine + tRNAGly
-
133
Mycoplasma genitalium
AMP + diphosphate + glycyl-tRNAGly
-
133
Mycoplasma genitalium
-
ATP + glycine + tRNAGly
-
133
Mus musculus
AMP + diphosphate + glycyl-tRNAGly
-
133
Mus musculus
-
ATP + glycine + tRNAGly
-
133
Thermus thermophilus
AMP + diphosphate + glycyl-tRNAGly
-
133
Thermus thermophilus
-
ATP + glycine + tRNAGly
-
133
Escherichia coli
AMP + diphosphate + glycyl-tRNAGly
-
133
Escherichia coli
-
ATP + glycine + tRNAGly
-
133
Homo sapiens
AMP + diphosphate + glycyl-tRNAGly
-
133
Homo sapiens
-
ATP + glycine + tRNAGly
-
133
Rattus norvegicus
AMP + diphosphate + glycyl-tRNAGly
-
133
Rattus norvegicus
-
ATP + glycine + tRNAGly
-
133
Saccharomyces cerevisiae
AMP + diphosphate + glycyl-tRNAGly
-
133
Saccharomyces cerevisiae
-
ATP + glycine + tRNAGly
-
133
Bos taurus
AMP + diphosphate + glycyl-tRNAGly
-
133
Bos taurus
-
ATP + glycine + tRNAGly
-
133
Geobacillus stearothermophilus
AMP + diphosphate + glycyl-tRNAGly
-
133
Geobacillus stearothermophilus
-
ATP + glycine + tRNAGly
the wild-type enzyme binds both tRNAGly and noncognate tRNAAla. The mutant lacking 55 N-terminal residues shows altered binding of tRNAGly and does not bind tRNAAla
133
Bombyx mori
AMP + diphosphate + glycyl-tRNAGly
-
133
Bombyx mori
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Salmonella enterica subsp. enterica serovar Typhimurium
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Gallus gallus
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Staphylococcus aureus
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Brevibacillus brevis
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Aliivibrio fischeri
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Alcaligenes faecalis
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
eukaryota
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Chlamydia trachomatis
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Haemophilus influenzae
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Mycoplasma genitalium
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Mus musculus
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Thermus thermophilus
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Escherichia coli
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Rattus norvegicus
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Saccharomyces cerevisiae
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Bos taurus
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Bombyx mori
?
-
-
-
-
ATP + glycine + tRNAGly
insertion of glycine into proteins
133
Geobacillus stearothermophilus
?
-
-
-
-
additional information
-
133
Staphylococcus aureus
?
-
-
-
-
additional information
-
133
Thermus thermophilus
?
-
-
-
-
additional information
-
133
Saccharomyces cerevisiae
?
-
-
-
-
additional information
-
133
Bombyx mori
?
-
-
-
-
additional information
formation of glycine hydroxamate
133
Gallus gallus
?
-
-
-
-
additional information
formation of glycine hydroxamate
133
Brevibacillus brevis
?
-
-
-
-
additional information
catalyzes the synthesis of P1,P4-di(adenosine)tetraphosphate (Ap4A), P1,P3-di(adenosine)triphosphate (Ap3A) and ADP from the enzyme bound glycyl adenylate
133
Escherichia coli
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Salmonella enterica subsp. enterica serovar Typhimurium
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Gallus gallus
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Staphylococcus aureus
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Brevibacillus brevis
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Aliivibrio fischeri
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Alcaligenes faecalis
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
eukaryota
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Chlamydia trachomatis
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Haemophilus influenzae
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Mycoplasma genitalium
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Mus musculus
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Thermus thermophilus
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Escherichia coli
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Rattus norvegicus
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Saccharomyces cerevisiae
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Bos taurus
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Bombyx mori
?
-
-
-
-
additional information
in a side reaction the enzyme also synthesizes dinucleoside polyphosphates, which probably participate in regulation of cell function
133
Geobacillus stearothermophilus
?
-
-
-
-
Subunits (protein specific)
Subunits
Commentary
Organism
dimer
alpha2
Bombyx mori
dimer
-
Saccharomyces cerevisiae
dimer
alpha2
Thermus thermophilus
More
polypeptide is weakly associated with multienzyme complexes consisting of aminoacyl-tRNA synthetases
eukaryota
More
-
Homo sapiens
tetramer
alpha2,beta2
Brevibacillus brevis
tetramer
alpha2,beta2
Escherichia coli
tetramer
-
Saccharomyces cerevisiae
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7
8
-
Rattus norvegicus
Other publictions for EC 6.1.1.14
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
745344
Valencia-Sanchez
Structural insights into the ...
Aquifex aeolicus
J. Biol. Chem.
291
14430-14446
2016
-
-
-
-
-
-
-
-
-
-
-
1
-
6
-
-
1
-
-
-
-
-
1
1
-
-
1
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
745358
Deng
Large conformational changes ...
Homo sapiens
J. Biol. Chem.
291
5740-5752
2016
-
-
-
1
3
-
-
-
-
-
-
1
-
3
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
745876
Mo
Neddylation requires glycyl-t ...
Homo sapiens
Nat. Struct. Mol. Biol.
23
730-737
2016
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
1
-
-
1
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
1
-
-
1
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
744600
McMillan
Compound heterozygous mutatio ...
Homo sapiens
BMC Med. Genet.
15
36
2014
-
-
-
-
2
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
745302
Qin
Cocrystal structures of glycy ...
Homo sapiens
J. Biol. Chem.
289
20359-20369
2014
-
-
1
1
14
-
-
-
-
-
-
1
-
2
-
-
1
-
-
1
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
14
-
-
-
-
-
-
-
-
1
-
-
-
1
-
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
746265
Chien
Functional substitution of a ...
Arabidopsis thaliana, Homo sapiens, Saccharomyces cerevisiae, Thermus thermophilus
PLoS ONE
9
e94659
2014
-
-
3
-
-
-
-
-
7
-
-
4
-
10
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
3
4
-
-
-
-
-
-
-
7
-
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
728297
Wu
An insertion peptide in yeast ...
Saccharomyces cerevisiae, Saccharomyces cerevisiae ATCC 204508
Mol. Cell. Biol.
33
3515-3523
2013
-
-
1
-
-
-
-
7
2
-
-
3
-
5
-
-
1
-
-
-
-
-
3
-
-
-
-
3
-
-
-
1
-
-
-
-
-
2
2
-
-
-
-
-
-
8
2
-
-
3
-
-
-
2
-
-
-
-
3
-
-
-
-
3
-
-
-
-
-
-
-
-
3
3
728217
Tan
The crystal structures of the ...
Campylobacter jejuni subsp. jejuni, Campylobacter jejuni subsp. jejuni NCTC 11168
J. Struct. Funct. Genomics
13
233-239
2012
-
-
1
1
-
-
-
-
-
-
-
2
-
9
-
-
1
-
-
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
-
-
-
-
-
-
-
-
-
2
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
728398
Andreev
Glycyl-tRNA synthetase specifi ...
Homo sapiens
Nucleic Acids Res.
40
5602-5614
2012
-
-
1
-
-
-
-
-
2
-
-
1
-
4
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
2
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
714047
Oberthuer
The crystal structure of a The ...
Thermus thermophilus
Biochem. Biophys. Res. Commun.
404
245-249
2011
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
706875
Motley
GARS axonopathy: not every neu ...
Homo sapiens, Mus musculus
Trends Neurosci.
33
59-66
2010
-
2
-
-
20
-
-
-
6
-
-
2
-
5
-
-
-
-
-
3
-
-
2
2
-
-
-
-
-
-
-
2
-
-
-
-
2
-
2
-
20
-
-
-
-
-
6
-
-
2
-
-
-
-
-
3
-
-
2
2
-
-
-
-
-
-
-
-
-
2
2
-
-
-
713735
Blumen
Mutational analysis of glycyl- ...
Homo sapiens
Amyotroph. Lateral Scler.
11
237-239
2010
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
691544
Dierick
Relative contribution of mutat ...
Homo sapiens
Brain
131
1217-1227
2008
-
1
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
693172
Chen
Translational efficiency of a ...
Saccharomyces cerevisiae
J. Biol. Chem.
283
3173-3180
2008
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
673686
Cader
Crystal structure of human wil ...
Homo sapiens
FEBS Lett.
581
2959-2964
2007
-
-
1
1
1
-
-
-
-
1
-
1
-
2
-
-
1
-
-
1
-
-
2
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
1
-
-
-
-
-
-
1
-
1
-
-
-
1
-
1
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
675441
Shimizu
Extremely thermophilic transla ...
Thermus thermophilus
J. Mol. Biol.
369
1060-1069
2007
-
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676881
Nangle
Charcot-Marie-Tooth disease-as ...
Homo sapiens
Proc. Natl. Acad. Sci. USA
104
11239-11244
2007
-
-
1
-
11
-
-
-
1
1
-
1
-
3
-
-
-
-
-
1
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
11
-
-
-
-
-
1
1
-
1
-
-
-
-
-
1
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676908
Xie
Long-range structural effects ...
Homo sapiens
Proc. Natl. Acad. Sci. USA
104
9976-9981
2007
-
-
-
-
1
-
-
-
-
1
-
1
-
2
-
-
-
-
-
-
-
-
2
2
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
671098
Xie
Crystallization and preliminar ...
Homo sapiens
Acta Crystallogr. Sect. F
62
1243-1246
2006
-
-
1
1
-
-
-
-
1
1
-
1
-
3
-
-
1
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
-
-
-
-
-
-
1
1
-
1
-
-
-
1
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
675540
Antonellis
Functional analyses of glycyl- ...
Homo sapiens
J. Neurosci.
26
10397-10406
2006
-
-
1
-
6
-
-
-
1
1
-
1
-
4
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
6
-
-
-
-
-
1
1
-
1
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676172
Seburn
An active dominant mutation of ...
Mus musculus
Neuron
51
715-726
2006
-
-
1
-
1
-
-
-
1
1
-
1
-
5
-
-
-
-
-
2
-
-
2
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
2
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
728412
Okamoto
Recognition sites of glycine t ...
Aeropyrum pernix, Aeropyrum pernix DSM 11879
Nucleic Acids Symp. Ser.
2005
299-300
2005
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
662193
Chang
Translation initiation from a ...
Saccharomyces cerevisiae
J. Biol. Chem.
279
13778-13785
2004
-
-
-
-
-
-
-
-
4
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
650213
Dignam
Thermodynamic characterization ...
Bombyx mori
Biochemistry
42
5333-5340
2003
-
-
-
-
-
1
5
2
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
4
-
-
-
-
-
1
-
-
1
-
5
4
2
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
652455
Johanson
GRS1, a yeast tRNA synthetase ...
Saccharomyces cerevisiae
J. Biol. Chem.
278
35923-35930
2003
-
-
1
-
1
-
-
1
-
-
1
2
-
2
-
-
1
-
-
-
1
-
4
1
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
1
-
-
1
2
-
-
-
1
-
-
1
-
4
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
652111
Duchene
Overlapping destinations for t ...
Arabidopsis thaliana, Phaseolus vulgaris
J. Biol. Chem.
276
15275-15283
2001
-
-
1
-
-
-
-
-
6
-
4
2
-
9
-
-
1
-
-
-
-
-
3
2
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
6
-
4
2
-
-
-
1
-
-
-
-
3
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
652187
Dignam
Equilibrium unfolding of Bomby ...
Bombyx mori
J. Biol. Chem.
276
4028-4037
2001
-
-
1
-
-
-
1
-
-
-
-
1
-
2
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
652038
Turner
One of two genes encoding glyc ...
Saccharomyces cerevisiae
J. Biol. Chem.
275
27681-27688
2000
-
-
1
-
-
-
-
-
4
-
-
2
-
3
-
-
1
-
-
-
-
-
2
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
4
-
-
2
-
-
-
1
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
652046
Nathanson
Active aminoacyl-tRNA syntheta ...
Cricetulus griseus, Oryctolagus cuniculus
J. Biol. Chem.
275
31559-31562
2000
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
651424
Magrath
A mutation in GRS1, a glycyl-t ...
Saccharomyces cerevisiae
Genetics
152
129-141
1999
-
-
1
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
651043
Mazauric
Glycyl-tRNA synthetase from Th ...
Thermus thermophilus
Eur. J. Biochem.
251
744-757
1998
-
-
1
-
-
1
-
1
-
1
1
1
-
8
-
-
1
-
-
-
1
-
2
2
1
-
-
1
1
-
-
1
-
-
-
-
-
1
1
-
-
1
-
-
-
1
-
1
1
1
-
-
-
1
-
-
1
-
2
2
1
-
-
1
1
-
-
-
-
-
-
-
-
-
651399
Mudge
Complex organisation of the 5' ...
Homo sapiens
Gene
209
45-50
1998
-
-
1
-
-
-
-
-
1
-
-
1
-
4
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
653455
Uwer
Inactivation of a glycyl-tRNA ...
Arabidopsis thaliana
Plant Cell
10
1277-1294
1998
-
-
1
-
1
-
-
-
1
-
1
1
-
8
-
-
-
-
-
2
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
1
-
1
1
-
-
-
-
-
2
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
138
Nameki
Recognition of tRNAGly by thre ...
Escherichia coli, Saccharomyces cerevisiae, Thermus thermophilus
J. Mol. Biol.
268
640-647
1997
-
-
-
-
-
-
-
14
-
-
-
-
-
8
-
-
-
-
-
-
-
-
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
14
-
-
-
-
-
-
-
-
-
-
-
-
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
133
Freist
Glycyl-tRNA synthetase ...
Alcaligenes faecalis, Aliivibrio fischeri, Bombyx mori, Bos taurus, Brevibacillus brevis, Chlamydia trachomatis, Escherichia coli, eukaryota, Gallus gallus, Geobacillus stearothermophilus, Haemophilus influenzae, Homo sapiens, Mus musculus, Mycoplasma genitalium, Rattus norvegicus, Saccharomyces cerevisiae, Salmonella enterica subsp. enterica serovar Typhimurium, Staphylococcus aureus, Thermus thermophilus
Biol. Chem. Hoppe-Seyler
377
343-356
1996
-
-
1
1
3
-
6
6
-
10
-
36
-
23
-
-
1
1
-
8
-
-
65
8
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
3
-
-
6
-
6
-
10
-
36
-
-
-
1
-
8
-
-
65
8
-
-
-
-
1
-
-
-
-
-
-
-
-
-
134
Williams
Cloning, sequencing and bacter ...
Homo sapiens
Nucleic Acids Res.
23
1307-1310
1995
-
-
1
-
1
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
139
Wagar
The glycyl-tRNA synthetase of ...
Chlamydia trachomatis
J. Bacteriol.
177
5179-5185
1995
-
-
1
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
140
Wu
Analysis of truncated forms of ...
Bombyx mori
Biochemistry
34
16327-16336
1995
-
-
-
-
1
-
-
6
-
-
2
-
-
2
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
6
-
-
2
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
141
Logan
Crystal structure of glycyl-tR ...
Thermus thermophilus
EMBO J.
14
4156-4167
1995
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
136
Ge
Primary structure and function ...
Homo sapiens
J. Biol. Chem.
269
28790-28797
1994
-
-
1
-
-
-
-
-
-
-
1
-
-
5
-
-
-
-
-
3
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
3
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
137
Shiba
Human glycyl-tRNA synthetase. ...
Bombyx mori, Escherichia coli, Homo sapiens, Saccharomyces cerevisiae
J. Biol. Chem.
269
30049-30055
1994
-
-
1
-
-
-
-
-
-
-
-
-
-
9
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135
Toth
A mutation in the small subuni ...
Escherichia coli
J. Biol. Chem.
265
1005-1009
1990
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
159
Toth
Internal structural features o ...
Escherichia coli
J. Biol. Chem.
261
6643-6646
1986
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
158
Kawakami
Subunit structure and tRNA-bin ...
Bombyx mori
J. Biochem.
98
177-186
1985
-
-
-
-
-
1
-
2
-
-
3
-
-
2
-
-
1
-
-
2
1
-
2
2
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
2
-
-
3
-
-
-
-
1
-
2
1
-
2
2
-
-
-
2
-
-
-
-
-
-
-
-
-
-
156
Dignam
Glycyl- and alanyl-tRNA synthe ...
Bombyx mori
J. Biol. Chem.
259
4043-4048
1984
-
-
-
-
-
2
1
4
-
2
2
-
-
4
-
-
1
-
-
1
1
1
1
1
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
2
-
1
-
4
-
2
2
-
-
-
-
1
-
1
1
1
1
1
-
-
-
1
1
-
-
-
-
-
-
-
-
-
157
Nagel
The beta subunit of E. coli gl ...
Escherichia coli
Nucleic Acids Res.
12
4377-4384
1984
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
92
Walker
Molecular weights of mitochond ...
Bos taurus
Biochemistry
22
1934-1941
1983
-
-
-
-
-
-
-
-
2
-
2
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
154
Webster
Primary structures of both sub ...
Escherichia coli
J. Biol. Chem.
258
10637-10641
1983
-
-
-
-
-
-
-
-
-
-
1
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
155
Led
Phosphorolytic activity of Esc ...
Escherichia coli
Eur. J. Biochem.
136
469-479
1983
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
152
Keng
Gene for Escherichia coli glyc ...
Escherichia coli
J. Biol. Chem.
257
12503-12508
1982
-
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
150
Kern
Glycyl-tRNA synthetase from ba ...
Saccharomyces cerevisiae
Biochemistry
20
122-131
1981
-
-
-
-
-
2
-
3
-
1
6
-
-
2
-
-
1
-
-
-
2
-
2
2
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
3
-
1
6
-
-
-
-
1
-
-
2
-
2
2
1
-
-
1
1
-
-
-
-
-
-
-
-
-
151
Wright
Naldixic acid, oxolinic acid, ...
Escherichia coli, Saccharomyces cerevisiae
Science
213
455-456
1981
-
-
-
-
-
-
3
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
149
McDonald
Overproduction, purification, ...
Escherichia coli, Escherichia coli overproducing
Biochemistry
19
1402-1409
1980
-
-
-
-
-
-
-
-
-
-
3
-
-
10
-
-
1
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
148
Francis
Glycyl-tRNA synthetase: eviden ...
Escherichia coli
Biochem. Biophys. Res. Commun.
70
862-868
1976
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
147
Surguchov
Two enzymatically active forms ...
Brevibacillus brevis
Eur. J. Biochem.
54
175-184
1975
-
-
-
-
-
-
-
-
-
-
4
-
-
2
-
-
1
-
-
-
1
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
1
-
-
1
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
146
Ostrem
Glycyl transfer ribonucleic ac ...
Escherichia coli
Biochemistry
13
1338-1348
1974
-
-
-
-
-
2
1
7
-
-
4
-
-
1
-
-
1
-
-
-
1
1
1
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
1
-
7
-
-
4
-
-
-
-
1
-
-
1
1
1
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
143
Kurosawa
-
Glycine activating enzyme in t ...
Bombyx mori
Agric. Biol. Chem.
36
779-784
1972
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
3
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
3
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
144
Kurosawa
-
Correlation between two glycin ...
Bombyx mori
Agric. Biol. Chem.
36
1051-1053
1972
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
145
Roback
A temperature-sensitive glycyl ...
Escherichia coli
Can. J. Microbiol.
19
421-426
1972
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
142
Niyomporn
Biosynthesis of the peptidogly ...
Staphylococcus aureus, Staphylococcus aureus H
J. Biol. Chem.
243
773-778
1968
-
-
-
-
-
-
5
4
-
4
-
4
-
5
-
-
1
-
-
-
1
-
10
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
4
-
4
-
4
-
-
-
1
-
-
1
-
10
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-