BRENDA - Enzyme Database show
show all sequences of 4.1.99.1

The role of substrate strain in the mechanism of the carbon-carbon lyases

Phillips, R.S.; Demidkina, T.V.; Faleev, N.G.; Bioorg. Chem. 57, 198-205 (2014)

Data extracted from this reference:

Crystallization (Commentary)
Crystallization
Organism
analysis of the enzyme tetramer with one pyridoxal 5'-phosphate bound to each monomer, crystal structure at 2.1 A resolution, PDB ID 1AX4
Proteus vulgaris
Engineering
Amino acid exchange
Commentary
Organism
D133A
site-directed mutagenesis, inactive mutant
Proteus vulgaris
F448H
site-directed mutagenesis, the imidazole of F448H TPL forms a hydrogen bond to the substrate, consistent with the histidine being capable of hydrogen bonding to the substrate in TIL
Proteus vulgaris
H458A
site-directed mutagenesis, the almost inactive mutant shows 99% reduced activity compared to the wild-type enzyme
Proteus vulgaris
H463F
site-directed mutagenesis, the mutation results in a 103fold decrease in tryptophan elimination activity and in a 1000fold decrease in tryptophan elimination activity and loss of the pKa of 6.0 in the pH dependence of kcat/Km, suggesting that His463 is that base. In contrast, kcat is pH-independent, demonstrating that only the correctly protonated form of the enzyme binds the substrate, and the enzyme-substrate complex does not undergo protonation
Escherichia coli
Inhibitors
Inhibitors
Commentary
Organism
Structure
oxindolyl-L-alanine
an inhibitor which is an analogue of the proposed indolenine intermediate. The pH dependence of Ki for oxindolyl-L-alanine exhibits two basic pKas of 6.0 and 7.6
Escherichia coli
oxindolyl-L-alanine
an inhibitor which is an analogue of the proposed indolenine intermediate
Proteus vulgaris
KM Value [mM]
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
pre-steady state kinetics and steady state kinetic study, stopped-flow measurements and stopped-flow spectra of the reaction of TIL with L-tryptophan, overview. The pH dependence of kcat/Km of Escherichia coli TIL for tryptophan exhibits 2 basic groups, with pKas of 6.0 and 7.6. The base with pKa of 7.6 is involved in the deprotonation of the alpha-carbon of substrates, and the base with pKa of 6.0 activates the indole ring of the tryptophan substrate for elimination. There is a pH-independent primary isotope effect on kcat (Dkcat = 2.5) and kcat/Km (Dkcat/Km = 2.8) for alpha-[2H]-L-tryptophan, indicating that a step (or steps) involving transfer of the alpha-proton is partially rate-limiting. The TIL reaction shows pD-independent solvent isotope effects in D2O (D2Okcat 3:8 and D2Okcat=Km 2:8), and the substrate isotope effect is reduced in D2O (Dkcat = 1.25 and Dkcat/Km = 1.82), suggesting that the steady-state solvent and substrate isotope effects are on different steps. The proton inventory for the reaction of TIL is concave downward, indicating that multiple waters are involved in the transition state of the solvent sensitive step
Escherichia coli
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
additional information
the enzyme requires a monovalent cation, either K+, NH4+, Rb+ or Cs+ for activity, with Na+ and Li+ giving little or no activity
Escherichia coli
additional information
the enzyme requires a monovalent cation, either K+, NH4+, Rb+ or Cs+ for activity, with Na+ and Li+ giving little or no activity
Proteus vulgaris
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
L-tryptophan + H2O
Escherichia coli
very high substrate specificity of TIL
indole + pyruvate + NH3
-
-
?
L-tryptophan + H2O
Proteus vulgaris
very high substrate specificity of TIL
indole + pyruvate + NH3
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Escherichia coli
P0A853
-
-
Proteus vulgaris
P28796
-
-
Reaction
Reaction
Commentary
Organism
L-tryptophan + H2O = indole + pyruvate + NH3
an active site base is essential for activity, and alpha-deuterated substrate exhibits modest primary isotope effects on kcat and kcat/Km, suggesting that substrate deprotonation is partially rate-limiting. Pre-steady state kinetics with enzyme TIL show rapid formation of an external aldimine intermediate, followed by deprotonation to give a quinonoid intermediate absorbing at about 500 nm. The mechanism of TIL requires both substrate strain and acid/base catalysis, and substrate strain is probably responsible for the very high substrate specificity of TIL. Acid-base catalysis mechanism of TIL, overview. The indole ring is preorganized into the active conformation before alpha-deprotonation occurs
Escherichia coli
L-tryptophan + H2O = indole + pyruvate + NH3
an active site base is essential for activity, and alpha-deuterated substrate exhibits modest primary isotope effects on kcat and kcat/Km, suggesting that substrate deprotonation is partially rate-limiting. Pre-steady state kinetics with enzyme TIL show rapid formation of external an aldimine intermediate, followed by deprotonation to give a quinonoid intermediate absorbing at about 500 nm. The mechanism of TIL requires both substrate strain and acid/base catalysis, and substrate strain is probably responsible for the very high substrate specificity of TIL. Acid-base catalysis mechanism of TIL, overview. The indole ring is preorganized into the active conformation before alpha-deprotonation occurs
Proteus vulgaris
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
L-tryptophan + H2O
very high substrate specificity of TIL
747245
Escherichia coli
indole + pyruvate + NH3
-
-
-
?
L-tryptophan + H2O
very high substrate specificity of TIL
747245
Proteus vulgaris
indole + pyruvate + NH3
-
-
-
?
additional information
only the correctly protonated form of the enzyme binds the substrate, and the enzyme-substrate complex does not undergo protonation
747245
Escherichia coli
?
-
-
-
-
S-methyl-L-cysteine + H2O
-
747245
Escherichia coli
methanethiol + pyruvate + NH3
-
-
-
r
Subunits
Subunits
Commentary
Organism
tetramer
-
Escherichia coli
tetramer
-
Proteus vulgaris
Cofactor
Cofactor
Commentary
Organism
Structure
pyridoxal 5'-phosphate
dependent on, the active site residues involved in cofactor binding are highly conserved for enzyme TIL
Escherichia coli
pyridoxal 5'-phosphate
dependent on, the active site residues involved in cofactor binding are highly conserved for enzyme TIL
Proteus vulgaris
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
pyridoxal 5'-phosphate
dependent on, the active site residues involved in cofactor binding are highly conserved for enzyme TIL
Escherichia coli
pyridoxal 5'-phosphate
dependent on, the active site residues involved in cofactor binding are highly conserved for enzyme TIL
Proteus vulgaris
Crystallization (Commentary) (protein specific)
Crystallization
Organism
analysis of the enzyme tetramer with one pyridoxal 5'-phosphate bound to each monomer, crystal structure at 2.1 A resolution, PDB ID 1AX4
Proteus vulgaris
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
D133A
site-directed mutagenesis, inactive mutant
Proteus vulgaris
F448H
site-directed mutagenesis, the imidazole of F448H TPL forms a hydrogen bond to the substrate, consistent with the histidine being capable of hydrogen bonding to the substrate in TIL
Proteus vulgaris
H458A
site-directed mutagenesis, the almost inactive mutant shows 99% reduced activity compared to the wild-type enzyme
Proteus vulgaris
H463F
site-directed mutagenesis, the mutation results in a 103fold decrease in tryptophan elimination activity and in a 1000fold decrease in tryptophan elimination activity and loss of the pKa of 6.0 in the pH dependence of kcat/Km, suggesting that His463 is that base. In contrast, kcat is pH-independent, demonstrating that only the correctly protonated form of the enzyme binds the substrate, and the enzyme-substrate complex does not undergo protonation
Escherichia coli
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
oxindolyl-L-alanine
an inhibitor which is an analogue of the proposed indolenine intermediate. The pH dependence of Ki for oxindolyl-L-alanine exhibits two basic pKas of 6.0 and 7.6
Escherichia coli
oxindolyl-L-alanine
an inhibitor which is an analogue of the proposed indolenine intermediate
Proteus vulgaris
KM Value [mM] (protein specific)
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
pre-steady state kinetics and steady state kinetic study, stopped-flow measurements and stopped-flow spectra of the reaction of TIL with L-tryptophan, overview. The pH dependence of kcat/Km of Escherichia coli TIL for tryptophan exhibits 2 basic groups, with pKas of 6.0 and 7.6. The base with pKa of 7.6 is involved in the deprotonation of the alpha-carbon of substrates, and the base with pKa of 6.0 activates the indole ring of the tryptophan substrate for elimination. There is a pH-independent primary isotope effect on kcat (Dkcat = 2.5) and kcat/Km (Dkcat/Km = 2.8) for alpha-[2H]-L-tryptophan, indicating that a step (or steps) involving transfer of the alpha-proton is partially rate-limiting. The TIL reaction shows pD-independent solvent isotope effects in D2O (D2Okcat 3:8 and D2Okcat=Km 2:8), and the substrate isotope effect is reduced in D2O (Dkcat = 1.25 and Dkcat/Km = 1.82), suggesting that the steady-state solvent and substrate isotope effects are on different steps. The proton inventory for the reaction of TIL is concave downward, indicating that multiple waters are involved in the transition state of the solvent sensitive step
Escherichia coli
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
additional information
the enzyme requires a monovalent cation, either K+, NH4+, Rb+ or Cs+ for activity, with Na+ and Li+ giving little or no activity
Escherichia coli
additional information
the enzyme requires a monovalent cation, either K+, NH4+, Rb+ or Cs+ for activity, with Na+ and Li+ giving little or no activity
Proteus vulgaris
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
L-tryptophan + H2O
Escherichia coli
very high substrate specificity of TIL
indole + pyruvate + NH3
-
-
?
L-tryptophan + H2O
Proteus vulgaris
very high substrate specificity of TIL
indole + pyruvate + NH3
-
-
?
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
L-tryptophan + H2O
very high substrate specificity of TIL
747245
Escherichia coli
indole + pyruvate + NH3
-
-
-
?
L-tryptophan + H2O
very high substrate specificity of TIL
747245
Proteus vulgaris
indole + pyruvate + NH3
-
-
-
?
additional information
only the correctly protonated form of the enzyme binds the substrate, and the enzyme-substrate complex does not undergo protonation
747245
Escherichia coli
?
-
-
-
-
S-methyl-L-cysteine + H2O
-
747245
Escherichia coli
methanethiol + pyruvate + NH3
-
-
-
r
Subunits (protein specific)
Subunits
Commentary
Organism
tetramer
-
Escherichia coli
tetramer
-
Proteus vulgaris
General Information
General Information
Commentary
Organism
evolution
the carbon-carbon lyases, tryptophan indole lyase (TIL) and tyrosine phenol-lyase (TPL, EC 4.1.99.2) are bacterial enzymes which catalyze the reversible elimination of indole and phenol from L-tryptophan and L-tyrosine, respectively. These pyridoxal 5'-phosphate-dependent enzymes show high sequence homology (about 40% identity) and both form homotetrameric structures. Pre-steady state kinetics with TPL and TIL show rapid formation of external aldimine intermediates, followed by deprotonation to give quinonoid intermediates absorbing at about 500 nm. The active sites of TIL and TPL are highly conserved with the exceptions of these residues: Arg381(TPL)/Ile396 (TIL), Thr124 (TPL)/Asp137 (TIL), and Phe448 (TPL)/His463 (TIL). The conserved tyrosine, Tyr71 (TPL)/Tyr74 (TIL) is essential for elimination activity with both enzymes, and likely plays a role as a proton donor to the leaving group. A unique feature of TIL and TPL is another strictly conserved lysine immediately preceding the pyridoxal 5'-phosphate-binding lysine, and hydrogen bonded to a water molecule bound to the monovalent cation. The mechanisms of TPL and TIL require both substrate strain and acid/base catalysis, and substrate strain is probably responsible for the very high substrate specificity of TPL and TIL. Both enzymes require a monovalent cation, either K+, NH4+, Rb+ or Cs+ for activity, with Na+ and Li+ giving little or no activity. The active site residues involved in PLP binding are highly conserved for both TIL and TPL. Sequence comparisons
Escherichia coli
evolution
the carbon-carbon lyases, tryptophan indole lyase (TIL) and tyrosine phenol-lyase (TPL, EC 4.1.99.2) are bacterial enzymes which catalyze the reversible elimination of indole and phenol from L-tryptophan and L-tyrosine, respectively. These pyridoxal 5'-phosphate-dependent enzymes show high sequence homology (about 40% identity) and both form homotetrameric structures. Pre-steady state kinetics with TPL and TIL show rapid formation of external aldimine intermediates, followed by deprotonation to give quinonoid intermediates absorbing at about 500 nm. The active sites of TIL and TPL are highly conserved with the exceptions of these residues: Arg381(TPL)/Ile396 (TIL), Thr124 (TPL)/Asp137 (TIL), and Phe448 (TPL)/His463 (TIL). The conserved tyrosine, Tyr71 (TPL)/Tyr74 (TIL) is essential for elimination activity with both enzymes, and likely plays a role as a proton donor to the leaving group. A unique feature of TIL and TPL is another strictly conserved lysine immediately preceding the pyridoxal 5'-phosphate-binding lysine, and hydrogen bonded to a water molecule bound to the monovalent cation. The mechanisms of TPL and TIL require both substrate strain and acid/base catalysis, and substrate strain is probably responsible for the very high substrate specificity of TPL and TIL. Both enzymes require a monovalent cation, either K+, NH4+, Rb+ or Cs+ for activity, with Na+ and Li+ giving little or no activity. The active site residues involved in PLP binding are highly conserved for both TIL and TPL. Sequence comparisons
Proteus vulgaris
additional information
the conserved Phe449 in TPL locates within 3 A of the substrate aromatic ring in the closed conformation
Escherichia coli
additional information
the conserved Phe459 in TPL locates within 3 A of the substrate aromatic ring in the closed conformation. Asp133 may be the residue that contacts the substrate
Proteus vulgaris
General Information (protein specific)
General Information
Commentary
Organism
evolution
the carbon-carbon lyases, tryptophan indole lyase (TIL) and tyrosine phenol-lyase (TPL, EC 4.1.99.2) are bacterial enzymes which catalyze the reversible elimination of indole and phenol from L-tryptophan and L-tyrosine, respectively. These pyridoxal 5'-phosphate-dependent enzymes show high sequence homology (about 40% identity) and both form homotetrameric structures. Pre-steady state kinetics with TPL and TIL show rapid formation of external aldimine intermediates, followed by deprotonation to give quinonoid intermediates absorbing at about 500 nm. The active sites of TIL and TPL are highly conserved with the exceptions of these residues: Arg381(TPL)/Ile396 (TIL), Thr124 (TPL)/Asp137 (TIL), and Phe448 (TPL)/His463 (TIL). The conserved tyrosine, Tyr71 (TPL)/Tyr74 (TIL) is essential for elimination activity with both enzymes, and likely plays a role as a proton donor to the leaving group. A unique feature of TIL and TPL is another strictly conserved lysine immediately preceding the pyridoxal 5'-phosphate-binding lysine, and hydrogen bonded to a water molecule bound to the monovalent cation. The mechanisms of TPL and TIL require both substrate strain and acid/base catalysis, and substrate strain is probably responsible for the very high substrate specificity of TPL and TIL. Both enzymes require a monovalent cation, either K+, NH4+, Rb+ or Cs+ for activity, with Na+ and Li+ giving little or no activity. The active site residues involved in PLP binding are highly conserved for both TIL and TPL. Sequence comparisons
Escherichia coli
evolution
the carbon-carbon lyases, tryptophan indole lyase (TIL) and tyrosine phenol-lyase (TPL, EC 4.1.99.2) are bacterial enzymes which catalyze the reversible elimination of indole and phenol from L-tryptophan and L-tyrosine, respectively. These pyridoxal 5'-phosphate-dependent enzymes show high sequence homology (about 40% identity) and both form homotetrameric structures. Pre-steady state kinetics with TPL and TIL show rapid formation of external aldimine intermediates, followed by deprotonation to give quinonoid intermediates absorbing at about 500 nm. The active sites of TIL and TPL are highly conserved with the exceptions of these residues: Arg381(TPL)/Ile396 (TIL), Thr124 (TPL)/Asp137 (TIL), and Phe448 (TPL)/His463 (TIL). The conserved tyrosine, Tyr71 (TPL)/Tyr74 (TIL) is essential for elimination activity with both enzymes, and likely plays a role as a proton donor to the leaving group. A unique feature of TIL and TPL is another strictly conserved lysine immediately preceding the pyridoxal 5'-phosphate-binding lysine, and hydrogen bonded to a water molecule bound to the monovalent cation. The mechanisms of TPL and TIL require both substrate strain and acid/base catalysis, and substrate strain is probably responsible for the very high substrate specificity of TPL and TIL. Both enzymes require a monovalent cation, either K+, NH4+, Rb+ or Cs+ for activity, with Na+ and Li+ giving little or no activity. The active site residues involved in PLP binding are highly conserved for both TIL and TPL. Sequence comparisons
Proteus vulgaris
additional information
the conserved Phe449 in TPL locates within 3 A of the substrate aromatic ring in the closed conformation
Escherichia coli
additional information
the conserved Phe459 in TPL locates within 3 A of the substrate aromatic ring in the closed conformation. Asp133 may be the residue that contacts the substrate
Proteus vulgaris
Other publictions for EC 4.1.99.1
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
746632
Phillips
The crystal structure of Prot ...
Escherichia coli, Proteus vulgaris
Acta Crystallogr. Sect. D
74
748-759
2018
-
-
2
1
1
-
2
1
-
-
-
2
-
5
-
-
2
1
-
-
-
-
6
1
1
-
-
6
1
-
-
2
3
-
-
-
-
2
2
1
1
-
-
2
3
1
-
-
-
2
-
-
-
2
-
-
-
-
6
1
1
-
-
6
1
-
-
-
-
3
3
-
6
6
746651
Rety
Structure of Escherichia coli ...
Escherichia coli
Acta Crystallogr. Sect. F
71
1378-1383
2015
-
-
1
1
-
-
-
-
-
3
-
1
-
3
-
-
1
1
-
1
-
-
1
2
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
1
-
-
-
-
-
-
-
3
-
1
-
-
-
1
-
1
-
-
1
2
1
-
-
-
1
-
-
-
1
1
1
1
-
-
746654
Kogan
Structures of Escherichia col ...
Escherichia coli
Acta Crystallogr. Sect. F
71
286-290
2015
-
-
1
1
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
2
2
-
-
-
746778
Nuidate
Characterization of tryptopha ...
Vibrio cholerae O1, Vibrio cholerae O1 ATCC 39541
Appl. Biochem. Biotechnol.
175
243-252
2015
-
-
1
-
8
-
-
4
-
-
-
2
-
10
-
-
1
-
-
-
-
-
8
1
1
1
1
3
1
1
1
1
-
-
-
-
-
1
1
-
8
-
-
-
-
4
-
-
-
2
-
-
-
1
-
-
-
-
8
1
1
1
1
3
1
1
1
-
-
2
2
-
3
3
747414
Li
A new suite of tnaA mutants s ...
Escherichia coli
BMC Microbiol.
15
14
2015
-
-
1
-
40
-
-
-
1
-
-
1
-
3
-
-
-
-
-
1
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
40
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
1
1
-
-
-
-
-
-
-
-
-
3
3
-
-
-
746742
Xu
Turning tryptophanase into od ...
Escherichia coli
Angew. Chem. Int. Ed. Engl.
53
2620-2622
2014
-
1
-
-
1
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
746875
Watsuji
Analysis of the tryptophanase ...
Symbiobacterium thermophilum, Symbiobacterium thermophilum T / IAM 14863 / JCM 14929
Appl. Microbiol. Biotechnol.
98
10177-10186
2014
-
-
1
-
-
-
-
-
-
-
-
2
-
4
-
-
-
-
-
3
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
3
-
-
2
-
-
-
-
-
-
-
-
-
1
1
1
1
-
-
746909
Do
Inhibition of Escherichia col ...
Escherichia coli
Arch. Biochem. Biophys.
560
20-26
2014
-
-
1
-
-
-
7
-
-
-
-
1
-
3
-
-
1
1
-
-
-
-
1
-
1
-
-
-
1
-
-
1
7
-
-
-
-
1
1
-
-
-
-
7
7
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
747167
Faleev
A straightforward kinetic evi ...
Proteus vulgaris
Biochim. Biophys. Acta
1844
1860-1867
2014
-
-
-
-
1
-
1
1
-
-
-
1
-
2
-
-
-
-
-
-
-
-
4
-
1
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
1
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
4
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
747245
Phillips
The role of substrate strain ...
Escherichia coli, Proteus vulgaris
Bioorg. Chem.
57
198-205
2014
-
-
-
1
4
-
2
1
-
2
-
2
-
2
-
-
-
2
-
-
-
-
4
2
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
1
4
-
-
2
-
1
-
2
-
2
-
-
-
-
-
-
-
-
4
2
-
-
-
-
-
-
-
-
-
4
4
-
-
-
726660
Hara
Enhanced synthesis of 5-hydrox ...
Escherichia coli
AMB Express
3
70
2013
-
-
1
-
1
-
-
-
-
-
-
1
-
7
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
1
1
-
-
-
727478
Harris
Benzimidazole analogs of (L)-t ...
Escherichia coli, Escherichia coli JM109
FEBS J.
280
1807-1817
2013
-
-
-
-
1
-
3
4
-
-
1
2
-
33
-
-
-
1
-
-
-
-
4
1
1
-
-
3
1
-
-
-
3
-
-
-
-
-
-
-
1
-
-
3
3
4
-
-
1
2
-
-
-
-
-
-
-
-
4
1
1
-
-
3
1
-
-
-
-
1
1
-
3
3
728262
Li
Indole production by the trypt ...
Escherichia coli, Escherichia coli MG1655
Microbiology
159
402-410
2013
-
-
1
-
1
-
-
-
-
-
-
2
-
27
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
726995
Phillips
Evidence of preorganization in ...
Escherichia coli
Biochemistry
51
6527-6533
2012
-
-
-
-
1
-
-
1
-
-
-
1
-
2
-
-
-
1
-
-
-
-
3
-
1
-
-
-
1
1
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
3
-
1
-
-
-
1
1
-
-
-
-
-
-
-
-
728650
Du
Enzymatic synthesis of L-trypt ...
Escherichia coli
Prikl. Biokhim. Mikrobiol.
48
183-190
2012
-
-
1
-
1
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
713955
Phillips
Properties of tryptophan indol ...
Escherichia coli, Photobacterium profundum, Photobacterium profundum SS9
Arch. Biochem. Biophys.
506
35-41
2011
-
-
2
-
-
2
-
-
-
-
-
-
-
6
-
-
2
-
-
-
2
-
17
-
2
-
2
12
-
-
-
2
-
-
-
-
-
2
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
2
-
-
2
-
17
-
2
-
2
12
-
-
-
-
-
-
-
-
12
12
715059
Sasaki-Imamura
Molecular basis of indole prod ...
Prevotella intermedia, Prevotella intermedia ATCC 25611
FEMS Microbiol. Lett.
322
51-59
2011
-
-
1
-
-
-
-
3
-
-
2
-
-
6
-
-
1
-
-
-
-
-
6
1
-
-
-
3
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
3
-
-
2
-
-
-
-
1
-
-
-
-
6
1
-
-
-
3
-
-
-
-
-
-
-
-
3
3
715385
Bhatt
CsrA and TnaB coregulate trypt ...
Escherichia coli
J. Bacteriol.
193
4516-4522
2011
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
715733
Shimada
Reaction pathway of tryptophan ...
Escherichia coli
J. Chromatogr. B
879
3289-3295
2011
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
1
-
-
-
-
-
4
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
703486
Wigginton
Binding of silver nanoparticle ...
Escherichia coli
Environ. Sci. Technol.
44
2163-2168
2010
-
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
705580
Kuczynska-Wisnik
Escherichia coli heat-shock pr ...
Escherichia coli
Microbiology
156
148-157
2010
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
706000
An
Efficacy of Lactic Acid Bacter ...
Homo sapiens
Nutr. J.
9
5-5
2010
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
698614
Yang
23S rRNA nucleotides in the pe ...
Escherichia coli
J. Bacteriol.
191
3445-3450
2009
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
701449
hang
Evidences of Hfq associates wi ...
Escherichia coli
Acta Biochim. Biophys. Sin.
41
709-717
2009
-
-
-
-
-
-
-
2
-
-
1
-
-
2
-
-
-
-
-
-
6
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
6
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
702931
Kogan
Conformational changes and loo ...
Escherichia coli, Escherichia coli SVS 370
BMC Struct. Biol.
9
65
2009
-
-
-
1
3
-
-
-
-
-
-
-
-
5
-
-
1
-
-
-
-
-
2
1
-
-
1
-
-
-
-
1
-
-
-
-
-
-
1
1
3
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
2
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
704093
Shimada
Tryptophanase-catalyzed L-tryp ...
Escherichia coli
Int. J. Mol. Sci.
10
2578-2590
2009
2
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
2
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
704722
Chi
Identification of IbeR as a st ...
Escherichia coli, Escherichia coli K1
J. Biomed. Biotechnol.
2009
520283
2009
-
-
-
-
-
-
-
-
-
-
-
-
-
11
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
704847
Scherzer
New tryptophanase inhibitors: ...
Escherichia coli
J. Enzyme Inhib. Med. Chem.
24
350-355
2009
-
-
-
-
-
-
5
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
5
-
-
-
-
-
1
-
-
-
-
5
5
-
-
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
705578
Hirakawa
Secreted indole serves as a si ...
Escherichia coli, Escherichia coli O157:H7 Sakai
Microbiology
155
541-550
2009
-
-
-
-
-
-
-
-
-
-
-
2
-
6
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
705579
Yoshida
Identification and molecular c ...
Porphyromonas gingivalis, Porphyromonas gingivalis W83
Microbiology
155
968-978
2009
-
-
1
-
-
-
-
4
-
1
1
-
-
10
-
-
1
-
-
-
-
-
8
-
-
-
1
4
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
4
-
1
1
-
-
-
-
1
-
-
-
-
8
-
-
-
1
4
1
-
-
-
-
-
-
-
3
3
678747
Almog
Structural insights into cold ...
Escherichia coli
Biopolymers
89
354-359
2008
-
-
-
-
-
-
-
-
-
3
1
1
-
2
-
-
-
-
-
-
-
-
1
2
-
-
1
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
1
1
-
-
-
-
-
-
-
-
1
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
690651
Kim
Inhibition of proliferation in ...
Rattus norvegicus
Arch. Pharm. Res.
31
468-473
2008
-
-
-
-
-
-
1
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
691648
Gubica
The influence of selected O-al ...
Escherichia coli
Carbohydr. Res.
344
304-130
2008
-
-
-
-
-
-
10
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
9
-
-
-
-
-
1
-
-
-
-
10
9
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
677276
Swiegers
Engineering volatile thiol rel ...
Escherichia coli
Yeast
24
561-574
2007
-
1
1
-
-
-
-
-
-
-
-
1
-
8
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
1
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
677332
Tsesin
The structure of apo tryptopha ...
Escherichia coli
Acta Crystallogr. Sect. D
D63
969-974
2007
-
1
-
1
-
-
-
-
-
5
1
1
-
3
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
1
-
1
1
-
-
-
-
-
-
-
5
1
1
-
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
681998
Chattoraj
Tryptophanase in sRNA control ...
Escherichia coli
Mol. Microbiol.
63
1-3
2007
1
-
-
-
-
-
-
-
-
-
-
1
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
664234
Kulikova
Tryptophanase from Proteus vul ...
Proteus vulgaris
Biochim. Biophys. Acta
1764
750-757
2006
-
-
-
-
1
-
-
7
-
-
-
-
-
2
-
-
-
-
-
-
-
-
7
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
7
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
671054
Ku
Structure of Escherichia coli ...
Escherichia coli, Escherichia coli JM109
Acta Crystallogr. Sect. D
62
814-823
2006
-
1
-
1
-
-
-
-
-
2
1
1
-
5
-
-
1
-
-
-
-
-
2
2
-
-
1
-
-
-
-
1
-
1
-
-
1
-
1
1
-
-
-
-
-
-
-
2
1
1
-
-
-
1
-
-
-
-
2
2
-
-
1
-
-
-
-
1
-
-
-
-
-
-
681216
Gubica
-
Effects of native and permethy ...
Escherichia coli
J. Inclusion Phenom. Macrocyclic Chem.
54
283-288
2006
-
-
-
-
-
-
1
1
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
664076
Phillips
Differential effects of temper ...
Escherichia coli
Biochemistry
44
14289-14297
2005
-
-
-
-
1
-
1
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
653815
Pioselli
Tyrosine phenol-lyase and tryp ...
Proteus vulgaris
Protein Sci.
13
913-924
2004
-
1
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
663488
Kogan
Crystallization and preliminar ...
Escherichia coli
Acta Crystallogr. Sect. D
60
2073-2075
2004
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
665005
Grudniak
Influence of Escherichia coli ...
Escherichia coli
FEMS Microbiol. Rev.
49
507-512
2004
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
665767
Mateus
Kinetics of L-tryptophan produ ...
Escherichia coli, Escherichia coli B1t-7A
J. Biosci. Bioeng.
97
289-293
2004
-
-
-
-
-
-
1
1
-
-
-
-
-
3
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
651028
Gogoleva
-
Tryptophanase in aqueous metha ...
Escherichia coli
Enzyme Microb. Technol.
32
843-850
2003
-
-
-
-
-
-
6
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
6
6
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
650374
Erez
Cold-induced enzyme inactivati ...
Escherichia coli
Biochim. Biophys. Acta
1594
335-340
2002
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
650757
Di Martino
Isolation of an Escherichia co ...
Escherichia coli
Can. J. Microbiol.
48
132-137
2002
-
1
-
-
1
-
-
-
-
-
-
-
-
4
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
652265
Phillips
Crystals of tryptophan indole- ...
Proteus vulgaris
J. Biol. Chem.
277
21592-21597
2002
-
-
-
1
-
-
-
-
-
-
-
-
-
3
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
650435
Ikushiro
Activation of the coenzyme at ...
Escherichia coli
Biofactors
11
97-99
2000
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
653701
Kudo
Analysis of stability and cata ...
Symbiobacterium thermophilum
Protein Eng.
12
687-692
1999
-
-
-
-
5
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
37365
Isupov
Crystal structure of tryptopha ...
Proteus vulgaris
J. Mol. Biol.
276
603-623
1998
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37362
Kawasaki
Enzymatic synthesis of L-trypt ...
Escherichia coli, Klebsiella aerogenes, Klebsiella aerogenes SM-18
Biosci. Biotechnol. Biochem.
59
1938-1943
1995
-
-
1
-
-
-
-
-
-
-
1
-
-
7
-
-
1
-
-
-
2
-
3
-
-
-
3
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
2
-
3
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
37364
Faleev
Tryptophanase from Escherichia ...
Escherichia coli
Biochem. Mol. Biol. Int.
34
209-216
1994
-
-
-
-
-
-
3
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37366
Kawasaki
Cloning and characterization o ...
Klebsiella aerogenes, Klebsiella aerogenes SM-18
J. Gen. Microbiol.
139
3275-3281
1993
-
-
1
-
-
-
-
-
-
-
1
-
-
6
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37363
Suzuki
Purification and properties of ...
Symbiobacterium thermophilum, Symbiobacterium thermophilum T
Agric. Biol. Chem.
55
3059-3066
1991
-
-
-
-
-
-
-
1
-
1
2
-
-
5
-
-
1
-
-
-
1
-
14
1
1
-
1
1
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
2
-
-
-
-
1
-
-
1
-
14
1
1
-
1
1
1
-
1
-
-
-
-
-
-
-
37360
Tani
Overproduction and crystalliza ...
Escherichia coli, Escherichia coli B/1t7-A
Biotechnol. Appl. Biochem.
12
28-33
1990
-
-
1
1
-
-
-
-
-
-
-
-
-
10
-
-
1
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37334
Kiick
Mechanistic deductions from mu ...
Escherichia coli
Biochemistry
27
7339-7344
1988
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37335
Behbahani-Nejad
Tryptophanase from Escherichia ...
Escherichia coli, Escherichia coli B/1t7-A
Methods Enzymol.
142
414-422
1987
-
-
-
-
-
-
-
10
-
2
1
-
-
9
-
-
1
-
-
-
1
1
12
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
10
-
2
1
-
-
-
-
1
-
-
1
1
12
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37336
Honda
Effects of temperature and mon ...
Escherichia coli
J. Biochem.
100
679-685
1986
-
-
-
-
-
-
-
-
-
2
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
37337
Behbahani-Nejad
Kinetics of tryptophanase inac ...
Escherichia coli, Escherichia coli B/1t7-A
Curr. Top. Cell. Regul.
24
219-228
1984
-
-
-
-
-
-
-
-
-
1
-
-
-
8
-
-
-
-
-
-
-
-
12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37338
Whitt
Trypotophanase from a marine b ...
Vibrio sp., Vibrio sp. K-7
Arch. Microbiol.
122
169-175
1979
-
-
-
-
-
-
-
1
-
1
-
2
-
3
-
-
1
-
-
-
1
-
4
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
2
-
-
-
1
-
-
1
-
4
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
37359
Nihira
Pyridoxal-5 -phosphate-sensiti ...
Escherichia coli, Escherichia coli B/1t7-A
Eur. J. Biochem.
101
341-347
1979
-
-
-
-
-
1
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37361
Taylor
Synthesis of tryptophanase in ...
Escherichia coli
Mol. Gen. Genet.
165
95-102
1978
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
37339
Suelter
Monovalent cation activation o ...
Escherichia coli, Escherichia coli B/1t7-A
J. Biol. Chem.
252
1852-1857
1977
-
-
-
-
-
-
2
-
-
7
-
-
-
8
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
7
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37340
Toraya
-
Essential role of monovalent c ...
Escherichia coli, Escherichia coli B/1t7-A
Eur. J. Biochem.
69
411-419
1976
-
-
-
-
-
-
-
-
-
3
-
-
-
8
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37342
Raibaud
The dissociated tryptophanase ...
Escherichia coli
J. Biol. Chem.
251
2820-2824
1976
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37341
Snell
Tryptophanase: structure, cata ...
Aeromonas hydrophila, Aeromonas sp., Bacillus sp. (in: Bacteria), Bacteroides sp., Corynebacterium sp., Enterobacter sp., Erwinia sp., Escherichia coli, Kluyvera sp., Micrococcus sp., no activity in Acetobacter sp., no activity in Achromobacter sp., no activity in Agrobacterium sp., no activity in Alcaligenes sp., no activity in Azotobacter sp., no activity in Clostridium sp., no activity in Flavobacterium sp., no activity in Mycoplasma sp., no activity in Pseudomonas sp., no activity in Rhizobium sp., no activity in Salmonella sp., no activity in Serratia sp., no activity in Xanthomonas sp., Paenibacillus alvei, Paracolobactrum sp., Pasteurella sp., Photobacterium sp., Proteus sp., Providencia rettgeri, Sphaerophorus sp., Vibrio sp.
Adv. Enzymol. Relat. Areas Mol. Biol.
42
287-333
1975
-
-
-
-
-
-
11
17
-
-
2
3
-
31
-
-
-
-
-
-
-
-
37
5
-
-
-
-
4
-
-
5
-
-
-
-
-
-
5
-
-
-
-
11
-
17
-
-
2
3
-
-
-
-
-
-
-
-
37
5
-
-
-
-
4
-
-
-
-
-
-
-
-
-
37343
Simard
Differentiation of tryptophana ...
Escherichia aurescens, Escherichia coli, Escherichia coli B / ATCC 11303, Morganella morganii, Proteus vulgaris, Shigella alkalescens
Can. J. Microbiol.
21
841-845
1975
5
-
-
-
-
-
-
-
-
-
-
-
-
189
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37344
Simard
The effect of pyridoxal phosph ...
Escherichia aurescens, Escherichia coli, Escherichia coli B / ATCC 11303, Morganella morganii, Proteus vulgaris, Shigella alkalescens
Can. J. Microbiol.
21
834-840
1975
-
-
-
-
-
-
1
-
-
-
-
-
-
188
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
5
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37345
Simard
Physical and chemical properti ...
Escherichia aurescens, Escherichia coli, Escherichia coli B / ATCC 11303, Morganella morganii, Proteus vulgaris, Shigella alkalescens
Can. J. Microbiol.
21
828-833
1975
-
-
-
-
-
-
-
-
-
-
5
-
-
187
-
-
1
-
-
-
2
-
6
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
1
-
-
2
-
6
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37346
Yoshida
The tryptophanase from Proteus ...
Providencia rettgeri
Biochim. Biophys. Acta
391
494-503
1975
-
-
-
1
-
-
2
1
-
-
2
1
-
2
-
-
1
-
-
-
1
1
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
2
-
1
-
-
2
1
-
-
-
1
-
-
1
1
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37347
Cecchini
Tryptophanase from Sphaerophor ...
Fusobacterium necrophorum subsp. funduliforme
Biochim. Biophys. Acta
386
340-351
1975
-
-
-
1
-
-
-
-
-
-
2
-
-
2
-
-
1
-
-
-
1
1
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
2
-
-
-
-
1
-
-
1
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37348
Fukui
Comparative studies on the pro ...
Escherichia coli, Escherichia coli B/1t7-A
Eur. J. Biochem.
51
155-164
1975
-
-
-
-
-
2
-
2
-
-
-
-
-
10
-
-
-
-
-
-
-
-
2
-
-
-
3
-
2
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
3
-
2
-
-
-
-
-
-
-
-
-
37349
Yoshida
-
Purification, crystallization ...
Providencia rettgeri
Agric. Biol. Chem.
38
2065-2072
1974
-
-
-
1
-
-
3
3
-
-
1
-
-
1
-
-
1
-
-
-
1
-
7
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
1
1
-
-
-
3
-
3
-
-
1
-
-
-
-
1
-
-
1
-
7
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
37350
Yoshida
-
Cofactor requirement of trypto ...
Providencia rettgeri
Agric. Biol. Chem.
38
2073-2079
1974
-
-
-
-
-
-
1
1
-
2
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37351
London
Renaturation of Escherichia co ...
Escherichia coli
Eur. J. Biochem.
47
409-415
1974
-
-
-
-
-
-
-
2
-
-
-
-
-
2
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37352
Yoshida
-
Catalytic properties of trypto ...
Providencia rettgeri, Providencia rettgeri AJ2770
Agric. Biol. Chem.
38
463-464
1974
-
-
-
-
-
-
3
10
-
-
-
-
-
2
-
-
-
-
-
-
-
-
15
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
1
-
-
-
-
3
-
10
-
-
-
-
-
-
-
-
-
-
-
-
15
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
37353
Cowell
Trytophanase from Aeromonas li ...
Aeromonas hydrophila
J. Biol. Chem.
248
6262-6269
1973
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37354
Cowell
-
Tryptophanase from Aeromonas l ...
Aeromonas hydrophila, Escherichia coli, Fusobacterium necrophorum subsp. funduliforme, Micrococcus aerogenes, Paenibacillus alvei, Paracolobactrum coliforme
Biochim. Biophys. Acta
315
449-463
1973
-
-
-
-
-
1
5
1
-
6
1
-
-
6
-
-
1
-
-
-
1
1
6
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
4
-
-
1
-
5
-
1
-
6
1
-
-
-
-
1
-
-
1
1
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37355
Raibaud
The tryptophanase from Escheri ...
Escherichia coli
J. Biol. Chem.
248
3451-3455
1973
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
37356
O'Neill Hoch
Catalytic studies on tryptopha ...
Paenibacillus alvei
J. Bacteriol.
114
341-350
1973
-
-
-
-
-
-
-
3
-
2
-
-
-
2
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
3
-
2
-
-
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37357
Watanabe
Reversibility of the tryptopha ...
Escherichia coli
Proc. Natl. Acad. Sci. USA
69
1086-1090
1972
-
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
37358
London
The tryptophanase from Escheri ...
Escherichia coli
J. Biol. Chem.
247
1566-1570
1972
-
-
-
-
-
-
-
-
-
-
2
-
-
2
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-