BRENDA - Enzyme Database show
show all sequences of 4.1.2.5

Evidence for L-threonine cleavage and allo-threonine formation by different enzymes from Clostridium pasteurianum: threonine aldolase and serine hydroxymethyltransferase

Stoecklein, W.; Schmidt, H.L.; Biochem. J. 232, 621-622 (1985)

Data extracted from this reference:

Inhibitors
Inhibitors
Commentary
Organism
Structure
acetaldehyde
the enzymic cleavage of L-threonine stops when about 30% of the amino acid is converted to glycine and acetaldehyde. By dialysis of the incubation medium against buffer the full activity of the enzyme is restored, product inhibition
Clostridium pasteurianum
glycine
the enzymic cleavage of L-threonine stops when about 30% of the amino acid is converted to glycine and acetaldehyde. By dialysis of the incubation medium against buffer the full activity of the enzyme is restored, product inhibition
Clostridium pasteurianum
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Clostridium pasteurianum
-
-
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
L-threonine
no activity with L-allo-threonine
5191
Clostridium pasteurianum
glycine + acetaldehyde
-
-
-
?
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7
-
-
Clostridium pasteurianum
Cofactor
Cofactor
Commentary
Organism
Structure
pyridoxal 5'-phosphate
-
Clostridium pasteurianum
Ki Value [mM]
Ki Value [mM]
Ki Value maximum [mM]
Inhibitor
Commentary
Organism
Structure
0.01
-
glycine
pH and temperature not specified in the publication
Clostridium pasteurianum
0.4
-
acetaldehyde
pH and temperature not specified in the publication
Clostridium pasteurianum
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
pyridoxal 5'-phosphate
-
Clostridium pasteurianum
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
acetaldehyde
the enzymic cleavage of L-threonine stops when about 30% of the amino acid is converted to glycine and acetaldehyde. By dialysis of the incubation medium against buffer the full activity of the enzyme is restored, product inhibition
Clostridium pasteurianum
glycine
the enzymic cleavage of L-threonine stops when about 30% of the amino acid is converted to glycine and acetaldehyde. By dialysis of the incubation medium against buffer the full activity of the enzyme is restored, product inhibition
Clostridium pasteurianum
Ki Value [mM] (protein specific)
Ki Value [mM]
Ki Value maximum [mM]
Inhibitor
Commentary
Organism
Structure
0.01
-
glycine
pH and temperature not specified in the publication
Clostridium pasteurianum
0.4
-
acetaldehyde
pH and temperature not specified in the publication
Clostridium pasteurianum
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
L-threonine
no activity with L-allo-threonine
5191
Clostridium pasteurianum
glycine + acetaldehyde
-
-
-
?
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7
-
-
Clostridium pasteurianum
Other publictions for EC 4.1.2.5
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
746894
Bulut
Development of a growth-depen ...
Pseudomonas putida
Appl. Microbiol. Biotechnol.
99
5875-5883
2015
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
746900
Fesko
Expanding the threonine aldol ...
Aeromonas veronii
Appl. Microbiol. Biotechnol.
99
9651-9661
2015
-
-
1
-
-
-
-
3
-
-
-
-
-
1
-
-
1
-
-
-
-
-
8
-
-
-
-
3
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
3
-
-
-
-
-
-
-
1
-
-
-
-
8
-
-
-
-
3
-
-
-
-
-
-
-
-
3
3
748265
Wieteska
Improving thermal stability o ...
Thermotoga maritima
J. Biotechnol.
199
69-76
2015
-
1
1
-
11
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
2
1
1
-
1
-
-
-
-
1
-
-
-
-
1
1
1
-
11
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
1
1
-
1
-
-
-
-
-
-
-
-
-
-
-
713884
Dueckers
Threonine aldolases-screening, ...
Clostridium pasteurianum, Escherichia coli, Pseudomonas aeruginosa, Pseudomonas sp., Pseudomonas sp. NCIMB10558
Appl. Microbiol. Biotechnol.
88
409-424
2010
-
-
-
-
-
-
-
4
-
-
-
-
-
5
-
-
2
-
-
-
2
-
8
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
4
-
-
-
-
-
-
4
-
-
-
-
-
-
-
2
-
-
2
-
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5203
Pagani
DL-Allothreonine and L-threoni ...
Rattus norvegicus
Biochem. Soc. Trans.
19
346S
1991
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5191
Stoecklein
Evidence for L-threonine cleav ...
Clostridium pasteurianum
Biochem. J.
232
621-622
1985
-
-
-
-
-
-
2
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
2
-
-
-
-
-
1
-
-
-
-
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
5199
Dainty
Purification and properties of ...
Clostridium pasteurianum
Biochem. J.
117
585-592
1970
-
-
-
-
-
-
4
1
-
-
-
-
-
1
-
-
1
-
-
-
-
1
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
1
-
-
-
-
4
-
1
-
-
-
-
-
-
-
1
-
-
-
1
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
5200
Riario-Sforza
Threonine aldolase and allothr ...
Rattus norvegicus
Eur. J. Biochem.
8
88-92
1969
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
715411
Karasek
Greenberg, D.M.: Studies on th ...
Ovis aries
J. Biol. Chem.
227
191-205
1957
-
-
-
-
-
-
3
-
-
1
-
-
-
1
-
-
1
-
-
1
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
1
-
-
-
-
3
-
-
-
1
-
-
-
-
-
1
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-