Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 4.1.1.15 extracted from

  • Tavakoli, Y.; Esmaeili, A.; Saber, H.
    Increasing thermal stability and catalytic activity of glutamate decarboxylase in E. coli an in silico study (2016), Comput. Biol. Chem., 64, 74-81 .
    View publication on PubMed

Protein Variants

Protein Variants Comment Organism
A408F virtual point mutation, modelling Escherichia coli
D304A virtual point mutation, modelling Escherichia coli
D304C virtual point mutation, modelling Escherichia coli
D304I virtual point mutation, modelling Escherichia coli
D304M virtual point mutation, modelling Escherichia coli
D304P virtual point mutation, modelling Escherichia coli
D304S virtual point mutation, modelling Escherichia coli
D304T virtual point mutation, modelling Escherichia coli
D304V virtual point mutation, modelling Escherichia coli
I164D virtual point mutation, modelling Escherichia coli
I164E virtual point mutation, modelling Escherichia coli
I164L virtual point mutation, modelling Escherichia coli
I164P virtual point mutation, modelling Escherichia coli
I164Q virtual point mutation, modelling Escherichia coli
I164R virtual point mutation, modelling Escherichia coli
K168F virtual point mutation, modelling Escherichia coli
K168I virtual point mutation, modelling Escherichia coli
K168L virtual point mutation, modelling Escherichia coli
K87F virtual point mutation, modelling Escherichia coli
K87W virtual point mutation, modelling Escherichia coli
K87Y virtual point mutation, modelling Escherichia coli
L60F virtual point mutation, modelling Escherichia coli
L60W virtual point mutation, modelling Escherichia coli
additional information point mutation is performed virtually in the active site of the Escherichia coli GAD in order to increase thermal stability and catalytic activity of the enzyme, overview. Molecular modelling results indicate that performing mutation separately at positions 164, 302, 304, 393, 396, 398 and 410 increase binding affinity to substrate. The enzyme is predicted to be more thermostable in all 7 mutants based on DDG value. Stabilizing mutations in the active site based on DDG value, and binding energy levels, overview. Cavity volume change analysis for selected mutants Escherichia coli
N302A virtual point mutation, modelling Escherichia coli
N302C virtual point mutation, modelling Escherichia coli
N302F virtual point mutation, modelling Escherichia coli
N302I virtual point mutation, modelling Escherichia coli
N302L virtual point mutation, modelling Escherichia coli
N302M virtual point mutation, modelling Escherichia coli
N302P virtual point mutation, modelling Escherichia coli
N302S virtual point mutation, modelling Escherichia coli
N302T virtual point mutation, modelling Escherichia coli
N302V virtual point mutation, modelling Escherichia coli
N316F virtual point mutation, modelling Escherichia coli
N316W virtual point mutation, modelling Escherichia coli
N316Y virtual point mutation, modelling Escherichia coli
N83P virtual point mutation, modelling Escherichia coli
N83W virtual point mutation, modelling Escherichia coli
Q309C virtual point mutation, modelling Escherichia coli
Q309I virtual point mutation, modelling Escherichia coli
Q309K virtual point mutation, modelling Escherichia coli
Q309R virtual point mutation, modelling Escherichia coli
Q309S virtual point mutation, modelling Escherichia coli
Q309T virtual point mutation, modelling Escherichia coli
Q309V virtual point mutation, modelling Escherichia coli
R319F virtual point mutation, modelling Escherichia coli
R319I virtual point mutation, modelling Escherichia coli
R319L virtual point mutation, modelling Escherichia coli
R319M virtual point mutation, modelling Escherichia coli
R319W virtual point mutation, modelling Escherichia coli
R319Y virtual point mutation, modelling Escherichia coli
R398F virtual point mutation, modelling Escherichia coli
R398I virtual point mutation, modelling Escherichia coli
R398L virtual point mutation, modelling Escherichia coli
R398M virtual point mutation, modelling Escherichia coli
R398W virtual point mutation, modelling Escherichia coli
R398Y virtual point mutation, modelling Escherichia coli
S246C virtual point mutation, modelling Escherichia coli
S246F virtual point mutation, modelling Escherichia coli
S246I virtual point mutation, modelling Escherichia coli
S246L virtual point mutation, modelling Escherichia coli
S246M virtual point mutation, modelling Escherichia coli
S246V virtual point mutation, modelling Escherichia coli
S246W virtual point mutation, modelling Escherichia coli
S246Y virtual point mutation, modelling Escherichia coli
S396C virtual point mutation, modelling Escherichia coli
S396F virtual point mutation, modelling Escherichia coli
S396I virtual point mutation, modelling Escherichia coli
S396L virtual point mutation, modelling Escherichia coli
S396M virtual point mutation, modelling Escherichia coli
S396R virtual point mutation, modelling Escherichia coli
S396V virtual point mutation, modelling Escherichia coli
S396W virtual point mutation, modelling Escherichia coli
S396Y virtual point mutation, modelling Escherichia coli
T214F virtual point mutation, modelling Escherichia coli
T214L virtual point mutation, modelling Escherichia coli
T410P virtual point mutation, modelling Escherichia coli
T410V virtual point mutation, modelling Escherichia coli
Y393E virtual point mutation, modelling Escherichia coli
Y393K virtual point mutation, modelling Escherichia coli
Y393Q virtual point mutation, modelling Escherichia coli
Y393R virtual point mutation, modelling Escherichia coli

Inhibitors

Inhibitors Comment Organism Structure
additional information the C-terminal domain by entrancing into the active site is responsible for autoinhibition of the enzyme at neutral pH Escherichia coli

Localization

Localization Comment Organism GeneOntology No. Textmining
cytoplasm
-
Escherichia coli 5737
-

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
L-glutamate Escherichia coli
-
4-aminobutanoate + CO2
-
ir

Organism

Organism UniProt Comment Textmining
Escherichia coli P69908
-
-

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
L-glutamate
-
Escherichia coli 4-aminobutanoate + CO2
-
ir

Subunits

Subunits Comment Organism
homohexamer a trimer of dimers Escherichia coli
More Escherichia coli GAD forms a hexamer at acidic pH which consists of three functional dimers. In each dimer there are some special residues from both subunits that contribute in the formation of potential active sites and promote the interaction between the enzyme, cofactor and substrate. The N- and C-terminal domains of each subunit play an important role in conformational changes through pH shift. These conformational changes lead to activation of the enzyme at acidic pH and vice versa. The N-terminal residues involve in dimerization and subsequent migration of GAD to cytoplasmic site of the inner. The C-terminal domain by entrancing into the active site is also responsible for autoinhibition of the enzyme at neutral pH Escherichia coli

Synonyms

Synonyms Comment Organism
GAD
-
Escherichia coli
GadA
-
Escherichia coli

Cofactor

Cofactor Comment Organism Structure
pyridoxal 5'-phosphate
-
Escherichia coli

General Information

General Information Comment Organism
additional information molecular modelling of the active site, docking study, using the crystal structure of isoform A of Escherichia coli GAD (GADA) in complex with glutarate (as glutamate analogue) and pyridoxal 5'-phosphate, PDB ID 1XEY Escherichia coli
physiological function in the GABA synthesis pathway GAD produces GABA from L-glutamate by promoting irreversible alpha-decarboxylation reaction as the most important and rate-limiting step Escherichia coli