BRENDA - Enzyme Database show
show all sequences of 4.1.1.11

Glu56Ser mutation improves the enzymatic activity and catalytic stability of Bacillus subtilis L-aspartate alpha-decarboxylase for an efficient beta-alanine production

Zhang, T.; Zhang, R.; Xu, M.; Zhang, X.; Yang, T.; Liu, F.; Yang, S.; Rao, Z.; Process Biochem. 70, 117-123 (2018)
No PubMed abstract available

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
gene panD, recombinant expression of His-tagged wild-type and mutant enzymes in Escherichia coli strain BL21(DE3), the enzyme is initially translated as inactive Pi-protein
Bacillus subtilis
gene panD, recombinant expression of His-tagged wild-type enzyme in Escherichia coli strain BL21(DE3), the enzyme is initially translated as inactive Pi-protein
Corynebacterium glutamicum
gene panD, recombinant expression of His-tagged wild-type enzyme in Escherichia coli strain BL21(DE3), the enzyme is initially translated as inactive Pi-protein
Lactobacillus plantarum
Engineering
Amino acid exchange
Commentary
Organism
D41G
site-directed mutagenesis, the mutation improves the enzyme activity compared to wild-type
Bacillus subtilis
E56S
site-directed mutagenesis, the Glu56Ser mutation improves the enzymatic activity and catalytic stability of L-aspartate alpha-decarboxylase for an efficient beta-alanine production, but no significant effect on the cell growth properties or the molecular weight of BsADC. The E56S mutant shows a 1.6fold higher activity and an approximately 1.4fold increased residual activity compared with the wild-type during 2 h reaction at 37°C, suggesting that the E56S mutation attenuates the mechanism-based inactivation of the enzyme. The mutant enzyme catalyzes the beta-alanine synthesis with a very high product yield of 215.3 g per liter culture. In BsADC, Glu56 corresponds to Ser56 in the center channel of the homotetramer ADC from Escherichia coli. Due to the shorter side chain of Ser56, the Glu56-to-Ser56 mutation may enhance the import of the Asp substrate and export of the beta-alanine product in the tetramer channel
Bacillus subtilis
K63E
site-directed mutagenesis, the mutation improves the enzyme activity compared to wild-type
Bacillus subtilis
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
L-aspartate
Corynebacterium glutamicum
-
beta-alanine + CO2
-
-
?
L-aspartate
Escherichia coli
-
beta-alanine + CO2
-
-
?
L-aspartate
Bacillus subtilis
-
beta-alanine + CO2
-
-
?
L-aspartate
Lactobacillus plantarum
-
beta-alanine + CO2
-
-
?
L-aspartate
Bacillus subtilis 168
-
beta-alanine + CO2
-
-
?
L-aspartate
Corynebacterium glutamicum ATCC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025
-
beta-alanine + CO2
-
-
?
L-aspartate
Lactobacillus plantarum ATCC BAA-793 / NCIMB 8826 / WCFS1
-
beta-alanine + CO2
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Bacillus subtilis
P52999
-
-
Bacillus subtilis 168
P52999
-
-
Corynebacterium glutamicum
Q9X4N0
-
-
Corynebacterium glutamicum ATCC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025
Q9X4N0
-
-
Escherichia coli
P0A790
-
-
Lactobacillus plantarum
Q88Z02
-
-
Lactobacillus plantarum ATCC BAA-793 / NCIMB 8826 / WCFS1
Q88Z02
-
-
Posttranslational Modification
Posttranslational Modification
Commentary
Organism
proteolytic modification
bacterial ADC is usually translated into an inactive zymogen. The initially inactive recombinant Pi-protein ADC of approximately 14 kDa self-cleaves to form an active enzyme consisting of alpha-protein (approximately 11 kDa) and beta-protein (approximately 3 kDa). The enzyme completely self-cleaves and self-maturates, zymogen is proteolytically cleaved at the Gly24-Ser25 site
Bacillus subtilis
proteolytic modification
bacterial ADC is usually translated into an inactive zymogen. The initially inactive recombinant Pi-protein ADC of approximately 14 kDa self-cleaves to form an active enzyme consisting of alpha-protein (approximately 11 kDa) and beta-protein (approximately 3 kDa). The enzyme completely self-cleaves and self-maturates, zymogen is proteolytically cleaved at the Gly24-Ser25 site
Corynebacterium glutamicum
proteolytic modification
bacterial ADC is usually translated into an inactive zymogen. The zymogen is proteolytically cleaved at the Gly24-Ser25 site. The Escherichia coli ADC requires a Gcn5-like N-acetyltransferase, named PanM (also called PanZ), to help it reach complete maturation
Escherichia coli
proteolytic modification
bacterial ADC is usually translated into an inactive zymogen. The initially inactive recombinant Pi-protein ADC of approximately 14 kDa self-cleaves to form an active enzyme consisting of alpha-protein (approximately 11 kDa) and beta-protein (approximately 3 kDa). The enzyme completely self-cleaves and self-maturates, zymogen is proteolytically cleaved at the Gly24-Ser25 site
Lactobacillus plantarum
Purification (Commentary)
Commentary
Organism
recombinant His-tagged wild-type and mutant enzymes from Escherichia coli strain BL21(DE3) by nickel affinity chromatography
Bacillus subtilis
recombinant His-tagged wild-type enzyme from Escherichia coli strain BL21(DE3) by nickel affinity chromatography
Corynebacterium glutamicum
recombinant His-tagged wild-type enzyme from Escherichia coli strain BL21(DE3) by nickel affinity chromatography
Lactobacillus plantarum
Specific Activity [micromol/min/mg]
Specific Activity Minimum [µmol/min/mg]
Specific Activity Maximum [µmol/min/mg]
Commentary
Organism
1.5
-
pH 7.0, 37°C, recombinant enzyme
Lactobacillus plantarum
2.4
-
pH 7.0, 37°C, recombinant enzyme
Corynebacterium glutamicum
4.7
-
pH 7.0, 37°C, recombinant enzyme
Bacillus subtilis
5.5
-
pH 7.0, 70°C, recombinant enzyme
Lactobacillus plantarum
9.6
-
pH 7.0, 70°C, recombinant enzyme
Corynebacterium glutamicum
15.7
-
pH 7.0, 65°C, recombinant enzyme
Bacillus subtilis
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
L-aspartate
-
749207
Corynebacterium glutamicum
beta-alanine + CO2
-
-
-
?
L-aspartate
-
749207
Escherichia coli
beta-alanine + CO2
-
-
-
?
L-aspartate
-
749207
Bacillus subtilis
beta-alanine + CO2
-
-
-
?
L-aspartate
-
749207
Lactobacillus plantarum
beta-alanine + CO2
-
-
-
?
L-aspartate
-
749207
Bacillus subtilis 168
beta-alanine + CO2
-
-
-
?
L-aspartate
-
749207
Corynebacterium glutamicum ATCC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025
beta-alanine + CO2
-
-
-
?
L-aspartate
-
749207
Lactobacillus plantarum ATCC BAA-793 / NCIMB 8826 / WCFS1
beta-alanine + CO2
-
-
-
?
Subunits
Subunits
Commentary
Organism
tetramer
the bacterial ADC is a tetramer containing approximately 120 amino acids in each subunit
Bacillus subtilis
tetramer
the bacterial ADC is a tetramer containing approximately 120 amino acids in each subunit
Corynebacterium glutamicum
tetramer
the bacterial ADC is a tetramer containing approximately 120 amino acids in each subunit
Escherichia coli
tetramer
the bacterial ADC is a tetramer containing approximately 120 amino acids in each subunit
Lactobacillus plantarum
Temperature Optimum [°C]
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
65
-
recombinant enzyme
Bacillus subtilis
70
-
recombinant enzyme
Corynebacterium glutamicum
70
-
recombinant enzyme
Lactobacillus plantarum
Temperature Range [°C]
Temperature Minimum [°C]
Temperature Maximum [°C]
Commentary
Organism
35
90
measured range, activity profile overview
Bacillus subtilis
35
90
measured range, activity profile overview
Corynebacterium glutamicum
35
90
measured range, activity profile overview
Lactobacillus plantarum
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
6.5
-
recombinant enzyme
Corynebacterium glutamicum
6.5
-
recombinant enzyme
Lactobacillus plantarum
7
-
recombinant enzyme
Bacillus subtilis
pH Range
pH Minimum
pH Maximum
Commentary
Organism
4
11
activity range, profile overview
Corynebacterium glutamicum
4
11
activity range, profile overview
Lactobacillus plantarum
5
10
activity range, profile overview
Bacillus subtilis
pI Value
Organism
Commentary
pI Value Maximum
pI Value
Bacillus subtilis
enzyme mutant K63E, sequence calculation
-
5.12
Bacillus subtilis
wild-type enzyme, sequence calculation
-
5.6
Bacillus subtilis
enzyme mutant D41G, sequence calculation
-
5.65
Bacillus subtilis
enzyme mutant E56S, sequence calculation
-
6.09
Cloned(Commentary) (protein specific)
Commentary
Organism
gene panD, recombinant expression of His-tagged wild-type and mutant enzymes in Escherichia coli strain BL21(DE3), the enzyme is initially translated as inactive Pi-protein
Bacillus subtilis
gene panD, recombinant expression of His-tagged wild-type enzyme in Escherichia coli strain BL21(DE3), the enzyme is initially translated as inactive Pi-protein
Corynebacterium glutamicum
gene panD, recombinant expression of His-tagged wild-type enzyme in Escherichia coli strain BL21(DE3), the enzyme is initially translated as inactive Pi-protein
Lactobacillus plantarum
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
D41G
site-directed mutagenesis, the mutation improves the enzyme activity compared to wild-type
Bacillus subtilis
E56S
site-directed mutagenesis, the Glu56Ser mutation improves the enzymatic activity and catalytic stability of L-aspartate alpha-decarboxylase for an efficient beta-alanine production, but no significant effect on the cell growth properties or the molecular weight of BsADC. The E56S mutant shows a 1.6fold higher activity and an approximately 1.4fold increased residual activity compared with the wild-type during 2 h reaction at 37°C, suggesting that the E56S mutation attenuates the mechanism-based inactivation of the enzyme. The mutant enzyme catalyzes the beta-alanine synthesis with a very high product yield of 215.3 g per liter culture. In BsADC, Glu56 corresponds to Ser56 in the center channel of the homotetramer ADC from Escherichia coli. Due to the shorter side chain of Ser56, the Glu56-to-Ser56 mutation may enhance the import of the Asp substrate and export of the beta-alanine product in the tetramer channel
Bacillus subtilis
K63E
site-directed mutagenesis, the mutation improves the enzyme activity compared to wild-type
Bacillus subtilis
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
L-aspartate
Corynebacterium glutamicum
-
beta-alanine + CO2
-
-
?
L-aspartate
Escherichia coli
-
beta-alanine + CO2
-
-
?
L-aspartate
Bacillus subtilis
-
beta-alanine + CO2
-
-
?
L-aspartate
Lactobacillus plantarum
-
beta-alanine + CO2
-
-
?
L-aspartate
Bacillus subtilis 168
-
beta-alanine + CO2
-
-
?
L-aspartate
Corynebacterium glutamicum ATCC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025
-
beta-alanine + CO2
-
-
?
L-aspartate
Lactobacillus plantarum ATCC BAA-793 / NCIMB 8826 / WCFS1
-
beta-alanine + CO2
-
-
?
Posttranslational Modification (protein specific)
Posttranslational Modification
Commentary
Organism
proteolytic modification
bacterial ADC is usually translated into an inactive zymogen. The initially inactive recombinant Pi-protein ADC of approximately 14 kDa self-cleaves to form an active enzyme consisting of alpha-protein (approximately 11 kDa) and beta-protein (approximately 3 kDa). The enzyme completely self-cleaves and self-maturates, zymogen is proteolytically cleaved at the Gly24-Ser25 site
Bacillus subtilis
proteolytic modification
bacterial ADC is usually translated into an inactive zymogen. The initially inactive recombinant Pi-protein ADC of approximately 14 kDa self-cleaves to form an active enzyme consisting of alpha-protein (approximately 11 kDa) and beta-protein (approximately 3 kDa). The enzyme completely self-cleaves and self-maturates, zymogen is proteolytically cleaved at the Gly24-Ser25 site
Corynebacterium glutamicum
proteolytic modification
bacterial ADC is usually translated into an inactive zymogen. The zymogen is proteolytically cleaved at the Gly24-Ser25 site. The Escherichia coli ADC requires a Gcn5-like N-acetyltransferase, named PanM (also called PanZ), to help it reach complete maturation
Escherichia coli
proteolytic modification
bacterial ADC is usually translated into an inactive zymogen. The initially inactive recombinant Pi-protein ADC of approximately 14 kDa self-cleaves to form an active enzyme consisting of alpha-protein (approximately 11 kDa) and beta-protein (approximately 3 kDa). The enzyme completely self-cleaves and self-maturates, zymogen is proteolytically cleaved at the Gly24-Ser25 site
Lactobacillus plantarum
Purification (Commentary) (protein specific)
Commentary
Organism
recombinant His-tagged wild-type and mutant enzymes from Escherichia coli strain BL21(DE3) by nickel affinity chromatography
Bacillus subtilis
recombinant His-tagged wild-type enzyme from Escherichia coli strain BL21(DE3) by nickel affinity chromatography
Corynebacterium glutamicum
recombinant His-tagged wild-type enzyme from Escherichia coli strain BL21(DE3) by nickel affinity chromatography
Lactobacillus plantarum
Specific Activity [micromol/min/mg] (protein specific)
Specific Activity Minimum [µmol/min/mg]
Specific Activity Maximum [µmol/min/mg]
Commentary
Organism
1.5
-
pH 7.0, 37°C, recombinant enzyme
Lactobacillus plantarum
2.4
-
pH 7.0, 37°C, recombinant enzyme
Corynebacterium glutamicum
4.7
-
pH 7.0, 37°C, recombinant enzyme
Bacillus subtilis
5.5
-
pH 7.0, 70°C, recombinant enzyme
Lactobacillus plantarum
9.6
-
pH 7.0, 70°C, recombinant enzyme
Corynebacterium glutamicum
15.7
-
pH 7.0, 65°C, recombinant enzyme
Bacillus subtilis
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
L-aspartate
-
749207
Corynebacterium glutamicum
beta-alanine + CO2
-
-
-
?
L-aspartate
-
749207
Escherichia coli
beta-alanine + CO2
-
-
-
?
L-aspartate
-
749207
Bacillus subtilis
beta-alanine + CO2
-
-
-
?
L-aspartate
-
749207
Lactobacillus plantarum
beta-alanine + CO2
-
-
-
?
L-aspartate
-
749207
Bacillus subtilis 168
beta-alanine + CO2
-
-
-
?
L-aspartate
-
749207
Corynebacterium glutamicum ATCC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025
beta-alanine + CO2
-
-
-
?
L-aspartate
-
749207
Lactobacillus plantarum ATCC BAA-793 / NCIMB 8826 / WCFS1
beta-alanine + CO2
-
-
-
?
Subunits (protein specific)
Subunits
Commentary
Organism
tetramer
the bacterial ADC is a tetramer containing approximately 120 amino acids in each subunit
Bacillus subtilis
tetramer
the bacterial ADC is a tetramer containing approximately 120 amino acids in each subunit
Corynebacterium glutamicum
tetramer
the bacterial ADC is a tetramer containing approximately 120 amino acids in each subunit
Escherichia coli
tetramer
the bacterial ADC is a tetramer containing approximately 120 amino acids in each subunit
Lactobacillus plantarum
Temperature Optimum [°C] (protein specific)
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
65
-
recombinant enzyme
Bacillus subtilis
70
-
recombinant enzyme
Corynebacterium glutamicum
70
-
recombinant enzyme
Lactobacillus plantarum
Temperature Range [°C] (protein specific)
Temperature Minimum [°C]
Temperature Maximum [°C]
Commentary
Organism
35
90
measured range, activity profile overview
Bacillus subtilis
35
90
measured range, activity profile overview
Corynebacterium glutamicum
35
90
measured range, activity profile overview
Lactobacillus plantarum
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
6.5
-
recombinant enzyme
Corynebacterium glutamicum
6.5
-
recombinant enzyme
Lactobacillus plantarum
7
-
recombinant enzyme
Bacillus subtilis
pH Range (protein specific)
pH Minimum
pH Maximum
Commentary
Organism
4
11
activity range, profile overview
Corynebacterium glutamicum
4
11
activity range, profile overview
Lactobacillus plantarum
5
10
activity range, profile overview
Bacillus subtilis
pI Value (protein specific)
Organism
Commentary
pI Value Maximum
pI Value
Bacillus subtilis
enzyme mutant K63E, sequence calculation
-
5.12
Bacillus subtilis
wild-type enzyme, sequence calculation
-
5.6
Bacillus subtilis
enzyme mutant D41G, sequence calculation
-
5.65
Bacillus subtilis
enzyme mutant E56S, sequence calculation
-
6.09
General Information
General Information
Commentary
Organism
evolution
there are two primary types of ADCs produced from living organisms. One type is an insect ADC, which uses pyridoxal 5'-phosphate (PLP) as a cofactor. The other is bacterial ADC, which uses pyruvate as a cofactor
Bacillus subtilis
evolution
there are two primary types of ADCs produced from living organisms. One type is an insect ADC, which uses pyridoxal 5'-phosphate (PLP) as a cofactor. The other is bacterial ADC, which uses pyruvate as a cofactor
Corynebacterium glutamicum
evolution
there are two primary types of ADCs produced from living organisms. One type is an insect ADC, which uses pyridoxal 5'-phosphate (PLP) as a cofactor. The other is bacterial ADC, which uses pyruvate as a cofactor
Escherichia coli
evolution
there are two primary types of ADCs produced from living organisms. One type is an insect ADC, which uses pyridoxal 5'-phosphate (PLP) as a cofactor. The other is bacterial ADC, which uses pyruvate as a cofactor
Lactobacillus plantarum
malfunction
the Glu56Ser mutation improves the enzymatic activity and catalytic stability of L-aspartate alpha-decarboxylase for an efficient beta-alanine production. The E56S mutant shows an approximately 1.4fold increased residual activity compared with the wild-type during 2 h reaction at 37°C, suggesting that the E56S mutation attenuated the mechanism-based inactivation of the enzyme
Bacillus subtilis
additional information
structural homology modeling BsADC using the Escherichia coli ADC structure, PDB ID 1PQE, as template
Bacillus subtilis
physiological function
L-aspartate alpha-decarboxylase is the key enzyme that catalyzes the decarboxylation of L-aspartate to beta-alanine, the only naturally occurring beta-amino acid
Bacillus subtilis
physiological function
L-aspartate alpha-decarboxylase is the key enzyme that catalyzes the decarboxylation of L-aspartate to beta-alanine, the only naturally occurring beta-amino acid
Corynebacterium glutamicum
physiological function
L-aspartate alpha-decarboxylase is the key enzyme that catalyzes the decarboxylation of L-aspartate to beta-alanine, the only naturally occurring beta-amino acid
Escherichia coli
physiological function
L-aspartate alpha-decarboxylase is the key enzyme that catalyzes the decarboxylation of L-aspartate to beta-alanine, the only naturally occurring beta-amino acid
Lactobacillus plantarum
General Information (protein specific)
General Information
Commentary
Organism
evolution
there are two primary types of ADCs produced from living organisms. One type is an insect ADC, which uses pyridoxal 5'-phosphate (PLP) as a cofactor. The other is bacterial ADC, which uses pyruvate as a cofactor
Bacillus subtilis
evolution
there are two primary types of ADCs produced from living organisms. One type is an insect ADC, which uses pyridoxal 5'-phosphate (PLP) as a cofactor. The other is bacterial ADC, which uses pyruvate as a cofactor
Corynebacterium glutamicum
evolution
there are two primary types of ADCs produced from living organisms. One type is an insect ADC, which uses pyridoxal 5'-phosphate (PLP) as a cofactor. The other is bacterial ADC, which uses pyruvate as a cofactor
Escherichia coli
evolution
there are two primary types of ADCs produced from living organisms. One type is an insect ADC, which uses pyridoxal 5'-phosphate (PLP) as a cofactor. The other is bacterial ADC, which uses pyruvate as a cofactor
Lactobacillus plantarum
malfunction
the Glu56Ser mutation improves the enzymatic activity and catalytic stability of L-aspartate alpha-decarboxylase for an efficient beta-alanine production. The E56S mutant shows an approximately 1.4fold increased residual activity compared with the wild-type during 2 h reaction at 37°C, suggesting that the E56S mutation attenuated the mechanism-based inactivation of the enzyme
Bacillus subtilis
additional information
structural homology modeling BsADC using the Escherichia coli ADC structure, PDB ID 1PQE, as template
Bacillus subtilis
physiological function
L-aspartate alpha-decarboxylase is the key enzyme that catalyzes the decarboxylation of L-aspartate to beta-alanine, the only naturally occurring beta-amino acid
Bacillus subtilis
physiological function
L-aspartate alpha-decarboxylase is the key enzyme that catalyzes the decarboxylation of L-aspartate to beta-alanine, the only naturally occurring beta-amino acid
Corynebacterium glutamicum
physiological function
L-aspartate alpha-decarboxylase is the key enzyme that catalyzes the decarboxylation of L-aspartate to beta-alanine, the only naturally occurring beta-amino acid
Escherichia coli
physiological function
L-aspartate alpha-decarboxylase is the key enzyme that catalyzes the decarboxylation of L-aspartate to beta-alanine, the only naturally occurring beta-amino acid
Lactobacillus plantarum
Other publictions for EC 4.1.1.11
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
749207
Zhang
-
Glu56Ser mutation improves th ...
Bacillus subtilis, Bacillus subtilis 168, Corynebacterium glutamicum, Corynebacterium glutamicum ATCC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025, Escherichia coli, Lactobacillus plantarum, Lactobacillus plantarum ATCC BAA-793 / NCIMB 8826 / WCFS1
Process Biochem.
70
117-123
2018
-
-
3
-
3
-
-
-
-
-
-
7
-
11
-
4
3
-
-
-
6
-
7
4
3
3
-
-
3
3
-
-
-
4
-
-
-
3
-
-
3
-
-
-
-
-
-
-
-
7
-
-
4
3
-
-
6
-
7
4
3
3
-
-
3
3
-
4
-
10
10
-
-
-
746598
Gopal
In vivo-selected pyrazinoic a ...
Mycobacterium tuberculosis
ACS Infect. Dis.
3
492-501
2017
-
-
-
-
18
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
18
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
746859
Pei
Molecular engineering of L-as ...
Bacillus subtilis 168, Bacillus subtilis, Corynebacterium glutamicum, Corynebacterium glutamicum ATCC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025, Escherichia coli, Escherichia coli K-12 / DH5alpha
Appl. Microbiol. Biotechnol.
101
6015-6021
2017
-
-
3
-
2
-
2
6
-
-
-
6
-
10
-
3
3
-
-
-
-
-
12
-
3
2
6
3
3
-
-
1
-
-
-
-
-
3
1
-
2
-
-
2
-
6
-
-
-
6
-
-
3
3
-
-
-
-
12
-
3
2
6
3
3
-
-
-
-
-
-
-
3
3
747128
Arnott
The mechanism of regulation o ...
Escherichia coli
Biochemistry
56
4931-4939
2017
1
1
1
1
4
-
2
-
-
-
-
1
-
2
-
1
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
1
1
1
1
1
4
-
-
2
-
-
-
-
-
1
-
-
1
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
4
4
-
-
-
747799
Gliessman
Pantothenate auxotrophy in Zy ...
Escherichia coli, no activity in Zymomonas mobilis, no activity in Zymomonas mobilis ZM4 / ATCC 31821 / CP4
FEMS Microbiol. Lett.
364
fnx113
2017
-
-
1
-
-
-
-
-
-
-
-
1
-
7
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
747435
Stuecker
Phylogenetic and amino acid c ...
Bacillus halodurans, Bacillus halodurans ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125, Bordetella pertussis, Bordetella pertussis Tohama I / ATCC BAA-589 / NCTC 13251, Corynebacterium glutamicum, Corynebacterium glutamicum ATCC 13032 / DSM 20300 / JCM 1318 / LMG 3730 / NCIMB 10025, Helicobacter pylori, Helicobacter pylori 26695, Klebsiella pneumoniae, Klebsiella pneumoniae ATCC 700721 / MGH 78578, Legionella pneumophila, Magnetospirillum magneticum, Magnetospirillum magneticum AMB-1 / ATCC 700264, Moorella thermoacetica, Moorella thermoacetica ATCC 39073 / JCM 9320, Neisseria gonorrhoeae, Neisseria gonorrhoeae ATCC 700825 / FA 1090, Pseudomonas aeruginosa, Pseudomonas aeruginosa ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1, Ralstonia solanacearum, Salmonella enterica subsp. enterica serovar Typhimurium, Salmonella enterica subsp. enterica serovar Typhimurium LT2 / SGSC1412 / ATCC 700720
BMC Res. Notes
8
354
2015
-
-
12
-
1
-
-
-
-
-
-
22
-
24
-
12
-
-
-
1
-
-
22
-
-
-
-
-
-
-
-
3
-
-
-
-
-
12
3
-
1
-
-
-
-
-
-
-
-
22
-
-
12
-
-
1
-
-
22
-
-
-
-
-
-
-
-
-
-
15
15
-
-
-
747497
Monteiro
The structure of the PanD/Pan ...
Escherichia coli
Chem. Biol.
22
492-503
2015
2
-
-
1
1
-
2
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
2
-
-
1
1
1
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
4
-
-
-
747593
Deng
Characterization of L-asparta ...
Bacillus subtilis 168, Bacillus subtilis, Corynebacterium glutamicum, Corynebacterium glutamicum DSM 20300, Escherichia coli
Chin. J. Biotechnol.
31
1184-1193
2015
1
3
-
-
-
-
-
-
-
-
-
5
-
7
-
3
-
-
-
-
3
-
5
-
2
-
-
-
2
-
-
-
-
-
-
1
3
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
3
-
-
-
3
-
5
-
2
-
-
-
2
-
-
-
-
-
-
-
-
-
749304
Dai
Aspartate decarboxylase is re ...
Bombyx mori
Sci. Rep.
5
10885
2015
-
-
1
-
1
-
-
-
-
-
-
1
-
5
-
-
-
-
-
4
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
4
-
-
1
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
726592
Webb
-
Threonine 57 is required for t ...
Escherichia coli
Acta Crystallogr. Sect. D
70
1166-1172
2014
1
-
-
1
7
-
-
-
-
-
-
1
-
1
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
1
1
7
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
727234
Cui
Significance of Arg3, Arg54, a ...
Corynebacterium glutamicum, Corynebacterium glutamicum ATCC 13032
Biotechnol. Lett.
36
121-126
2014
-
-
1
-
10
-
-
-
-
-
-
2
-
4
-
-
1
-
-
-
5
-
4
1
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
10
-
-
-
-
-
-
-
-
2
-
-
-
1
-
-
5
-
4
1
1
-
-
-
1
-
-
-
-
1
1
-
-
-
727235
Shen
Synthesis of beta-alanine from ...
Corynebacterium glutamicum, Corynebacterium glutamicum ATCC 13032
Biotechnol. Lett.
36
1681-1686
2014
-
-
1
-
-
-
1
-
-
-
-
2
-
4
-
-
1
-
-
-
3
-
4
-
1
1
1
-
1
1
1
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
2
-
-
-
1
-
-
3
-
4
-
1
1
1
-
1
1
1
-
-
-
-
-
-
-
727784
Wang
beta-Alanine biosynthesis in M ...
Methanocaldococcus jannaschii, Methanocaldococcus jannaschii DSM 2661
J. Bacteriol.
196
2869-2875
2014
-
-
1
-
-
-
-
1
-
-
-
2
-
6
-
-
-
-
-
-
1
-
4
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
1
-
-
-
2
-
-
-
-
-
-
1
-
4
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
747380
Shen
Synthesis of beta-alanine fro ...
Corynebacterium glutamicum, Corynebacterium glutamicum ATCC 13032
Biotechnol. Lett.
36
1681-1686
2014
-
-
1
-
1
-
-
-
-
-
-
2
-
4
-
-
1
-
-
-
1
-
2
-
1
1
3
-
1
1
2
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
1
-
-
1
-
2
-
1
1
3
-
1
1
2
-
-
-
-
-
-
-
748086
Tomita
An archaeal glutamate decarbo ...
Thermococcus kodakarensis, Thermococcus kodakarensis ATCC BAA-918 / JCM 12380 / KOD1
J. Bacteriol.
196
1222-1230
2014
-
-
1
-
1
-
-
1
-
-
-
4
-
7
-
-
-
-
-
1
-
-
6
2
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
1
-
-
-
4
-
-
-
-
-
1
-
-
6
2
1
-
-
-
1
-
-
-
-
3
3
-
-
-
744560
Lee
-
Gene expression and character ...
Pyrococcus furiosus
Biotechnol. Bioprocess Eng.
18
375-381
2013
-
-
1
-
-
-
-
1
-
4
2
-
-
1
-
-
1
-
-
-
-
-
1
1
1
1
1
1
1
1
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
1
-
4
2
-
-
-
-
1
-
-
-
-
1
1
1
1
1
1
1
1
-
-
-
-
-
-
1
1
726617
Webb
Structure of Escherichia coli ...
Escherichia coli
Acta Crystallogr. Sect. F
68
414-417
2012
-
-
1
1
1
-
-
-
-
-
-
1
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
726873
Monteiro
Formation of a heterooctameric ...
Escherichia coli
Biochem. Biophys. Res. Commun.
426
350-355
2012
2
-
1
-
1
-
-
-
-
-
-
1
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
2
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
727622
Liu
Cysteine sulfinic acid decarbo ...
Aedes aegypti, Drosophila melanogaster
Insect Biochem. Mol. Biol.
42
396-403
2012
-
-
-
-
1
-
-
2
-
-
-
2
-
5
-
-
-
-
-
-
-
-
4
-
2
-
-
2
2
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
2
-
-
-
2
-
-
-
-
-
-
-
-
4
-
2
-
-
2
2
-
-
-
-
1
1
-
2
2
728234
Stuecker
-
PanM, an acetyl-coenzyme a sen ...
Salmonella enterica, Salmonella enterica DM10310
mBio
3
e00158-12
2012
2
-
-
-
-
-
-
-
-
-
-
2
-
2
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
728266
Nozaki
An activator for pyruvoyl-depe ...
Escherichia coli, Escherichia coli MG1655
MicrobiologyOpen
1
298-310
2012
1
-
1
-
1
-
-
-
-
-
-
2
-
26
-
1
1
-
-
-
-
-
2
-
1
-
-
-
-
-
-
1
-
-
-
1
-
1
1
-
1
-
-
-
-
-
-
-
-
2
-
-
1
1
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
3
3
-
-
-
728327
Stuecker
The missing link in coenzyme A ...
Corynebacterium glutamicum, Salmonella enterica
Mol. Microbiol.
84
608-619
2012
2
-
2
-
1
-
-
-
-
-
1
2
-
7
-
1
1
-
-
-
-
-
2
1
-
-
-
-
-
-
-
2
-
-
-
2
-
2
2
-
1
-
-
-
-
-
-
-
1
2
-
-
1
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
728571
Sharma
Chemoinformatic identification ...
Mycobacterium tuberculosis
PLoS ONE
7
e33521
2012
-
1
-
-
-
-
9
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
9
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
728583
Sharma
Validation of drug-like inhibi ...
Mycobacterium tuberculosis
PLoS ONE
7
e45947
2012
-
-
1
-
-
-
12
-
-
-
-
1
-
2
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
12
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
714398
Lomakin
Mechanical properties of the b ...
Tribolium castaneum
Biomacromolecules
12
321-335
2011
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
714741
de Villiers
3-Fluoroaspartate and pyruvoyl ...
Escherichia coli, Mycobacterium tuberculosis
Chemistry
16
10030-10041
2010
2
-
-
-
-
-
4
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
704491
Arakane
Molecular and functional analy ...
Tribolium castaneum, Tribolium castaneum GA-1
J. Biol. Chem.
284
16584-16594
2009
-
-
1
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
706856
Fouad
Transplastomic expression of b ...
Escherichia coli
Transgenic Res.
18
707-718
2009
-
-
1
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
682386
Fouad
Expression of bacterial L-aspa ...
Escherichia coli
Plant Mol. Biol.
60
495-505
2006
-
-
1
-
1
-
-
-
-
-
1
1
-
4
-
-
1
-
-
-
-
-
1
1
1
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
1
1
-
-
-
1
-
-
-
-
1
1
1
-
1
-
1
-
-
-
-
-
-
-
-
-
682753
Gopalan
Crystal structure of uncleaved ...
Mycobacterium tuberculosis
Proteins
65
796-802
2006
-
1
1
1
-
-
-
-
-
-
-
1
-
5
-
1
1
-
-
1
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
-
1
-
-
1
1
-
1
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
665041
Phillips
The Drosophila black enigma: T ...
Drosophila melanogaster
Gene
351
131-142
2005
-
-
-
-
1
-
-
-
-
-
1
-
-
6
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
666021
Lee
Crystal structure of the Schif ...
Helicobacter pylori
J. Mol. Biol.
340
1-7
2004
-
-
-
1
-
-
-
-
-
-
-
-
-
2
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
650998
Schmitzberger
Structural constraints on prot ...
Escherichia coli
EMBO J.
22
6193-6204
2003
-
-
1
1
6
-
-
-
-
-
1
1
-
2
-
1
1
-
-
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
6
-
-
-
-
-
-
-
1
1
-
-
1
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
649196
Kwon
Crystallization and preliminar ...
Helicobacter pylori
Acta Crystallogr. Sect. D
58
861-863
2002
-
-
1
1
-
-
-
-
1
-
-
1
-
7
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
1
-
-
1
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
653749
Chopra
Expression, purification, and ...
Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv
Protein Expr. Purif.
25
533-540
2002
-
1
1
-
-
-
-
1
1
-
2
2
-
162
-
1
1
-
-
-
1
-
4
1
1
-
-
1
1
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
1
-
2
2
-
-
1
1
-
-
1
-
4
1
1
-
-
1
1
-
-
-
-
-
-
-
-
-
650836
Saldanha
-
Identification of Tyr58 as the ...
Escherichia coli
Chem. Commun. (Camb.)
2001
1760-1761
2001
-
-
1
1
-
-
-
-
-
-
1
1
-
1
-
1
1
1
-
-
-
-
2
1
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
1
-
-
1
1
-
-
-
-
2
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
649350
Dusch
Expression of the Corynebacter ...
Corynebacterium glutamicum, Escherichia coli, Escherichia coli MG1655
Appl. Environ. Microbiol.
65
1530-1539
1999
-
-
2
1
2
-
-
-
-
-
1
3
-
5
-
2
-
-
-
-
1
-
6
2
1
-
-
-
-
-
-
1
-
-
-
-
-
2
1
1
2
-
-
-
-
-
-
-
1
3
-
-
2
-
-
-
1
-
6
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
3949
Albert
Crystal structure of aspartate ...
Escherichia coli
Nat. Struct. Biol.
5
289-293
1998
1
-
-
1
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3950
Ramjee
Escherichia coli L-aspartate a ...
Escherichia coli
Biochem. J.
323
661-669
1997
1
-
1
-
-
-
-
1
-
-
3
-
-
2
-
-
1
-
-
-
-
-
1
1
-
-
-
1
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
1
-
-
3
-
-
-
-
1
-
-
-
-
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
3947
Williamson
L-Aspartate alpha-decarboxylas ...
Escherichia coli, Escherichia coli B / ATCC 11303
Methods Enzymol.
113
589-595
1985
1
-
-
-
-
-
12
1
-
-
1
-
-
177
-
-
1
-
-
-
1
-
2
-
1
1
-
-
1
1
-
-
-
-
-
1
-
-
-
-
-
-
-
12
-
1
-
-
1
-
-
-
-
1
-
-
1
-
2
-
1
1
-
-
1
1
-
-
-
-
-
-
-
-
3948
Williamson
Purification and properties of ...
Escherichia coli, Escherichia coli B / ATCC 11303
J. Biol. Chem.
254
8074-8082
1979
1
-
-
-
-
-
12
1
-
-
1
-
-
178
-
-
1
-
-
-
1
-
2
-
1
1
-
-
1
1
-
-
-
-
-
1
-
-
-
-
-
-
-
12
-
1
-
-
1
-
-
-
-
1
-
-
1
-
2
-
1
1
-
-
1
1
-
-
-
-
-
-
-
-