BRENDA - Enzyme Database show
show all sequences of 4.1.1.102

Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4

Gu, W.; Yang, J.; Lou, Z.; Liang, L.; Sun, Y.; Huang, J.; Li, X.; Cao, Y.; Meng, Z.; Zhang, K.Q.; PLoS ONE 6, e16262 (2011)

Data extracted from this reference:

Crystallization (Commentary)
Crystallization
Organism
crystal structures in complex with substrate analogues. FADase possesses a half-opened bottom beta-barrel with the catalytic pocket located between the middle of the core beta-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD) superfamily. FADase catalyzed reactions by an open-closed mechanism involving a pocket on the surface of the enzyme. During decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer
Enterobacter sp.
Engineering
Amino acid exchange
Commentary
Organism
E134A
mutation decreases the enzyme activity by more than 60%
Enterobacter sp.
W25A
mutation decreases the enzyme activity by more than 95%
Enterobacter sp.
Y21A
mutation abolishes the enzyme activity completely
Enterobacter sp.
Y27A
mutation abolishes the enzyme activity completely
Enterobacter sp.
KM Value [mM]
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
0.73
-
ferulate
mutant W25A, pH 4.0, 28°C
Enterobacter sp.
2.36
-
ferulate
wild-type, pH 4.0, 28°C
Enterobacter sp.
3.52
-
ferulate
mutant E134A, pH 4.0, 28°C
Enterobacter sp.
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Enterobacter sp.
C6F3U5
-
-
Enterobacter sp. Px6-4
C6F3U5
-
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ferulate
-
735040
Enterobacter sp.
4-vinylguaiacol + CO2
-
-
-
?
ferulate
-
735040
Enterobacter sp. Px6-4
4-vinylguaiacol + CO2
-
-
-
?
Turnover Number [1/s]
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
0.02
-
ferulate
mutant W25A, pH 4.0, 28°C
Enterobacter sp.
0.99
-
ferulate
mutant E134A, pH 4.0, 28°C
Enterobacter sp.
2.15
-
ferulate
wild-type, pH 4.0, 28°C
Enterobacter sp.
Crystallization (Commentary) (protein specific)
Crystallization
Organism
crystal structures in complex with substrate analogues. FADase possesses a half-opened bottom beta-barrel with the catalytic pocket located between the middle of the core beta-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD) superfamily. FADase catalyzed reactions by an open-closed mechanism involving a pocket on the surface of the enzyme. During decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer
Enterobacter sp.
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
E134A
mutation decreases the enzyme activity by more than 60%
Enterobacter sp.
W25A
mutation decreases the enzyme activity by more than 95%
Enterobacter sp.
Y21A
mutation abolishes the enzyme activity completely
Enterobacter sp.
Y27A
mutation abolishes the enzyme activity completely
Enterobacter sp.
KM Value [mM] (protein specific)
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
0.73
-
ferulate
mutant W25A, pH 4.0, 28°C
Enterobacter sp.
2.36
-
ferulate
wild-type, pH 4.0, 28°C
Enterobacter sp.
3.52
-
ferulate
mutant E134A, pH 4.0, 28°C
Enterobacter sp.
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ferulate
-
735040
Enterobacter sp.
4-vinylguaiacol + CO2
-
-
-
?
ferulate
-
735040
Enterobacter sp. Px6-4
4-vinylguaiacol + CO2
-
-
-
?
Turnover Number [1/s] (protein specific)
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
0.02
-
ferulate
mutant W25A, pH 4.0, 28°C
Enterobacter sp.
0.99
-
ferulate
mutant E134A, pH 4.0, 28°C
Enterobacter sp.
2.15
-
ferulate
wild-type, pH 4.0, 28°C
Enterobacter sp.
KCat/KM [mM/s]
kcat/KM Value [1/mMs-1]
kcat/KM Value Maximum [1/mMs-1]
Substrate
Commentary
Organism
Structure
0.02
-
ferulate
mutant W25A, pH 4.0, 28°C
Enterobacter sp.
0.28
-
ferulate
mutant E134A, pH 4.0, 28°C
Enterobacter sp.
0.91
-
ferulate
wild-type, pH 4.0, 28°C
Enterobacter sp.
KCat/KM [mM/s] (protein specific)
KCat/KM Value [1/mMs-1]
KCat/KM Value Maximum [1/mMs-1]
Substrate
Commentary
Organism
Structure
0.02
-
ferulate
mutant W25A, pH 4.0, 28°C
Enterobacter sp.
0.28
-
ferulate
mutant E134A, pH 4.0, 28°C
Enterobacter sp.
0.91
-
ferulate
wild-type, pH 4.0, 28°C
Enterobacter sp.
Other publictions for EC 4.1.1.102
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
748038
Ferguson
Evidence for a 1,3-dipolar cy ...
Saccharomyces cerevisiae
J. Am. Chem. Soc.
139
10972-10975
2017
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
749347
Adeboye
ALD5, PAD1, ATF1 and ATF2 fac ...
Saccharomyces cerevisiae
Sci. Rep.
7
42635
2017
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
747102
Ferguson
Mechanism of the novel prenyl ...
Saccharomyces cerevisiae
Biochemistry
55
2857-2863
2016
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
16
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16
-
-
-
-
-
-
-
-
-
-
-
-
-
13
13
747388
Fujiwara
4-Vinylphenol production from ...
Streptomyces mobaraensis
Biotechnol. Lett.
38
1543-1549
2016
-
1
1
-
-
-
-
-
-
-
-
-
-
5
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
748255
Fujiwara
Styrene production from a bio ...
Saccharomyces cerevisiae, Saccharomyces cerevisiae YPH499
J. Biosci. Bioeng.
122
730-735
2016
-
1
-
-
-
-
-
-
-
-
-
-
-
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
733178
Bhuiya
Structure and mechanism of fer ...
Saccharomyces cerevisiae
Appl. Environ. Microbiol.
81
4216-4223
2015
-
-
1
1
1
-
-
2
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
733201
Lee
Enhancement of the catalytic a ...
Enterobacter sp., Enterobacter sp. Px6-4
Appl. Microbiol. Biotechnol.
99
9473-9481
2015
-
-
1
-
22
-
-
-
-
8
-
-
-
5
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
22
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
734786
Furuya
High-yield production of vanil ...
Bacillus pumilus
New Biotechnol.
32
335-339
2015
-
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
746588
Lin
Isofunctional enzymes PAD1 an ...
Saccharomyces cerevisiae
ACS Chem. Biol.
10
1137-1144
2015
-
-
1
-
-
-
-
3
-
-
1
-
-
3
-
-
-
-
-
-
-
-
3
1
-
-
-
3
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
3
-
-
1
-
-
-
-
-
-
-
-
-
3
1
-
-
-
3
-
-
-
-
-
1
1
-
3
3
747296
Noda
4-Vinylphenol biosynthesis fr ...
Streptomyces cattleya, Streptomyces hygroscopicus, Streptomyces sviceus
Biores. Technol.
180
59-65
2015
-
1
3
-
-
-
-
3
-
-
-
-
-
7
-
-
3
-
-
-
-
-
3
-
3
3
-
3
3
3
2
-
-
-
-
-
1
3
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
3
-
-
-
-
3
-
3
3
-
3
3
3
2
-
-
-
-
-
3
3
734337
Mukai
Single nucleotide polymorphism ...
Saccharomyces cerevisiae
J. Biosci. Bioeng.
118
50-55
2014
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
733069
Huang H.-K
An endogenous factor enhances ...
Meyerozyma guilliermondii, Meyerozyma guilliermondii ATCC 9058
AMB Express
2
4
2012
4
-
1
1
3
-
-
-
-
-
1
4
-
6
-
-
-
-
-
-
2
-
10
1
-
-
-
-
-
-
-
-
-
-
-
4
-
1
-
1
3
-
-
-
-
-
-
-
1
4
-
-
-
-
-
-
2
-
10
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
733182
Gu
Cloning, sequencing, and overe ...
Enterobacter sp., Enterobacter sp. Px6-4
Appl. Microbiol. Biotechnol.
89
1797-1805
2011
-
-
1
-
-
-
3
-
-
-
1
-
-
8
-
-
-
-
-
-
-
-
2
1
1
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
3
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
1
1
-
-
-
1
1
-
-
-
-
-
-
-
-
735040
Gu
Structural basis of enzymatic ...
Enterobacter sp., Enterobacter sp. Px6-4
PLoS ONE
6
e16262
2011
-
-
-
1
4
-
-
3
-
-
-
-
-
5
-
-
-
-
-
-
-
-
2
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
1
4
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
3
-
-
-
-
-
-
-
-
3
3
733146
Zago
Cloning, sequencing, and expre ...
Bacillus pumilus
Appl. Environ. Microbiol.
61
4484-4486
1995
-
-
1
-
-
-
-
-
-
-
3
-
-
4
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
734054
Huang
Purification and characterizat ...
Pseudomonas fluorescens
J. Bacteriol.
176
5912-5918
1994
-
-
-
-
-
-
4
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
3
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
2
-
-
-
-
-
-
-
-
-
3
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-