BRENDA - Enzyme Database
show all sequences of 3.1.4.3

The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling

Pokotylo, I.; Pejchar, P.; Potocky, M.; Kocourkova, D.; Krckova, Z.; Ruelland, E.; Kravets, V.; Martinec, J.; Prog. Lipid Res. 52, 62-79 (2013)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
expression of the N-terminal domain in Escherichia coli
Clostridium perfringens
phylogenetic analysis
Glycine max
phylogenetic analysis
Nicotiana tabacum
phylogenetic analysis
Oryza sativa
phylogenetic analysis
Petunia x hybrida
phylogenetic analysis
Physcomitrella patens
phylogenetic analysis
Picea sitchensis
phylogenetic analysis
Populus trichocarpa
phylogenetic analysis
Selaginella moellendorffii
phylogenetic analysis
Sorghum bicolor
phylogenetic analysis
Vitis vinifera
phylogenetic analysis; phylogenetic analysis; phylogenetic analysis; phylogenetic analysis; phylogenetic analysis; phylogenetic analysis
Arabidopsis thaliana
Engineering
Amino acid exchange
Commentary
Organism
up
the enzyme is induced by 24-epibrassinolide signalling, auxin, cytokinin, phosphate deficiency, abscisic acid, and salt stress. NPC4 does demonstrate a positive response to Botrytis cinerea, Golovinomyces orontii, Pseudomonas syringae and Phytophthora infestans treatment
Arabidopsis thaliana
Inhibitors
Inhibitors
Commentary
Organism
Structure
additional information
no inhibition by tricyclodecan-9-ylxanthogenate, i.e. D609
Nicotiana tabacum
tricyclodecan-9-ylxanthogenate
i.e. D609; i.e. D609; i.e. D609; i.e. D609; i.e. D609; i.e. D609
Arabidopsis thaliana
tricyclodecan-9-ylxanthogenate
i.e. D609
Bacillus cereus
tricyclodecan-9-ylxanthogenate
i.e. D609
Clostridium perfringens
tricyclodecan-9-ylxanthogenate
i.e. D609
Glycine max
tricyclodecan-9-ylxanthogenate
i.e. D609
Oryza sativa
tricyclodecan-9-ylxanthogenate
i.e. D609
Petunia x hybrida
tricyclodecan-9-ylxanthogenate
i.e. D609
Physcomitrella patens
tricyclodecan-9-ylxanthogenate
i.e. D609
Picea sitchensis
tricyclodecan-9-ylxanthogenate
i.e. D609
Populus trichocarpa
tricyclodecan-9-ylxanthogenate
i.e. D609
Pseudomonas fluorescens
tricyclodecan-9-ylxanthogenate
i.e. D609
Selaginella moellendorffii
tricyclodecan-9-ylxanthogenate
i.e. D609
Sorghum bicolor
tricyclodecan-9-ylxanthogenate
i.e. D609
Ureaplasma urealyticum
tricyclodecan-9-ylxanthogenate
i.e. D609
Vitis vinifera
Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
chloroplast
-
Arabidopsis thaliana
9507
-
cytosol
-
Arabidopsis thaliana
5829
-
endoplasmic reticulum membrane
;
Arabidopsis thaliana
5789
-
extracellular
the enzyme is secreted
Clostridium perfringens
-
-
membrane
of stamens and pistils
Petunia x hybrida
16020
-
membrane
bound
Ureaplasma urealyticum
16020
-
mitochondrion
-
Arabidopsis thaliana
5739
-
plasma membrane
-
Nicotiana tabacum
5886
-
plasma membrane
-
Arabidopsis thaliana
5886
-
tonoplast
-
Arabidopsis thaliana
-
-
vacuolar membrane
-
Arabidopsis thaliana
5774
-
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Nal
activates enzyme activity
Ureaplasma urealyticum
Zn2+
bound at the N-terminal domain
Clostridium perfringens
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
phosphatidylcholine + H2O
Glycine max
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Pseudomonas fluorescens
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Bacillus cereus
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Sorghum bicolor
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Oryza sativa
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Petunia x hybrida
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Clostridium perfringens
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Ureaplasma urealyticum
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Physcomitrella patens
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Vitis vinifera
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Populus trichocarpa
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Picea sitchensis
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Selaginella moellendorffii
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Arabidopsis thaliana
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylethanolamine + H2O
Arabidopsis thaliana
-
1,2-sn-diacylglycerol + phosphoethanolamine
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Arabidopsis thaliana
O81020
NPC2; gene NPC2
-
Arabidopsis thaliana
Q8H965
NPC6; gene NPC6
-
Arabidopsis thaliana
Q8L7Y9
NPC1; gene NPC1
-
Arabidopsis thaliana
Q9S816
NPC5; gene NPC5
-
Arabidopsis thaliana
Q9SRQ6
NPC3; gene NPC3
-
Arabidopsis thaliana
Q9SRQ7
NPC4; gene NPC4
-
Bacillus cereus
-
-
-
Clostridium perfringens
-
-
-
Glycine max
-
six genes NPC1-6
-
Nicotiana tabacum
-
-
-
Oryza sativa
-
six genes NPC1-6
-
Petunia x hybrida
-
six genes NPC1-6
-
Physcomitrella patens
-
single NPC1-like gene
-
Picea sitchensis
-
NPC1-, NPC2- and NPC6-like gene, no NPC3-5
-
Populus trichocarpa
-
six genes NPC1-6
-
Pseudomonas fluorescens
-
-
-
Selaginella moellendorffii
-
single NPC1-like gene
-
Sorghum bicolor
-
six genes NPC1-6
-
Ureaplasma urealyticum
-
-
-
Vitis vinifera
-
six genes NPC1-6
-
Purification (Commentary)
Commentary
Organism
native enzyme
Ureaplasma urealyticum
Reaction
Reaction
Commentary
Organism
a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
mode of action of the plant enzyme family of non-specific phospholipases C, overview; mode of action of the plant enzyme family of non-specific phospholipases C, overview; mode of action of the plant enzyme family of non-specific phospholipases C, overview; mode of action of the plant enzyme family of non-specific phospholipases C, overview; mode of action of the plant enzyme family of non-specific phospholipases C, overview; mode of action of the plant enzyme family of non-specific phospholipases C, overview
Arabidopsis thaliana
a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
mode of action of the plant enzyme family of non-specific phospholipases C, overview
Glycine max
a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
mode of action of the plant enzyme family of non-specific phospholipases C, overview
Nicotiana tabacum
a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
mode of action of the plant enzyme family of non-specific phospholipases C, overview
Oryza sativa
a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
mode of action of the plant enzyme family of non-specific phospholipases C, overview
Petunia x hybrida
a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
mode of action of the plant enzyme family of non-specific phospholipases C, overview
Physcomitrella patens
a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
mode of action of the plant enzyme family of non-specific phospholipases C, overview
Picea sitchensis
a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
mode of action of the plant enzyme family of non-specific phospholipases C, overview
Populus trichocarpa
a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
mode of action of the plant enzyme family of non-specific phospholipases C, overview
Selaginella moellendorffii
a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
mode of action of the plant enzyme family of non-specific phospholipases C, overview
Sorghum bicolor
a phosphatidylcholine + H2O = 1,2-diacyl-sn-glycerol + phosphocholine
mode of action of the plant enzyme family of non-specific phospholipases C, overview
Vitis vinifera
Source Tissue
Source Tissue
Commentary
Organism
Textmining
cell suspension culture
-
Nicotiana tabacum
-
cotyledon
;
Arabidopsis thaliana
-
inflorescence
-
Arabidopsis thaliana
-
leaf
old
Arabidopsis thaliana
-
additional information
tissue distribution, overview; tissue distribution, overview; tissue distribution, overview; tissue distribution, overview; tissue distribution, overview; tissue distribution, overview
Arabidopsis thaliana
-
pistil
-
Petunia x hybrida
-
pollen
germinating
Arabidopsis thaliana
-
root
-
Arabidopsis thaliana
-
seedling
higher in seedling hypocotyls and lower in seedling roots
Arabidopsis thaliana
-
silique
-
Arabidopsis thaliana
-
stamen
-
Petunia x hybrida
-
TBY-2 cell
-
Nicotiana tabacum
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
phosphatidic acid + H2O
-
730853
Arabidopsis thaliana
1,2-sn-diacylglycerol + phosphate
-
-
-
?
phosphatidylcholine + H2O
-
730853
Glycine max
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Pseudomonas fluorescens
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Bacillus cereus
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Sorghum bicolor
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Oryza sativa
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Petunia x hybrida
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Clostridium perfringens
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Ureaplasma urealyticum
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Physcomitrella patens
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Vitis vinifera
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Populus trichocarpa
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Picea sitchensis
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Selaginella moellendorffii
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Arabidopsis thaliana
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylethanolamine + H2O
-
730853
Arabidopsis thaliana
1,2-sn-diacylglycerol + phosphoethanolamine
-
-
-
?
Subunits
Subunits
Commentary
Organism
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview; the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview; the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview; the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview; the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview; the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Arabidopsis thaliana
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Glycine max
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Nicotiana tabacum
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Oryza sativa
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Petunia x hybrida
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Physcomitrella patens
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Picea sitchensis
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Populus trichocarpa
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Selaginella moellendorffii
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Sorghum bicolor
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Vitis vinifera
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
additional information
-
broad pH optimum
Ureaplasma urealyticum
Cloned(Commentary) (protein specific)
Commentary
Organism
expression of the N-terminal domain in Escherichia coli
Clostridium perfringens
phylogenetic analysis
Arabidopsis thaliana
phylogenetic analysis
Glycine max
phylogenetic analysis
Nicotiana tabacum
phylogenetic analysis
Oryza sativa
phylogenetic analysis
Petunia x hybrida
phylogenetic analysis
Physcomitrella patens
phylogenetic analysis
Picea sitchensis
phylogenetic analysis
Populus trichocarpa
phylogenetic analysis
Selaginella moellendorffii
phylogenetic analysis
Sorghum bicolor
phylogenetic analysis
Vitis vinifera
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
up
the enzyme is induced by 24-epibrassinolide signalling, auxin, cytokinin, phosphate deficiency, abscisic acid, and salt stress. NPC4 does demonstrate a positive response to Botrytis cinerea, Golovinomyces orontii, Pseudomonas syringae and Phytophthora infestans treatment
Arabidopsis thaliana
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
additional information
no inhibition by tricyclodecan-9-ylxanthogenate, i.e. D609
Nicotiana tabacum
tricyclodecan-9-ylxanthogenate
i.e. D609
Arabidopsis thaliana
tricyclodecan-9-ylxanthogenate
i.e. D609
Bacillus cereus
tricyclodecan-9-ylxanthogenate
i.e. D609
Clostridium perfringens
tricyclodecan-9-ylxanthogenate
i.e. D609
Glycine max
tricyclodecan-9-ylxanthogenate
i.e. D609
Oryza sativa
tricyclodecan-9-ylxanthogenate
i.e. D609
Petunia x hybrida
tricyclodecan-9-ylxanthogenate
i.e. D609
Physcomitrella patens
tricyclodecan-9-ylxanthogenate
i.e. D609
Picea sitchensis
tricyclodecan-9-ylxanthogenate
i.e. D609
Populus trichocarpa
tricyclodecan-9-ylxanthogenate
i.e. D609
Pseudomonas fluorescens
tricyclodecan-9-ylxanthogenate
i.e. D609
Selaginella moellendorffii
tricyclodecan-9-ylxanthogenate
i.e. D609
Sorghum bicolor
tricyclodecan-9-ylxanthogenate
i.e. D609
Ureaplasma urealyticum
tricyclodecan-9-ylxanthogenate
i.e. D609
Vitis vinifera
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
chloroplast
-
Arabidopsis thaliana
9507
-
cytosol
-
Arabidopsis thaliana
5829
-
endoplasmic reticulum membrane
-
Arabidopsis thaliana
5789
-
extracellular
the enzyme is secreted
Clostridium perfringens
-
-
membrane
of stamens and pistils
Petunia x hybrida
16020
-
membrane
bound
Ureaplasma urealyticum
16020
-
mitochondrion
-
Arabidopsis thaliana
5739
-
plasma membrane
-
Arabidopsis thaliana
5886
-
plasma membrane
-
Nicotiana tabacum
5886
-
tonoplast
-
Arabidopsis thaliana
-
-
vacuolar membrane
-
Arabidopsis thaliana
5774
-
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Nal
activates enzyme activity
Ureaplasma urealyticum
Zn2+
bound at the N-terminal domain
Clostridium perfringens
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
phosphatidylcholine + H2O
Glycine max
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Pseudomonas fluorescens
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Bacillus cereus
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Sorghum bicolor
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Oryza sativa
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Petunia x hybrida
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Clostridium perfringens
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Ureaplasma urealyticum
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Physcomitrella patens
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Vitis vinifera
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Populus trichocarpa
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Picea sitchensis
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Selaginella moellendorffii
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylcholine + H2O
Arabidopsis thaliana
-
1,2-sn-diacylglycerol + phosphocholine
-
-
?
phosphatidylethanolamine + H2O
Arabidopsis thaliana
-
1,2-sn-diacylglycerol + phosphoethanolamine
-
-
?
Purification (Commentary) (protein specific)
Commentary
Organism
native enzyme
Ureaplasma urealyticum
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
cell suspension culture
-
Nicotiana tabacum
-
cotyledon
-
Arabidopsis thaliana
-
inflorescence
-
Arabidopsis thaliana
-
leaf
old
Arabidopsis thaliana
-
leaf
-
Arabidopsis thaliana
-
additional information
tissue distribution, overview
Arabidopsis thaliana
-
pistil
-
Petunia x hybrida
-
pollen
germinating
Arabidopsis thaliana
-
root
-
Arabidopsis thaliana
-
seedling
higher in seedling hypocotyls and lower in seedling roots
Arabidopsis thaliana
-
silique
-
Arabidopsis thaliana
-
stamen
-
Petunia x hybrida
-
TBY-2 cell
-
Nicotiana tabacum
-
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
phosphatidic acid + H2O
-
730853
Arabidopsis thaliana
1,2-sn-diacylglycerol + phosphate
-
-
-
?
phosphatidylcholine + H2O
-
730853
Glycine max
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Pseudomonas fluorescens
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Bacillus cereus
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Sorghum bicolor
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Oryza sativa
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Petunia x hybrida
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Clostridium perfringens
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Ureaplasma urealyticum
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Physcomitrella patens
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Vitis vinifera
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Populus trichocarpa
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Picea sitchensis
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Selaginella moellendorffii
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylcholine + H2O
-
730853
Arabidopsis thaliana
1,2-sn-diacylglycerol + phosphocholine
-
-
-
?
phosphatidylethanolamine + H2O
-
730853
Arabidopsis thaliana
1,2-sn-diacylglycerol + phosphoethanolamine
-
-
-
?
Subunits (protein specific)
Subunits
Commentary
Organism
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Arabidopsis thaliana
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Glycine max
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Nicotiana tabacum
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Oryza sativa
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Petunia x hybrida
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Physcomitrella patens
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Picea sitchensis
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Populus trichocarpa
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Selaginella moellendorffii
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Sorghum bicolor
More
the enzyme contains a central phosphoesterase domain, a DUF756 domain, a conserved region and a conserved Asp-Arg pair, and some isozymes contain a signal peptide, domain structure, overview
Vitis vinifera
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
additional information
-
broad pH optimum
Ureaplasma urealyticum
Expression
Organism
Commentary
Expression
Arabidopsis thaliana
the enzyme is induced by 24-epibrassinolide signalling, auxin, and cytokinin. Expression level of NPC3 is increased 14.6fold after 2 h in seedlings subjected to 37C heat stress. NPC3 does demonstrate a positive response to Botrytis cinerea, Golovinomyces orontii, Pseudomonas syringae and Phytophthora infestans treatment; the enzyme is induced by phosphate deficiency
up
General Information
General Information
Commentary
Organism
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C; the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C; the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C; the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C; the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C; the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Arabidopsis thaliana
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Glycine max
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Nicotiana tabacum
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Oryza sativa
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Petunia x hybrida
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Physcomitrella patens
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Picea sitchensis
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Populus trichocarpa
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Selaginella moellendorffii
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Sorghum bicolor
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Vitis vinifera
malfunction
npc4 knockout mutants are characterised by a reduced germination rate when sown on media containing 150 mM NaCl. Mutant npc4 plants also have reduced germination and overall viability under salt and drought stress conditions. Unlike wild-type plants, mutants overexpressing NPC4 are characterised by a higher germination level and maintain a greater root length and dry weight under both salt stress and hyperosmosis
Arabidopsis thaliana
malfunction
the N-terminal domain of a-toxin retains PC-PLC activity when expressed in Escherichia coli, but lacks haemolytic and sphingomyelinase activities that are supposedly granted by a lipoxygenase-like C-terminal domain
Clostridium perfringens
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview; model of metabolism regulation carried out by plant cell phospholipases, overview; model of metabolism regulation carried out by plant cell phospholipases, overview; model of metabolism regulation carried out by plant cell phospholipases, overview; model of metabolism regulation carried out by plant cell phospholipases, overview; model of metabolism regulation carried out by plant cell phospholipases, overview
Arabidopsis thaliana
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Glycine max
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Nicotiana tabacum
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Oryza sativa
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Petunia x hybrida
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Physcomitrella patens
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Picea sitchensis
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Populus trichocarpa
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Selaginella moellendorffii
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Sorghum bicolor
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Vitis vinifera
additional information
sequence comparisons and three-dimensional structure modeling, overview; sequence comparisons and three-dimensional structure modeling, overview; sequence comparisons and three-dimensional structure modeling, overview; sequence comparisons and three-dimensional structure modeling, overview; sequence comparisons and three-dimensional structure modeling, overview; sequence comparisons and three-dimensional structure modeling, overview
Arabidopsis thaliana
additional information
the N-terminal domain contains the phospholipase C active site, which also incorporates zinc ions. The C-terminal C2-like PLAT (polycystin-1, lipoxygenase, alpha-toxin) domain was found to be similar to lipid binding domains in eukaryotes and appears to be responsible for binding membrane phospholipids in a calcium-dependent manner
Clostridium perfringens
additional information
sequence comparisons and three-dimensional structure modeling, overview
Glycine max
additional information
sequence comparisons and three-dimensional structure modeling, overview
Nicotiana tabacum
additional information
sequence comparisons and three-dimensional structure modeling, overview
Oryza sativa
additional information
sequence comparisons and three-dimensional structure modeling, overview
Petunia x hybrida
additional information
sequence comparisons and three-dimensional structure modeling, overview
Physcomitrella patens
additional information
sequence comparisons and three-dimensional structure modeling, overview
Picea sitchensis
additional information
sequence comparisons and three-dimensional structure modeling, overview
Populus trichocarpa
additional information
sequence comparisons and three-dimensional structure modeling, overview
Selaginella moellendorffii
additional information
sequence comparisons and three-dimensional structure modeling, overview
Sorghum bicolor
additional information
sequence comparisons and three-dimensional structure modeling, overview
Vitis vinifera
physiological function
NPC3 might play a rolei in thermotolerance. The enzyme is responsible for lipid conversion during phosphate-limiting conditions. Two articles non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview, inducible expression and putative signalling role; NPC4 participates in triggering plant salt stress responses likely via abscisic acid-dependent mechanisms. The enzyme is responsible for lipid conversion during phosphate-limiting conditions. Two articles non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview, inducible expression and putative signalling role; the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Two articles non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview; the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Two articles non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview; the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Two articles non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview; the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Two articles non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Arabidopsis thaliana
physiological function
the enzyme inhibits the formation of cAMP by adenylate cyclase and is involved in the defence mechanism of bacteria to phagocytosis
Bacillus cereus
physiological function
the secreted enzyme plays a role in the aggregation of blood platelets and inhibits defensive superoxide generation in human polymorphonuclear leukocytes by interacting with membrane components of NADPH oxidase
Clostridium perfringens
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Glycine max
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Two articles non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Nicotiana tabacum
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Oryza sativa
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Petunia x hybrida
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Physcomitrella patens
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Picea sitchensis
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Populus trichocarpa
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Selaginella moellendorffii
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Sorghum bicolor
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Vitis vinifera
General Information (protein specific)
General Information
Commentary
Organism
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Arabidopsis thaliana
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Glycine max
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Nicotiana tabacum
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Oryza sativa
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Petunia x hybrida
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Physcomitrella patens
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Picea sitchensis
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Populus trichocarpa
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Selaginella moellendorffii
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Sorghum bicolor
evolution
the enzyme belongs to the plant non-specific phospholipase C gene family, phylogenetic tree, overview. The common ancestor of all seed plants already had at least one NPC1-, NPC2- and NPC6-like gene. Non-specific phospholipases C are a distinct type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C
Vitis vinifera
malfunction
npc4 knockout mutants are characterised by a reduced germination rate when sown on media containing 150 mM NaCl. Mutant npc4 plants also have reduced germination and overall viability under salt and drought stress conditions. Unlike wild-type plants, mutants overexpressing NPC4 are characterised by a higher germination level and maintain a greater root length and dry weight under both salt stress and hyperosmosis
Arabidopsis thaliana
malfunction
the N-terminal domain of a-toxin retains PC-PLC activity when expressed in Escherichia coli, but lacks haemolytic and sphingomyelinase activities that are supposedly granted by a lipoxygenase-like C-terminal domain
Clostridium perfringens
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Arabidopsis thaliana
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Glycine max
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Nicotiana tabacum
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Oryza sativa
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Petunia x hybrida
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Physcomitrella patens
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Picea sitchensis
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Populus trichocarpa
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Selaginella moellendorffii
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Sorghum bicolor
metabolism
model of metabolism regulation carried out by plant cell phospholipases, overview
Vitis vinifera
additional information
sequence comparisons and three-dimensional structure modeling, overview
Arabidopsis thaliana
additional information
the N-terminal domain contains the phospholipase C active site, which also incorporates zinc ions. The C-terminal C2-like PLAT (polycystin-1, lipoxygenase, alpha-toxin) domain was found to be similar to lipid binding domains in eukaryotes and appears to be responsible for binding membrane phospholipids in a calcium-dependent manner
Clostridium perfringens
additional information
sequence comparisons and three-dimensional structure modeling, overview
Glycine max
additional information
sequence comparisons and three-dimensional structure modeling, overview
Nicotiana tabacum
additional information
sequence comparisons and three-dimensional structure modeling, overview
Oryza sativa
additional information
sequence comparisons and three-dimensional structure modeling, overview
Petunia x hybrida
additional information
sequence comparisons and three-dimensional structure modeling, overview
Physcomitrella patens
additional information
sequence comparisons and three-dimensional structure modeling, overview
Picea sitchensis
additional information
sequence comparisons and three-dimensional structure modeling, overview
Populus trichocarpa
additional information
sequence comparisons and three-dimensional structure modeling, overview
Selaginella moellendorffii
additional information
sequence comparisons and three-dimensional structure modeling, overview
Sorghum bicolor
additional information
sequence comparisons and three-dimensional structure modeling, overview
Vitis vinifera
physiological function
NPC4 participates in triggering plant salt stress responses likely via abscisic acid-dependent mechanisms. The enzyme is responsible for lipid conversion during phosphate-limiting conditions. Two articles non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview, inducible expression and putative signalling role
Arabidopsis thaliana
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Two articles non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Arabidopsis thaliana
physiological function
NPC3 might play a rolei in thermotolerance. The enzyme is responsible for lipid conversion during phosphate-limiting conditions. Two articles non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview, inducible expression and putative signalling role
Arabidopsis thaliana
physiological function
the enzyme inhibits the formation of cAMP by adenylate cyclase and is involved in the defence mechanism of bacteria to phagocytosis
Bacillus cereus
physiological function
the secreted enzyme plays a role in the aggregation of blood platelets and inhibits defensive superoxide generation in human polymorphonuclear leukocytes by interacting with membrane components of NADPH oxidase
Clostridium perfringens
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Glycine max
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Two articles non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Nicotiana tabacum
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Oryza sativa
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Petunia x hybrida
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Physcomitrella patens
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Picea sitchensis
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Populus trichocarpa
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Selaginella moellendorffii
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Sorghum bicolor
physiological function
the enzyme is responsible for lipid conversion during phosphate-limiting conditions. Non-specific phospholipases C are involved in biotic and abiotic stress responses as well as phytohormone actions. The diacylglycerol produced via the enzymes is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. Mode of action of the enzyme in lipid metabolism, signal transduction, and membrane remodelling, detailed overview
Vitis vinifera
Expression (protein specific)
Organism
Commentary
Expression
Arabidopsis thaliana
the enzyme is induced by 24-epibrassinolide signalling, auxin, and cytokinin. Expression level of NPC3 is increased 14.6fold after 2 h in seedlings subjected to 37C heat stress. NPC3 does demonstrate a positive response to Botrytis cinerea, Golovinomyces orontii, Pseudomonas syringae and Phytophthora infestans treatment
up
Arabidopsis thaliana
the enzyme is induced by phosphate deficiency
up
Other publictions for EC 3.1.4.3
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
750201
Song
Structural, expression and ev ...
Gossypium hirsutum
BMC Genomics
18
979
2017
-
-
-
-
-
-
-
-
-
-
-
1
-
3
-
-
-
-
-
10
-
-
1
1
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
10
-
-
1
1
-
-
-
-
-
-
-
6
2
-
-
2
-
-
750568
Woo
Molecular characterization an ...
Paralichthys olivaceus
Fish Shellfish Immunol.
63
353-366
2017
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
7
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
7
-
-
3
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
751710
Udawela
Isoform specific differences ...
Homo sapiens
NPJ Schizophr.
3
19
2017
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
752079
Elena
-
B. cereus phospholipase C eng ...
Bacillus cereus
Process Biochem.
54
67-72
2017
-
1
1
-
2
-
-
3
-
1
-
1
-
1
-
-
-
-
-
-
-
-
3
1
-
-
-
3
-
-
-
-
-
-
-
-
1
1
-
-
2
-
-
-
-
3
-
1
-
1
-
-
-
-
-
-
-
-
3
1
-
-
-
3
-
-
-
-
-
-
-
-
3
3
749975
Huang
Recombinant broad-range phosp ...
Listeria monocytogenes
Biochim. Biophys. Acta
1864
697-705
2016
-
-
1
-
5
-
-
3
-
1
-
1
-
3
-
-
1
-
-
-
-
-
10
1
-
-
-
3
1
-
-
-
-
-
-
-
-
1
-
-
5
-
-
-
-
3
-
1
-
1
-
-
-
1
-
-
-
-
10
1
-
-
-
3
1
-
-
-
-
-
-
-
3
3
751957
Fiester
Iron-regulated phospholipase ...
Acinetobacter baumannii, Acinetobacter baumannii ATCC 19606T
PLoS ONE
11
e0167068
2016
-
-
-
-
-
-
-
-
-
-
-
2
-
10
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
752075
Elena
-
Pichia pastoris engineering f ...
Bacillus cereus
Process Biochem.
51
1935-1944
2016
-
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
749482
Hu
-
Cloning and functional analys ...
Setaria italica
Acta Agron. Sinica
41
1017-1026
2015
-
-
1
-
-
-
-
-
3
-
-
2
-
1
-
-
-
-
-
1
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
2
-
-
-
-
-
1
-
-
2
1
-
-
-
-
-
-
-
-
1
1
1
1
-
-
751137
Matsumoto
Substrate recognition mechani ...
Streptomyces sp. NA684
J. Biosci. Bioeng.
120
372-379
2015
1
1
-
-
-
-
-
2
1
-
-
-
-
1
-
-
1
-
-
-
-
-
4
1
-
-
-
2
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
1
-
-
-
-
4
1
-
-
-
2
-
-
-
-
-
-
-
-
2
2
751893
Pejchar
Aluminum ions alter the funct ...
Arabidopsis thaliana
Plant Signal. Behav.
10
e1031938
2015
-
-
-
-
-
-
1
-
1
-
-
1
-
2
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
1
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
752073
Jiang
-
Application of phospholipase ...
Bacillus cereus
Process Biochem.
50
432-437
2015
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
729565
Endo
Substance P activates Ca2+-per ...
Mus musculus
Cereb. Cortex
26
669-682
2014
-
-
-
-
-
-
1
-
-
-
-
1
-
2
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
730779
Erttmann
Bacteria induce prolonged PMN ...
Homo sapiens
PLoS ONE
9
e87859
2014
-
-
-
-
-
-
-
-
-
-
-
-
-
8
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
729587
Ibarguren
Recruitment of a phospholipase ...
Pseudomonas aeruginosa
Chem. Phys. Lipids
166
12-17
2013
-
-
-
-
-
-
-
-
1
-
-
2
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
729610
Shimanouchi
Membrane fusion mediated by ph ...
Bacillus cereus
Colloids Surf. B Biointerfaces
103
75-83
2013
-
1
-
-
-
-
2
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
1
-
-
2
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
730009
Aurass
The Legionella pneumophila Dot ...
Legionella pneumophila, Legionella pneumophila JR32
J. Biol. Chem.
288
11080-11092
2013
-
-
1
-
19
-
1
-
3
1
1
2
-
12
-
-
-
-
-
-
-
-
10
1
1
-
-
-
1
-
-
-
-
1
-
-
-
1
-
-
19
-
-
1
-
-
3
1
1
2
-
-
-
-
-
-
-
-
10
1
1
-
-
-
1
-
-
1
1
4
4
1
-
-
730853
Pokotylo
The plant non-specific phospho ...
Arabidopsis thaliana, Bacillus cereus, Clostridium perfringens, Glycine max, Nicotiana tabacum, Oryza sativa, Petunia x hybrida, Physcomitrella patens, Picea sitchensis, Populus trichocarpa, Pseudomonas fluorescens, Selaginella moellendorffii, Sorghum bicolor, Ureaplasma urealyticum, Vitis vinifera
Prog. Lipid Res.
52
62-79
2013
-
-
12
-
1
-
15
-
11
2
-
17
-
22
-
-
1
11
-
12
-
-
18
11
-
-
-
-
1
-
-
-
-
-
-
-
-
17
-
-
1
-
-
20
-
-
12
2
-
17
-
-
-
1
-
25
-
-
18
16
-
-
-
-
1
-
-
-
1
49
69
2
-
-
731015
Strielkov
Evidence for the role of phosp ...
Rattus norvegicus
Vascul. Pharmacol.
58
292-298
2013
-
-
-
-
-
-
1
-
-
-
-
1
-
2
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
729681
Shimizu
Brain phospholipase C, diacylg ...
Rattus norvegicus
Eur. J. Pharmacol.
691
93-102
2012
-
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
729834
Shao
Phosphatidylcholine-specific p ...
Rattus norvegicus
Int. J. Biochem. Cell Biol.
44
2253-2260
2012
-
-
-
-
-
-
1
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
714335
Urbina
Unexpected wide substrate spec ...
Clostridium perfringens, Clostridium perfringens 8-6
Biochim. Biophys. Acta
1808
2618-2627
2011
3
-
1
-
-
-
3
-
1
-
-
2
-
5
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
3
-
1
-
-
-
-
-
3
-
-
1
-
-
2
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
715764
Kocourkova
The phosphatidylcholine-hydrol ...
Arabidopsis thaliana, Arabidopsis thaliana Col-0
J. Exp. Bot.
62
3753-3763
2011
-
-
-
-
-
-
-
-
-
-
-
2
-
4
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
1
2
2
1
-
-
715836
Ibarguren
Imaging the early stages of ph ...
Pseudomonas aeruginosa
J. Lipid Res.
52
635-645
2011
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
4
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
716352
Chang
Methylmercury-induced IL-6 rel ...
Mus musculus, Mus musculus C57BL/6
Neurosci. Lett.
496
152-156
2011
1
-
-
-
-
-
1
-
-
-
-
-
-
141
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
714089
Slepkov
Differentiation of propeptide ...
Listeria monocytogenes
Biochem. J.
432
557-563
2010
-
-
-
-
11
-
-
-
2
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
11
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
714455
Gonzalez-Bulnes
2-aminohydroxamic acid derivat ...
Bacillus cereus
Bioorg. Med. Chem.
18
8549-8555
2010
-
-
-
-
-
-
25
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
4
-
20
-
-
-
-
-
-
-
20
25
4
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
714666
Chen
Functional roles of PC-PLC and ...
Rattus norvegicus
Cell Biochem. Funct.
28
249-257
2010
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
715502
Labriola
Phospholipase C activity affin ...
Tetronarce californica
J. Biol. Chem.
285
10337-10343
2010
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
716013
Liao
Reaction mechanism of the trin ...
Bacillus cereus
J. Phys. Chem. B
114
2533-2540
2010
-
-
-
-
-
-
-
-
1
1
-
2
-
1
-
-
-
-
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
2
-
-
-
-
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
716285
Wimalasekera
Plant phosphatidylcholine-hydr ...
Arabidopsis thaliana
Mol. Plant
3
610-625
2010
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
8
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
716770
Zavaleta-Pastor
Sinorhizobium meliloti phospho ...
Sinorhizobium meliloti
Proc. Natl. Acad. Sci. USA
107
302-307
2010
-
-
1
-
1
-
-
-
-
1
-
-
-
4
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
2
2
-
-
-
691450
Mo
A novel extracellular phosphol ...
Pseudoalteromonas sp., Pseudoalteromonas sp. J937
Biotechnol. Lett.
31
89-94
2009
2
-
-
-
-
-
-
-
1
-
1
-
-
5
-
-
1
-
-
-
1
-
6
-
1
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
1
-
-
1
-
6
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
708785
Tumurkhuu
The inhibition of lipopolysacc ...
Clostridium perfringens
Int. J. Med. Microbiol.
299
554-562
2009
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
710019
Yin
Characterization of phospholip ...
Chaetopterus variopedatus
Mol. Reprod. Dev.
76
460-470
2009
-
-
1
-
-
-
2
-
-
-
2
-
-
5
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
2
1
-
-
2
-
-
-
-
2
4
-
-
-
-
2
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
2
-
1
2
-
-
-
678920
Fantuzzi
Phosphatidylcholine-specific p ...
Homo sapiens
Blood
111
3355-3363
2008
-
1
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
680192
Wang
Cooperation of phosphatidylcho ...
Rattus norvegicus
Int. J. Biochem. Cell Biol.
40
294-306
2008
-
-
-
-
-
-
1
-
-
-
-
1
-
3
-
-
-
-
-
5
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
5
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
690903
Montes
Ceramide-enriched membrane dom ...
Pseudomonas aeruginosa
Biochemistry
47
11222-11230
2008
-
-
-
-
-
-
-
-
-
-
-
1
-
5
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
691503
Rossignol
Involvement of a phospholipase ...
Pseudomonas fluorescens
BMC Microbiol.
8
189
2008
-
-
1
-
1
-
-
-
-
-
1
-
-
5
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
691622
Spadaro
Phosphatidylcholine-specific p ...
Homo sapiens
Cancer Res.
68
6541-6549
2008
-
1
-
-
-
-
1
-
3
-
1
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
3
-
1
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
691637
Upham
Tumor promoting properties of ...
Rattus norvegicus
Cancer Sci.
99
696-705
2008
-
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
693279
Srinivas
Functional characterization of ...
Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv
J. Biosci.
33
221-230
2008
-
-
1
-
-
-
-
-
2
1
1
-
-
6
-
-
1
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
1
1
-
-
-
-
1
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
677502
Liu
Silica induces macrophage cyto ...
Rattus norvegicus
Am. J. Respir. Cell Mol. Biol.
36
594-599
2007
2
1
-
-
-
-
1
-
-
-
-
1
-
3
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
677752
Durban
High level expression of a rec ...
Bacillus cereus, Bacillus cereus SBUG318, Bacillus cereus SBUG516
Appl. Microbiol. Biotechnol.
74
634-639
2007
-
-
1
-
1
-
-
-
-
-
-
-
-
5
-
-
1
-
-
-
1
-
3
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
3
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
678414
Montes
Leakage-free membrane fusion i ...
Pseudomonas aeruginosa
Biochim. Biophys. Acta
1768
2365-2372
2007
1
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
679642
Cecchetti
Functional role of phosphatidy ...
Homo sapiens
Eur. J. Immunol.
37
2912-2922
2007
-
-
-
-
-
-
1
-
1
-
-
1
-
2
-
-
-
-
-
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
1
-
-
-
-
-
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
680080
Alvarez-Breckenridge
PTEN regulates phospholipase D ...
Homo sapiens
Hum. Mol. Genet.
16
1157-1163
2007
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
681019
Wang
Suppressing phosphatidylcholin ...
Rattus norvegicus
J. Cell. Biochem.
100
1548-1557
2007
-
-
-
-
-
-
1
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
681024
Zhao
Phosphatidylcholine-specific p ...
Gallus gallus
J. Cell. Biochem.
102
421-428
2007
-
-
-
-
-
-
1
-
-
-
-
1
-
2
-
-
-
-
-
3
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
3
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
681794
Korbsrisate
Characterization of two distin ...
Burkholderia pseudomallei
Microbiology
153
1907-1915
2007
-
-
-
-
2
-
-
-
1
-
1
1
-
3
-
1
-
-
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
1
-
1
1
-
-
1
-
-
-
-
-
3
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
666222
Mateos
Coexistence of phosphatidylcho ...
Rattus norvegicus
Lipids
41
273-280
2006
-
-
-
-
-
-
-
1
2
-
-
-
-
2
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
668022
Sugimori
Partial purification and some ...
Pseudomonas sp., Pseudomonas sp. KS3.2
Biosci. Biotechnol. Biochem.
70
535-537
2006
-
-
-
-
-
-
12
-
1
1
-
-
-
3
-
-
1
-
-
-
-
-
6
-
1
1
1
-
1
1
4
-
-
-
-
-
-
-
-
-
-
-
-
12
-
-
1
1
-
-
-
-
-
1
-
-
-
-
6
-
1
1
1
-
1
1
4
-
-
-
-
-
-
-
678721
Ranganathan
Characterization of the kineti ...
Bacillus cereus
Biophys. Chem.
122
79-89
2006
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
679523
Liu
Contrasting effects of phospha ...
Homo sapiens
Endothelium
13
205-211
2006
-
-
-
-
-
-
2
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
679640
Spadaro
Expression and role of phospha ...
Homo sapiens
Eur. J. Immunol.
36
3277-3287
2006
-
-
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
679837
Cheng
Phosphatidylcholine-specific p ...
Homo sapiens
FEBS Lett.
580
4911-4915
2006
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
681028
Li
Involvement of phosphatidylcho ...
Cricetulus griseus
J. Cell. Biochem.
98
1615-1628
2006
2
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
682126
Kustov
-
Peculiarities of phospholipase ...
Cavia porcellus
Neurophysiology
38
1-8
2006
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
682231
Rose
Synthesis and evaluation of fl ...
Bacillus cereus
Org. Lett.
8
2575-2578
2006
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
682434
Profotova
Involvement of phospholipases ...
Brassica napus
Plant Physiol. Biochem.
44
143-151
2006
3
-
-
-
-
-
-
-
2
-
-
-
-
2
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
665632
Sakagami
Biochemical and molecular char ...
Homo sapiens, Mus musculus
J. Biol. Chem.
280
23084-23093
2005
-
-
-
-
2
-
3
6
1
1
1
2
-
4
-
-
2
-
-
21
-
-
22
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
3
-
6
1
1
1
2
-
-
-
2
-
21
-
-
22
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
668524
Seo
Uronema marinum: identificatio ...
Uronema marinum
Exp. Parasitol.
110
22-29
2005
-
-
-
-
-
-
-
-
2
2
-
2
-
3
-
-
1
-
-
-
-
-
4
-
1
2
-
-
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
-
2
-
-
-
1
-
-
-
-
4
-
1
2
-
-
2
2
-
-
-
-
-
-
-
-
668710
Lau
Deoxycholic acid activates pro ...
Mesocricetus auratus
Gastroenterology
128
695-707
2005
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
668901
Rastogi
Phospholipase C from two bacte ...
Bacillus thuringiensis
Indian J. Biochem. Biophys.
42
92-99
2005
-
-
-
-
-
-
-
-
-
-
1
-
-
3
-
-
1
-
-
3
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
3
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
669357
Flores-Diaz
A Cellular deficiency of gangl ...
Clostridium perfringens
J. Biol. Chem.
280
26680-26689
2005
-
-
-
-
-
-
-
-
-
-
-
1
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
653091
Dubouix
A simple and reliable method f ...
Pseudomonas aeruginosa
Lett. Appl. Microbiol.
38
191-196
2004
1
-
1
-
-
1
2
-
-
-
1
-
-
5
-
-
1
-
-
-
2
-
3
1
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
2
-
-
-
-
1
-
-
-
-
1
-
-
2
-
3
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
662895
Barker
A novel extracellular phosphol ...
Pseudomonas aeruginosa
Mol. Microbiol.
53
1089-1098
2004
-
-
-
-
-
-
-
-
1
1
-
1
-
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
667601
Montes
Membrane fusion induced by the ...
Listeria monocytogenes, Listeria monocytogenes DP-L1553
Biochemistry
43
3688-3695
2004
-
-
-
-
-
-
-
-
1
2
-
2
-
6
-
-
1
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
2
-
2
-
-
-
1
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
649316
Haftendorn
Activity of phospholipase C in ...
Bacillus cereus
Anal. Biochem.
306
144-147
2002
-
-
-
-
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
652656
Hanada
Plasmodium falciparum phosphol ...
Plasmodium falciparum
J. Exp. Med.
195
23-34
2002
1
-
-
-
-
-
2
2
1
-
1
-
-
3
-
-
-
-
-
-
-
-
3
1
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
2
-
2
1
-
1
-
-
-
-
-
-
-
-
-
3
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
662891
Stonehouse
A novel class of microbial pho ...
Pseudomonas aeruginosa
Mol. Microbiol.
46
661-676
2002
-
-
-
-
-
-
1
1
-
-
2
-
-
7
-
-
1
-
-
-
1
-
4
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
2
-
-
-
-
1
-
-
1
-
4
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
651223
Vitale
Interleukin-2 activates nuclea ...
Homo sapiens
FASEB J.
15
1789-1791
2001
1
-
-
-
-
-
1
-
1
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
652142
Zhang
Reassembly of phospholipase C- ...
Homo sapiens
J. Biol. Chem.
276
2503-2508
2001
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
652678
Ramoni
Cellular localization and func ...
Homo sapiens
J. Immunol.
167
2642-2650
2001
1
-
-
-
-
-
1
-
6
-
2
-
-
2
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
6
-
2
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
653699
Pina-Chable
Phospholipase C activity from ...
Catharanthus roseus
Prostaglandins Other Lipid Mediat.
65
45-56
2001
-
-
-
-
-
-
1
-
2
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
662519
Gomez
Detection of phospholipase C i ...
Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium kansasii, Mycobacterium ulcerans
J. Clin. Microbiol.
39
1396-1401
2001
-
-
-
-
-
-
-
-
-
-
-
4
-
14
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
649438
Walker
identification of residues in ...
Clostridium perfringens
Arch. Biochem. Biophys.
384
24-30
2000
-
-
-
-
3
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
649812
Novotna
Study of phospholipases D and ...
Brassica napus
Biochem. Soc. Trans.
28
817-818
2000
-
-
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
649954
Barr
Identification of a region at ...
Rattus norvegicus
Biochemistry
39
1800-1806
2000
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
649967
Martin
The choline binding site of ph ...
Bacillus cereus
Biochemistry
39
3410-3415
2000
1
-
-
-
9
-
-
3
-
-
1
-
-
2
-
-
-
-
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
9
-
-
-
-
3
-
-
1
-
-
-
-
-
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
650878
Panfoli
-
Effects of heavy metals on pho ...
Mytilus galloprovincialis, Mytilus galloprovincialis Lam
Comp. Biochem. Physiol. B
127B
391-397
2000
-
-
-
-
-
-
2
-
-
-
-
-
-
3
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
652043
Faenza
A role for nuclear phospholipa ...
Rattus norvegicus
J. Biol. Chem.
275
30520-30524
2000
-
-
-
-
1
-
-
-
2
-
-
1
-
3
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
653351
Strosznajder
Regulation of phospholipase C ...
Felis catus
Neurochem. Res.
25
739-743
2000
2
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135280
Seishima
Phosphatidylcholine-specific p ...
Homo sapiens
Arch. Dermatol. Res.
291
606-613
1999
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
661541
Weingart
A nonhemolytic phospholipase C ...
Burkholderia cepacia
Curr. Microbiol.
38
233-238
1999
-
-
1
-
-
-
-
-
-
-
-
-
-
4
-
-
1
-
-
1
1
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
1
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
662518
Korbsrisate
Cloning and characterization o ...
Burkholderia pseudomallei
J. Clin. Microbiol.
37
3742-3745
1999
-
-
1
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135281
Tan
Engineering of the nonspecific ...
Bacillus cereus
Biochemistry
37
4275-4279
1998
-
-
1
-
1
-
1
6
1
1
1
-
-
2
-
-
1
-
-
-
-
-
4
-
-
-
1
6
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
1
-
6
1
1
1
-
-
-
-
1
-
-
-
-
4
-
-
-
1
6
-
-
-
-
-
-
-
-
-
-
135282
Pawelczyk
Expression, purification and k ...
Homo sapiens
Acta Biochim. Pol.
44
221-229
1997
6
-
1
-
-
-
-
-
-
1
1
1
-
3
-
-
1
-
-
2
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
6
-
1
-
-
-
-
-
-
-
-
-
1
1
1
-
-
-
1
-
2
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135283
Ghosh
Phospholipase C isoforms d1 an ...
Homo sapiens, Rattus norvegicus
Protein Expr. Purif.
9
262-278
1997
-
-
1
-
-
-
-
-
-
2
2
2
-
5
-
-
1
-
-
4
2
2
2
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
2
2
-
-
-
1
-
4
2
2
2
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
135284
Meij
Purification and characterizat ...
Homo sapiens
Biochem. Biophys. Res. Commun.
225
705-711
1996
1
-
1
-
2
-
-
-
-
-
1
1
-
1
-
-
1
-
-
-
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
2
-
-
-
-
-
-
-
1
1
-
-
-
1
-
-
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135285
Dupont
-
Phospholipase C in mouse oocyt ...
Mus musculus
Biochem. J.
316
583-591
1996
-
-
1
-
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135286
Ivanov
Characterization of a phosphol ...
Pseudomonas fluorescens
New Microbiol.
19
113-121
1996
3
-
-
-
-
-
4
-
1
2
1
-
-
3
-
-
1
-
-
-
1
1
6
-
-
-
-
-
1
-
-
-
-
-
-
3
-
-
-
-
-
-
-
4
-
-
1
2
1
-
-
-
-
1
-
-
1
1
6
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
661869
Johansen
Biochemical and molecular anal ...
Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv
Infect. Immun.
64
3259-3266
1996
-
-
1
-
-
-
-
-
-
-
-
-
-
11
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135287
Lee
Characterization of phospholip ...
Bos taurus
Methods Enzymol.
238
227-237
1994
-
-
-
-
-
-
-
-
-
-
7
1
-
2
-
-
1
-
-
2
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
7
1
-
-
-
1
-
2
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135288
Bahk
-
Overexpression and biochemical ...
Rattus norvegicus
Mol. Cells
4
361-367
1994
1
-
1
-
-
-
2
4
-
1
2
1
-
1
-
-
1
-
-
-
2
-
2
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
2
-
4
-
1
2
1
-
-
-
1
-
-
2
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
661891
Lucchesi
A simple and reliable method f ...
Pseudomonas aeruginosa
Int. J. Biochem.
26
155-162
1994
-
-
-
-
-
-
1
1
-
-
1
-
-
3
-
-
1
-
-
5
1
-
1
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
1
-
-
-
-
1
-
5
1
-
1
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
135289
Alam
Purification and characterizat ...
Tetrahymena pyriformis, Tetrahymena pyriformis W
J. Eukaryot. Microbiol.
40
775-781
1993
2
-
-
-
-
-
1
1
3
1
2
-
-
8
-
-
1
-
-
-
1
1
10
1
-
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
-
1
-
1
3
1
2
-
-
-
-
1
-
-
1
1
10
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
135290
Kozasa
Purification and characterizat ...
Bos taurus, Rattus norvegicus
Proc. Natl. Acad. Sci. USA
90
9176-9180
1993
4
-
-
-
-
-
-
-
-
-
-
2
-
2
-
-
2
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
2
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135311
Hansen
Crystal structure of phospholi ...
Bacillus cereus
J. Mol. Biol.
234
179-189
1993
-
-
-
1
-
-
1
1
1
1
-
-
-
2
-
-
1
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
1
1
1
1
1
-
-
-
-
-
1
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135312
Hansen
The crystal structure of tris- ...
Bacillus cereus
J. Mol. Biol.
231
870-876
1993
-
-
-
1
-
-
-
-
1
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135291
Im
Characterization of a phosphol ...
Rattus norvegicus
J. Biol. Chem.
267
8887-8894
1992
4
-
-
-
-
-
3
-
1
2
-
1
-
1
-
-
1
-
-
1
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
3
-
-
1
2
-
1
-
-
-
1
-
1
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135313
Hansen
Crystal structures of phosphat ...
Bacillus cereus
J. Mol. Biol.
225
543-549
1992
-
-
-
1
-
-
-
-
1
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135292
Geoffroy
Purification and characterizat ...
Listeria monocytogenes
Infect. Immun.
59
2382-2388
1991
-
-
-
-
-
-
1
-
1
1
1
1
-
5
-
-
1
-
-
-
-
-
4
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
1
1
1
-
-
-
1
-
-
-
-
4
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
661864
Meyers
Characterization of phospholip ...
Pseudomonas aeruginosa
Infect. Immun.
58
659-666
1990
-
-
-
-
-
-
-
-
-
-
-
1
-
5
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
661980
Ostroff
Molecular comparison of a nonh ...
Pseudomonas aeruginosa
J. Bacteriol.
172
5915-5923
1990
-
-
1
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
2
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
135293
Baine
A phospholipase C fron the Dal ...
Legionella pneumophila
J. Gen. Microbiol.
134
489-498
1988
4
-
-
-
-
1
5
1
1
5
1
1
-
3
-
-
1
-
-
-
1
-
3
-
-
-
-
-
1
-
-
-
-
-
-
4
-
-
-
-
-
1
-
5
-
1
1
5
1
1
-
-
-
1
-
-
1
-
3
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
662551
Chin
Biological properties of phosp ...
Pseudomonas aeruginosa
J. Gen. Microbiol.
134
2567-2575
1988
-
-
-
-
-
1
-
-
-
-
1
1
-
4
-
-
1
-
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
1
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
663429
Coutinho
Platelet aggregation by a phos ...
Pseudomonas aeruginosa
Thromb. Res.
51
495-505
1988
-
-
-
-
-
-
-
-
-
-
-
1
-
3
-
-
-
-
-
4
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
4
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
661863
Berk
In vivo studies with two phosp ...
Pseudomonas aeruginosa
Infect. Immun.
55
1728-1730
1987
-
-
-
-
-
-
-
-
-
-
-
1
-
3
-
-
1
-
-
2
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
2
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
94309
Arai
Properties of acid phospholipa ...
Tetrahymena pyriformis, Tetrahymena pyriformis NT-1
J. Biochem.
99
125-133
1986
2
-
-
-
-
-
1
-
2
-
-
4
-
8
-
-
-
-
-
-
-
-
10
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
-
1
-
-
2
-
-
4
-
-
-
-
-
-
-
-
10
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
135294
Fox
Purification and characterizat ...
Trypanosoma brucei
J. Biol. Chem.
261
15767-15771
1986
1
-
-
-
-
-
3
-
1
-
1
4
-
1
-
-
1
-
-
-
1
1
6
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
3
-
-
1
-
1
4
-
-
-
1
-
-
1
1
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135296
Krug
Phospholipase C from Clostridi ...
Clostridium perfringens
Arch. Biochem. Biophys.
231
400-410
1984
-
-
-
-
-
1
2
-
1
4
2
-
1
2
-
-
1
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
1
4
2
-
1
-
-
1
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
661973
Coleman
Cloning, and expression in Esc ...
Pseudomonas aeruginosa, Pseudomonas aeruginosa PA103
J. Bacteriol.
153
909-915
1983
-
-
1
-
-
-
-
-
2
-
1
-
-
11
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135297
Berka
Phospholipase C (heat-labile h ...
Pseudomonas aeruginosa
J. Bacteriol.
152
239-245
1982
-
-
-
-
-
-
-
-
1
-
2
-
-
2
-
-
1
-
-
1
1
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
1
-
1
1
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135298
Takahashi
Phospholipase C from Clostridi ...
Clostridium perfringens, Clostridium perfringens PB6K
Methods Enzymol.
71
710-725
1981
2
-
-
-
-
2
13
2
1
5
2
1
-
4
-
-
1
-
-
-
1
3
15
2
-
-
3
-
1
-
-
-
-
-
-
2
-
-
-
-
-
2
-
13
-
2
1
5
2
1
-
-
-
1
-
-
1
3
15
2
-
-
3
-
1
-
-
-
-
-
-
-
-
-
135299
Little
-
Phospholipase C from Bacillus ...
Bacillus cereus
Methods Enzymol.
71
725-730
1981
-
-
-
1
-
2
6
-
1
1
1
2
-
1
-
-
1
-
-
-
1
1
6
1
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
1
-
2
-
6
-
-
1
1
1
2
-
-
-
1
-
-
1
1
6
1
-
-
-
-
3
-
-
-
-
-
-
-
-
-
661862
Berka
Studies of phospholipase C (he ...
Pseudomonas aeruginosa
Infect. Immun.
34
1071-1074
1981
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135300
Bjorklid
The isoelectric point of phosp ...
Bacillus cereus
FEBS Lett.
113
161-163
1980
-
-
-
-
-
-
-
-
1
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135301
Matsuzawa
Properties of phospholipase C ...
Rattus norvegicus
J. Biol. Chem.
255
646-652
1980
-
-
-
-
-
-
6
-
2
-
-
-
-
2
-
-
-
-
-
2
-
1
6
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
2
-
-
-
-
-
-
-
-
2
-
1
6
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
135302
Little
Unfolding and refolding of pho ...
Bacillus cereus
Biochem. J.
179
509-514
1979
-
-
-
-
-
2
3
-
1
1
1
-
-
3
-
-
-
-
1
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
3
-
-
1
1
1
-
-
-
-
-
1
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
135303
Yamakawa
Purification and some properti ...
Clostridium perfringens, Clostridium perfringens PB6K
J. Biochem.
81
115-126
1977
3
-
-
-
-
-
1
-
1
4
2
2
-
4
-
-
1
-
-
-
1
1
2
2
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
1
-
-
1
4
2
2
-
-
-
1
-
-
1
1
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135304
Otnaess
Some characteristics of phosph ...
Bacillus cereus
Eur. J. Biochem.
79
459-468
1977
1
1
-
-
-
7
4
3
1
1
1
-
-
2
-
-
1
-
-
-
-
1
7
1
2
1
1
-
2
-
-
-
-
-
-
1
1
-
-
-
-
7
-
4
-
3
1
1
1
-
-
-
-
1
-
-
-
1
7
1
2
1
1
-
2
-
-
-
-
-
-
-
-
-
135305
Sonoki
Studies on phospholipase C fro ...
Pseudomonas chlororaphis subsp. aureofaciens
J. Biochem.
80
361-366
1976
-
-
-
-
-
1
3
-
1
3
1
-
1
3
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
3
-
-
1
3
1
-
1
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
135306
Sonoki
Studies on phospholipase C fro ...
Pseudomonas chlororaphis subsp. aureofaciens, Pseudomonas chlororaphis subsp. aureofaciens IFO-3521
Biochim. Biophys. Acta
403
412-424
1975
1
-
-
-
-
1
10
-
1
3
1
2
-
3
-
-
1
-
-
1
1
1
6
-
-
-
1
-
2
-
1
-
-
-
-
1
-
-
-
-
-
1
-
10
-
-
1
3
1
2
-
-
-
1
-
1
1
1
6
-
-
-
1
-
2
-
1
-
-
-
-
-
-
-
135307
Okawa
Studies on phospholipases from ...
Streptomyces hachijoensis
J. Biochem.
78
537-545
1975
1
-
-
-
-
1
13
1
1
1
1
-
3
4
-
-
1
-
-
4
2
2
8
-
1
-
4
-
1
-
1
-
-
-
-
1
-
-
-
-
-
1
-
13
-
1
1
1
1
-
3
-
-
1
-
4
2
2
8
-
1
-
4
-
1
-
1
-
-
-
-
-
-
-
135308
Zwaal
Phospholipase C (phosphatidylc ...
Bacillus cereus
Methods Enzymol.
32
154-161
1974
1
-
-
-
-
2
4
-
1
2
1
1
-
2
-
-
1
-
-
-
1
4
9
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
4
-
-
1
2
1
1
-
-
-
1
-
-
1
4
9
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
135309
Shiloach
Phospholipase C from Bacillus ...
Bacillus cereus, Bacillus cereus 569/H
Biotechnol. Bioeng.
15
551-560
1973
-
-
-
-
-
-
1
-
1
-
-
-
-
2
-
-
1
-
-
-
1
2
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
1
-
-
1
2
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
133931
Hanahan
-
Phospholipases ...
Bacillus cereus, Bacillus cereus 7004, Clostridium perfringens, Clostridium welchii
The Enzymes, 3rd Ed. (Boyer, P. D. , ed. )
5
71-85
1971
1
-
-
-
-
-
9
1
2
2
-
4
2
4
-
-
2
-
-
-
-
-
13
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
9
-
1
2
2
-
4
2
-
-
2
-
-
-
-
13
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
662050
Berk
Partial purification of the ex ...
Pseudomonas aeruginosa
J. Bacteriol.
88
559-565
1964
-
-
-
-
-
1
-
-
1
-
-
-
-
2
-
-
1
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-