Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 2.6.1.42 extracted from

  • Bezsudnova, E.Y.; Boyko, K.M.; Popov, V.O.
    Properties of bacterial and archaeal branched-chain amino acid aminotransferases (2017), Biochemistry (Moscow), 82, 1572-1591 .
    View publication on PubMed

Inhibitors

Inhibitors Comment Organism Structure
2-Oxohexanoate inhibition of transamination by the oxo substrate at below 10 mM Escherichia coli
4,4-dimethyl-2-oxovalerate inhibition of transamination by the oxo substrate at below 10 mM Escherichia coli
4-methyl-2-oxovalerate inhibition of transamination by the oxo substrate at below 10 mM Escherichia coli
L-glutamate inhibition of transamination by the oxo substrate at above 200 mM Escherichia coli

KM Value [mM]

KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
0.085
-
2-oxoglutarate pH 8.0, 37°C Helicobacter pylori
0.21
-
L-leucine pH 8.0, 65°C Thermoproteus uzoniensis
0.25
-
L-leucine pH 8.0, 37°C Brevibacillus brevis
0.3
-
2-oxoglutarate pH 8.0, 30°C Pseudomonas sp.
0.3
-
L-leucine pH 8.0, 30°C Pseudomonas sp.
0.34
-
L-isoleucine pH 8.0, 37°C Helicobacter pylori
0.4
-
2-oxoglutarate pH 8.0, 37°C Pseudomonas aeruginosa
0.42
-
L-leucine pH 8.0, 25°C Escherichia coli
0.56
-
L-glutamate pH 8.0, 37°C Brevibacillus brevis
0.57
-
2-oxoglutarate pH 8.0, 37°C Brevibacillus brevis
0.6
-
2-oxoglutarate pH 7.5, 37°C Methanococcus aeolicus
1
-
L-leucine pH 8.0, 37°C Pseudomonas aeruginosa
1
-
2-oxovalerate pH 8.0, 37°C Pseudomonas aeruginosa
1.1
-
L-leucine pH 7.5, 37°C Methanococcus aeolicus
1.2
-
3-methyl-2-oxopentanoate pH 8.0, 37°C Pseudomonas aeruginosa
1.3
-
L-glutamate pH 7.4, 37°C Mycobacterium tuberculosis
1.82
-
L-leucine pH 9.0, 37°C Gluconobacter oxydans
2.6
-
2-oxoglutarate pH 8.0, 25°C Escherichia coli
3.2
-
L-glutamate pH 8.0, 37°C Pseudomonas sp.
4.57
-
2-oxoglutarate pH 9.0, 37°C Gluconobacter oxydans
6.02
-
L-leucine pH 7.4, 37°C Mycobacterium tuberculosis
6.95
-
2-oxoglutarate pH 7.4, 37°C Mycobacterium tuberculosis
16
-
2-oxoglutarate pH 8.0, 65°C Thermoproteus uzoniensis
16.7
-
L-glutamate pH 9.0, 37°C Gluconobacter oxydans
18
-
L-glutamate pH 8.0, 37°C Pseudomonas aeruginosa

Organism

Organism UniProt Comment Textmining
Brevibacillus brevis A0A2Z4MEX9
-
-
Escherichia coli P0AB80
-
-
Gluconobacter oxydans Q5FTR3
-
-
Gluconobacter oxydans 621H Q5FTR3
-
-
Helicobacter pylori O26004
-
-
Helicobacter pylori 26695 O26004
-
-
Helicobacter pylori ATCC 700392 O26004
-
-
Lacticaseibacillus paracasei A0A5Q8BPF5
-
-
Lactococcus lactis
-
-
-
Methanococcus aeolicus A6UWA0
-
-
Methanococcus aeolicus ATCC BAA-1280 A6UWA0
-
-
Methanococcus aeolicus DSM 17508 A6UWA0
-
-
Methanococcus aeolicus Nankai-3 A6UWA0
-
-
Methanococcus aeolicus OCM 812 A6UWA0
-
-
Mycobacterium tuberculosis P9WQ75
-
-
Mycobacterium tuberculosis ATCC 25618 P9WQ75
-
-
Mycobacterium tuberculosis H37Rv P9WQ75
-
-
Pseudomonas aeruginosa O86428
-
-
Pseudomonas aeruginosa 1C O86428
-
-
Pseudomonas aeruginosa ATCC 15692 O86428
-
-
Pseudomonas aeruginosa CIP 104116 O86428
-
-
Pseudomonas aeruginosa DSM 22644 O86428
-
-
Pseudomonas aeruginosa JCM 14847 O86428
-
-
Pseudomonas aeruginosa LMG 12228 O86428
-
-
Pseudomonas aeruginosa PRS 101 O86428
-
-
Pseudomonas sp.
-
-
-
Thermococcus sp. CKU-1
-
-
-
Thermoproteus uzoniensis F2L0W0
-
-
Thermoproteus uzoniensis 768-20 F2L0W0
-
-
Vulcanisaeta moutnovskia F0QW25
-
-
Vulcanisaeta moutnovskia 768-28 F0QW25
-
-

Reaction

Reaction Comment Organism Reaction ID
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Lactococcus lactis
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Pseudomonas sp.
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Mycobacterium tuberculosis
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Escherichia coli
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Thermoproteus uzoniensis
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Pseudomonas aeruginosa
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Gluconobacter oxydans
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Lacticaseibacillus paracasei
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Brevibacillus brevis
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Helicobacter pylori
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Methanococcus aeolicus
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Vulcanisaeta moutnovskia
L-leucine + 2-oxoglutarate = 4-methyl-2-oxopentanoate + L-glutamate reaction mechanism of aminotransferases via external aldimine, quinonoid intermediate, ketimine, and carbinolamine, overview Thermococcus sp. CKU-1

Specific Activity [micromol/min/mg]

Specific Activity Minimum [µmol/min/mg] Specific Activity Maximum [µmol/min/mg] Comment Organism
1.5
-
pH 7.5, 37°C, substrate L-leucine Methanococcus aeolicus
1.7
-
pH 8.0, 65°C, substrate L-leucine Thermoproteus uzoniensis
1.7
-
pH 8.0, 65°C, substrate L-leucine Vulcanisaeta moutnovskia
2.5
-
pH 8.0, 30°C, substrate L-leucine Pseudomonas sp.
11.1
-
pH 9.0, 37°C, substrate L-isoleucine Lacticaseibacillus paracasei
12.8
-
pH 7.4, 37°C, substrate L-leucine Mycobacterium tuberculosis
23.9
-
pH 8.0, 25°C, substrate L-leucine Escherichia coli
27.3
-
pH 8.0, 37°C, substrate L-isoleucine Helicobacter pylori
41.8
-
pH 8.0, 37°C, substrate L-leucine Brevibacillus brevis
42.8
-
pH 9.0, 37°C, substrate L-leucine Gluconobacter oxydans
90
-
pH 8.0, 37°C, substrate L-leucine Pseudomonas aeruginosa
94
-
pH 9.0, 37°C, substrate L-isoleucine Lactococcus lactis
390
-
pH 7.3, 90°C, substrate L-leucine Thermococcus sp. CKU-1

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
2-aminobutyrate + L-glutamate
-
Pseudomonas sp. 2-oxobutyrate + 2-oxoglutarate
-
r
2-oxo-3-indolylpropanoate + L-leucine
-
Vulcanisaeta moutnovskia L-tryptophan + 4-methyl-2-oxovalerate
-
r
2-oxo-3-indolylpropanoate + L-leucine
-
Vulcanisaeta moutnovskia 768-28 L-tryptophan + 4-methyl-2-oxovalerate
-
r
2-oxobutyrate + 2-oxoglutarate
-
Pseudomonas sp. 2-aminobutyrate + L-glutamate
-
r
2-oxobutyrate + 2-oxoglutarate
-
Lacticaseibacillus paracasei 2-aminobutyrate + L-glutamate
-
r
2-oxobutyrate + L-glutamate
-
Escherichia coli 2-aminobutyrate + 2-oxoglutarate
-
r
2-oxobutyrate + L-glutamate
-
Thermoproteus uzoniensis 2-aminobutyrate + 2-oxoglutarate
-
r
2-oxobutyrate + L-glutamate
-
Thermococcus sp. CKU-1 2-aminobutyrate + 2-oxoglutarate
-
r
2-oxobutyrate + L-leucine
-
Vulcanisaeta moutnovskia 2-aminobutyrate + 4-methyl-2-oxovalerate
-
r
2-oxobutyrate + L-leucine
-
Vulcanisaeta moutnovskia 768-28 2-aminobutyrate + 4-methyl-2-oxovalerate
-
r
2-oxohexanoate + L-glutamate
-
Thermococcus sp. CKU-1 L-norleucine + 2-oxoglutarate
-
r
2-oxohexanoate + L-glutamate
-
Escherichia coli norleucine + 2-oxoglutarate
-
r
2-oxohexanoate + L-glutamate high activity Lacticaseibacillus paracasei norleucine + 2-oxoglutarate
-
r
2-oxovalerate + L-glutamate
-
Escherichia coli norvaline + 2-oxoglutarate
-
r
2-oxovalerate + L-glutamate
-
Pseudomonas aeruginosa norvaline + 2-oxoglutarate
-
r
2-oxovalerate + L-glutamate
-
Gluconobacter oxydans norvaline + 2-oxoglutarate
-
r
3-methyl-2-oxobutanoate + L-glutamate
-
Lactococcus lactis L-valine + 2-oxoglutarate
-
r
3-methyl-2-oxobutanoate + L-glutamate
-
Pseudomonas sp. L-valine + 2-oxoglutarate
-
r
3-methyl-2-oxobutanoate + L-glutamate
-
Mycobacterium tuberculosis L-valine + 2-oxoglutarate
-
r
3-methyl-2-oxobutanoate + L-glutamate
-
Pseudomonas aeruginosa L-valine + 2-oxoglutarate
-
r
3-methyl-2-oxobutanoate + L-glutamate
-
Lacticaseibacillus paracasei L-valine + 2-oxoglutarate
-
r
3-methyl-2-oxobutanoate + L-glutamate
-
Thermococcus sp. CKU-1 L-valine + 2-oxoglutarate
-
r
3-methyl-2-oxobutanoate + L-glutamate
-
Mycobacterium tuberculosis H37Rv L-valine + 2-oxoglutarate
-
r
3-methyl-2-oxobutanoate + L-glutamate
-
Mycobacterium tuberculosis ATCC 25618 L-valine + 2-oxoglutarate
-
r
3-methyl-2-oxopentanoate + L-glutamate
-
Thermoproteus uzoniensis L-isoleucine + 2-oxoglutarate
-
r
3-methyl-2-oxopentanoate + L-glutamate
-
Pseudomonas aeruginosa L-isoleucine + 2-oxoglutarate
-
r
3-methyl-2-oxopentanoate + L-glutamate
-
Lacticaseibacillus paracasei L-isoleucine + 2-oxoglutarate
-
r
3-methyl-2-oxopentanoate + L-glutamate high activity Mycobacterium tuberculosis L-isoleucine + 2-oxoglutarate
-
r
3-methyl-2-oxopentanoate + L-glutamate high activity Escherichia coli L-isoleucine + 2-oxoglutarate
-
r
3-methyl-2-oxopentanoate + L-leucine
-
Vulcanisaeta moutnovskia L-isoleucine + 4-methyl-2-oxovalerate
-
r
3-methyl-2-oxopentanoate + L-leucine
-
Vulcanisaeta moutnovskia 768-28 L-isoleucine + 4-methyl-2-oxovalerate
-
r
4,4-dimethyl-2-oxovalerate + L-glutamate
-
Escherichia coli L-neopentylglycine + 2-oxoglutarate
-
r
4-methyl-2-oxopentanoate + L-glutamate
-
Lactococcus lactis L-leucine + 2-oxoglutarate
-
r
4-methyl-2-oxopentanoate + L-glutamate
-
Pseudomonas sp. L-leucine + 2-oxoglutarate
-
r
4-methyl-2-oxopentanoate + L-glutamate
-
Mycobacterium tuberculosis L-leucine + 2-oxoglutarate
-
r
4-methyl-2-oxopentanoate + L-glutamate
-
Escherichia coli L-leucine + 2-oxoglutarate
-
r
4-methyl-2-oxopentanoate + L-glutamate
-
Thermoproteus uzoniensis L-leucine + 2-oxoglutarate
-
r
4-methyl-2-oxopentanoate + L-glutamate
-
Pseudomonas aeruginosa L-leucine + 2-oxoglutarate
-
r
4-methyl-2-oxopentanoate + L-glutamate
-
Gluconobacter oxydans L-leucine + 2-oxoglutarate
-
r
4-methyl-2-oxopentanoate + L-glutamate
-
Lacticaseibacillus paracasei L-leucine + 2-oxoglutarate
-
r
4-methyl-2-oxopentanoate + L-glutamate
-
Brevibacillus brevis L-leucine + 2-oxoglutarate
-
r
4-methyl-2-oxopentanoate + L-leucine
-
Vulcanisaeta moutnovskia L-leucine + 4-methyl-2-oxovalerate
-
r
4-methyl-2-oxopentanoate + L-leucine
-
Vulcanisaeta moutnovskia 768-28 L-leucine + 4-methyl-2-oxovalerate
-
r
4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
Lactococcus lactis L-methionine + 2-oxoglutarate
-
r
4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
Mycobacterium tuberculosis L-methionine + 2-oxoglutarate
-
r
beta-phenylpyruvate + L-glutamate
-
Lactococcus lactis L-phenylalanine + 2-oxoglutarate
-
r
beta-phenylpyruvate + L-glutamate
-
Mycobacterium tuberculosis L-phenylalanine + 2-oxoglutarate
-
r
beta-phenylpyruvate + L-glutamate
-
Lacticaseibacillus paracasei L-phenylalanine + 2-oxoglutarate
-
r
beta-phenylpyruvate + L-glutamate
-
Thermococcus sp. CKU-1 L-phenylalanine + 2-oxoglutarate
-
r
glycine + 2-oxoglutarate
-
Helicobacter pylori glyoxylate + L-glutamate
-
r
L-alanine + 2-oxoglutarate
-
Pseudomonas sp. pyruvate + L-glutamate
-
r
L-alanine + 2-oxoglutarate
-
Thermoproteus uzoniensis pyruvate + L-glutamate
-
r
L-alanine + 2-oxoglutarate
-
Brevibacillus brevis pyruvate + L-glutamate
-
r
L-alanine + 2-oxoglutarate
-
Thermococcus sp. CKU-1 pyruvate + L-glutamate
-
r
L-alanine + 2-oxoglutarate
-
Thermoproteus uzoniensis 768-20 pyruvate + L-glutamate
-
r
L-alanine + 4-methyl-2-oxovalerate
-
Vulcanisaeta moutnovskia pyruvate + L-leucine
-
r
L-arginine + 2-oxoglutarate
-
Pseudomonas sp. 2-oxo-5-guanidinopentanoate + L-glutamate
-
r
L-aspartate + 2-oxoglutarate
-
Pseudomonas sp. oxaloacetate + L-glutamate
-
r
L-aspartate + 2-oxoglutarate
-
Gluconobacter oxydans oxaloacetate + L-glutamate
-
r
L-aspartate + 2-oxoglutarate
-
Helicobacter pylori oxaloacetate + L-glutamate
-
r
L-aspartate + 2-oxoglutarate
-
Gluconobacter oxydans 621H oxaloacetate + L-glutamate
-
r
L-aspartate + 2-oxoglutarate
-
Helicobacter pylori ATCC 700392 oxaloacetate + L-glutamate
-
r
L-aspartate + 2-oxoglutarate
-
Helicobacter pylori 26695 oxaloacetate + L-glutamate
-
r
L-cysteine + 2-oxoglutarate
-
Lactococcus lactis 2-oxo-3-thiobutyrate + L-glutamate
-
?
L-cysteine + 2-oxoglutarate
-
Thermococcus sp. CKU-1 2-oxo-3-thiobutyrate + L-glutamate
-
r
L-histidine + 2-oxoglutarate
-
Pseudomonas sp. 2-oxo-3-imidazolpropanoate + L-glutamate
-
r
L-histidine + 2-oxoglutarate
-
Thermoproteus uzoniensis 2-oxo-3-imidazolpropanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Pseudomonas sp. 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Thermoproteus uzoniensis 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Pseudomonas aeruginosa 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Gluconobacter oxydans 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Brevibacillus brevis 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Thermococcus sp. CKU-1 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate high activity Lactococcus lactis 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate high activity Mycobacterium tuberculosis 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate high activity Escherichia coli 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate high activity Lacticaseibacillus paracasei 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate high activity Helicobacter pylori 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate high activity Methanococcus aeolicus 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Pseudomonas aeruginosa ATCC 15692 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Pseudomonas aeruginosa 1C 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Pseudomonas aeruginosa PRS 101 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate high activity Methanococcus aeolicus DSM 17508 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Pseudomonas aeruginosa DSM 22644 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Pseudomonas aeruginosa CIP 104116 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Pseudomonas aeruginosa LMG 12228 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate high activity Mycobacterium tuberculosis H37Rv 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate high activity Mycobacterium tuberculosis ATCC 25618 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate
-
Pseudomonas aeruginosa JCM 14847 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate high activity Methanococcus aeolicus OCM 812 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate high activity Methanococcus aeolicus ATCC BAA-1280 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 2-oxoglutarate high activity Methanococcus aeolicus Nankai-3 3-methyl-2-oxopentanoate + L-glutamate
-
r
L-isoleucine + 4-methyl-2-oxovalerate
-
Vulcanisaeta moutnovskia 3-methyl-2-oxopentanoate + L-leucine
-
r
L-leucine + 2-oxoglutarate
-
Lactococcus lactis 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate
-
Mycobacterium tuberculosis 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate
-
Escherichia coli 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate
-
Thermoproteus uzoniensis 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate
-
Lacticaseibacillus paracasei 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate
-
Helicobacter pylori 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate
-
Thermococcus sp. CKU-1 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate high activity Pseudomonas aeruginosa 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate high activity Gluconobacter oxydans 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate high activity Brevibacillus brevis 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate highly preferred substrates Pseudomonas sp. 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate highly preferred substrates Methanococcus aeolicus 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate high activity Pseudomonas aeruginosa ATCC 15692 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate high activity Gluconobacter oxydans 621H 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate high activity Pseudomonas aeruginosa 1C 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate high activity Pseudomonas aeruginosa PRS 101 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate highly preferred substrates Methanococcus aeolicus DSM 17508 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate
-
Helicobacter pylori ATCC 700392 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate high activity Pseudomonas aeruginosa DSM 22644 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate high activity Pseudomonas aeruginosa CIP 104116 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate high activity Pseudomonas aeruginosa LMG 12228 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate
-
Mycobacterium tuberculosis H37Rv 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate
-
Mycobacterium tuberculosis ATCC 25618 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate
-
Helicobacter pylori 26695 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate
-
Thermoproteus uzoniensis 768-20 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate high activity Pseudomonas aeruginosa JCM 14847 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate highly preferred substrates Methanococcus aeolicus OCM 812 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate highly preferred substrates Methanococcus aeolicus ATCC BAA-1280 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 2-oxoglutarate highly preferred substrates Methanococcus aeolicus Nankai-3 4-methyl-2-oxopentanoate + L-glutamate
-
r
L-leucine + 4-methyl-2-oxovalerate
-
Vulcanisaeta moutnovskia 4-methyl-2-oxopentanoate + L-leucine
-
r
L-lysine + 2-oxoglutarate
-
Pseudomonas sp. 2-oxo-6-aminohexanoate + L-glutamate
-
r
L-lysine + 4-methyl-2-oxovalerate
-
Vulcanisaeta moutnovskia 2-oxo-6-aminohexanoate + L-leucine
-
r
L-lysine + pyruvate
-
Thermoproteus uzoniensis 2-oxo-6-aminohexanoate + L-alanine
-
r
L-methionine + 2-oxoglutarate
-
Lactococcus lactis 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Pseudomonas sp. 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Escherichia coli 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Thermoproteus uzoniensis 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Pseudomonas aeruginosa 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Gluconobacter oxydans 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Lacticaseibacillus paracasei 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Brevibacillus brevis 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Helicobacter pylori 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Thermococcus sp. CKU-1 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Pseudomonas aeruginosa ATCC 15692 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Gluconobacter oxydans 621H 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Pseudomonas aeruginosa 1C 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Pseudomonas aeruginosa PRS 101 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Helicobacter pylori ATCC 700392 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Pseudomonas aeruginosa DSM 22644 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Pseudomonas aeruginosa CIP 104116 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Pseudomonas aeruginosa LMG 12228 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Helicobacter pylori 26695 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Thermoproteus uzoniensis 768-20 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 2-oxoglutarate
-
Pseudomonas aeruginosa JCM 14847 4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
r
L-methionine + 4-methyl-2-oxovalerate
-
Vulcanisaeta moutnovskia 4-methylsulfanyl-2-oxobutanoate + L-leucine
-
r
L-norleucine + 2-oxoglutarate
-
Thermococcus sp. CKU-1 2-oxohexanoate + L-glutamate
-
r
L-norleucine + 4-methyl-2-oxovalerate
-
Vulcanisaeta moutnovskia 2-oxohexanoate + L-leucine
-
r
L-norvaline + 2-oxoglutarate
-
Thermococcus sp. CKU-1 2-oxovalerate + L-glutamate
-
r
L-norvaline + 4-methyl-2-oxovalerate
-
Vulcanisaeta moutnovskia 2-oxovalerate + L-leucine
-
r
L-ornithine + 2-oxoglutarate
-
Thermoproteus uzoniensis ? + L-glutamate
-
r
L-ornithine + 4-methyl-2-oxovalerate
-
Vulcanisaeta moutnovskia ? + L-leucine
-
r
L-phenylalanine + 2-oxoglutarate
-
Pseudomonas sp. phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Escherichia coli phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Thermoproteus uzoniensis phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Pseudomonas aeruginosa phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Gluconobacter oxydans phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Brevibacillus brevis phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Helicobacter pylori phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Methanococcus aeolicus phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Pseudomonas aeruginosa ATCC 15692 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Gluconobacter oxydans 621H phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Pseudomonas aeruginosa 1C phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Pseudomonas aeruginosa PRS 101 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Methanococcus aeolicus DSM 17508 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Helicobacter pylori ATCC 700392 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Pseudomonas aeruginosa DSM 22644 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Pseudomonas aeruginosa CIP 104116 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Pseudomonas aeruginosa LMG 12228 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Helicobacter pylori 26695 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Thermoproteus uzoniensis 768-20 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Pseudomonas aeruginosa JCM 14847 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Methanococcus aeolicus OCM 812 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Methanococcus aeolicus ATCC BAA-1280 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Methanococcus aeolicus Nankai-3 phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Lactococcus lactis beta-phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Mycobacterium tuberculosis beta-phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 2-oxoglutarate
-
Thermococcus sp. CKU-1 beta-phenylpyruvate + L-glutamate
-
r
L-phenylalanine + 4-methyl-2-oxovalerate
-
Vulcanisaeta moutnovskia phenylpyruvate + L-leucine
-
r
L-serine + 2-oxoglutarate
-
Pseudomonas sp. 3-hydroxy-2-oxopropanoate + L-glutamate
-
r
L-threonine + 2-oxoglutarate
-
Pseudomonas sp. 2-oxo-3-hydroxybutyrate + L-glutamate
-
r
L-threonine + 2-oxoglutarate
-
Thermoproteus uzoniensis 2-oxo-3-hydroxybutyrate + L-glutamate
-
r
L-threonine + 2-oxoglutarate
-
Thermococcus sp. CKU-1 2-oxo-3-hydroxybutyrate + L-glutamate
-
r
L-threonine + 4-methyl-2-oxovalerate
-
Vulcanisaeta moutnovskia 2-oxo-3-hydroxybutyrate + L-leucine
-
r
L-tryptophan + 2-oxoglutarate
-
Pseudomonas sp. 2-oxo-3-indolylpropanoate + L-glutamate
-
r
L-tryptophan + 2-oxoglutarate
-
Escherichia coli 2-oxo-3-indolylpropanoate + L-glutamate
-
r
L-tryptophan + 2-oxoglutarate
-
Gluconobacter oxydans 2-oxo-3-indolylpropanoate + L-glutamate
-
r
L-tryptophan + 2-oxoglutarate
-
Brevibacillus brevis 2-oxo-3-indolylpropanoate + L-glutamate
-
r
L-tryptophan + 2-oxoglutarate
-
Methanococcus aeolicus 2-oxo-3-indolylpropanoate + L-glutamate
-
r
L-tryptophan + pyruvate
-
Vulcanisaeta moutnovskia 2-oxo-3-indolylpropanoate + L-alanine
-
r
L-tryptophan + pyruvate
-
Thermococcus sp. CKU-1 2-oxo-3-indolylpropanoate + L-alanine
-
r
L-tyrosine + 2-oxoglutarate
-
Escherichia coli 4-hydroxyphenylpyruvate + L-glutamate
-
r
L-tyrosine + 2-oxoglutarate
-
Brevibacillus brevis 4-hydroxyphenylpyruvate + L-glutamate
-
r
L-tyrosine + 2-oxoglutarate
-
Methanococcus aeolicus 4-hydroxyphenylpyruvate + L-glutamate
-
r
L-tyrosine + 2-oxoglutarate
-
Thermococcus sp. CKU-1 4-hydroxyphenylpyruvate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Lactococcus lactis 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Pseudomonas sp. 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Mycobacterium tuberculosis 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Escherichia coli 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Thermoproteus uzoniensis 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Pseudomonas aeruginosa 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Gluconobacter oxydans 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Lacticaseibacillus paracasei 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Brevibacillus brevis 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Helicobacter pylori 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Methanococcus aeolicus 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Thermococcus sp. CKU-1 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Methanococcus aeolicus DSM 17508 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Mycobacterium tuberculosis H37Rv 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Mycobacterium tuberculosis ATCC 25618 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Methanococcus aeolicus OCM 812 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Methanococcus aeolicus ATCC BAA-1280 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 2-oxoglutarate
-
Methanococcus aeolicus Nankai-3 3-methyl-2-oxobutanoate + L-glutamate
-
r
L-valine + 4-methyl-2-oxovalerate
-
Vulcanisaeta moutnovskia 3-methyl-2-oxobutanoate + L-leucine
-
r
additional information the substrate preference of 2-oxoacids is 2-oxobutyrate > 4-methyl-2-oxovalerate = 3-methyl-2-oxovalerate = pyruvate, and for amino acids it is L-Met > L-ornithine > L-Thr > L-Val > L-norVal > L-His > L-Ile = L-Leu = L-norLeu > L-Phe > L-Ala > L-Lys Thermoproteus uzoniensis ?
-
-
additional information the substrate preference of 2-oxoacids is 2-oxobutyrate > 4-methyl-2-oxovalerate = indole-3-pyruvate (L-Trp) > 3-methyl-2-oxovalerate > pyruvate, and for amino acids it is L-Met > L-ornithine > L-Lys > L-Thr > L-Val > L-norVal > L-Ile > L-Leu > L-norLeu > L-Ala > L-Phe > L-Trp Vulcanisaeta moutnovskia ?
-
-
additional information the substrate preference of 2-oxoacids is 2-oxoglutarate > 3-methyl-2-oxobutanoate > 2-oxobutyrate > pyruvate, and for amino acids it is L-Leu >> L-Met > L-Val > L-2-aminobutyrate > L-Thr > L-Phe = L-Ile » L-Ala > L-Arg > L-Trp > L-Asp > L-Ser > L-His > L-Lys Pseudomonas sp. ?
-
-
additional information the substrate preference of 2-oxoacids is 2-oxoglutarate > 4-methyl-2-oxovalerate > 2-oxoisovalerate > 4-methylthio-2-oxobutyrate (Met) > beta-phenylpyruvate (Phe) >> pyruvate, and for amino acids it is L-Ile > L-Leu > L-Val > L-Met > L-Cys > L-Phe Lactococcus lactis ?
-
-
additional information the substrate preference of 2-oxoacids is 2-oxohexanoate > 2-oxoisovalerate > 2-oxoglutarate > 4-methylthio-2-oxobutyrate > 2-oxobutyrate = 3-methyl-2-oxovalerate = beta-phenylpyruvate >> pyruvate, and for amino acids it is L-Ile > L-Leu = L-Val >> L-Met Lacticaseibacillus paracasei ?
-
-
additional information the substrate preference of 2-oxoacids is 3-methyl-2-oxovalerate (Ile) > 4-methyl-2-oxovalerate (Leu) > 4,4-dimethyl-2-oxovalerate (L-neopentylGly) > 2-oxohexanoate (norLeu) > 3-methyl-2-oxobutanoate (Val) > 2-oxovalerate (norVal) > trimethylpyruvate (L-tert-Leu) > 2-oxobutyrate > pyruvate, and for amino acids it is L-Ile > L-Leu > L-Val > L-Phe > L-Met > L-Tyr > L-Trp Escherichia coli ?
-
-
additional information the substrate preference of 2-oxoacids is 3-methyl-2-oxovalerate > 4-methyl-2-oxovalerate > 2-oxoisovalerate >> beta-phenylpyruvate > 4-methylthio-2-oxobutyrate, and for amino acids it is L-Ile = L-Leu = L-Val > L-Phe Mycobacterium tuberculosis ?
-
-
additional information the substrate preference of 2-oxoacids is beta-phenylpyruvate > 2-oxobutyrate > 2-oxohexanoate > 2-oxoisovalerate > 4-methyl-2-oxovalerate > 2-oxoglutarate > 2-oxovalerate, and for amino acids it is L-Leu = L-Phe > L-Met > L-norLeu > L-Val > L-norVal > L-Ile > L-2-aminobutyrate >> L-Ala = L-Trp > L-Cys > L-Tyr > L-Thr Thermococcus sp. CKU-1 ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Ile > L-Leu > L-Val > L-Met = L-Asp = L-Phe > L-Gly Helicobacter pylori ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu = L-norVal = L-norLeu = L-Val > L-Phe > L-Trp > L-Ile > L-Met >> L-Tyr >> L-Ala Brevibacillus brevis ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu = L-Val > L-Ile > L-Tyr > L-Trp > L-Phe Methanococcus aeolicus ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu > L-Ile > L-Val > L-norLeu > L-norVal > L-Met > L-Phe > L-Asp > L-Trp Gluconobacter oxydans ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu > L-Ile > L-Val > L-norVal > L-Met > L-Phe. No activity with L-alanine, L-aspartate, L-glycine, L-serine, L-threonine, L-tryptophan, and L-tyrosine Pseudomonas aeruginosa ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu > L-Ile > L-Val > L-norVal > L-Met > L-Phe. No activity with L-alanine, L-aspartate, L-glycine, L-serine, L-threonine, L-tryptophan, and L-tyrosine Pseudomonas aeruginosa ATCC 15692 ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu > L-Ile > L-Val > L-norLeu > L-norVal > L-Met > L-Phe > L-Asp > L-Trp Gluconobacter oxydans 621H ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu > L-Ile > L-Val > L-norVal > L-Met > L-Phe. No activity with L-alanine, L-aspartate, L-glycine, L-serine, L-threonine, L-tryptophan, and L-tyrosine Pseudomonas aeruginosa 1C ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu > L-Ile > L-Val > L-norVal > L-Met > L-Phe. No activity with L-alanine, L-aspartate, L-glycine, L-serine, L-threonine, L-tryptophan, and L-tyrosine Pseudomonas aeruginosa PRS 101 ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu = L-Val > L-Ile > L-Tyr > L-Trp > L-Phe Methanococcus aeolicus DSM 17508 ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Ile > L-Leu > L-Val > L-Met = L-Asp = L-Phe > L-Gly Helicobacter pylori ATCC 700392 ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu > L-Ile > L-Val > L-norVal > L-Met > L-Phe. No activity with L-alanine, L-aspartate, L-glycine, L-serine, L-threonine, L-tryptophan, and L-tyrosine Pseudomonas aeruginosa DSM 22644 ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu > L-Ile > L-Val > L-norVal > L-Met > L-Phe. No activity with L-alanine, L-aspartate, L-glycine, L-serine, L-threonine, L-tryptophan, and L-tyrosine Pseudomonas aeruginosa CIP 104116 ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu > L-Ile > L-Val > L-norVal > L-Met > L-Phe. No activity with L-alanine, L-aspartate, L-glycine, L-serine, L-threonine, L-tryptophan, and L-tyrosine Pseudomonas aeruginosa LMG 12228 ?
-
-
additional information the substrate preference of 2-oxoacids is 3-methyl-2-oxovalerate > 4-methyl-2-oxovalerate > 2-oxoisovalerate >> beta-phenylpyruvate > 4-methylthio-2-oxobutyrate, and for amino acids it is L-Ile = L-Leu = L-Val > L-Phe Mycobacterium tuberculosis H37Rv ?
-
-
additional information the substrate preference of 2-oxoacids is 3-methyl-2-oxovalerate > 4-methyl-2-oxovalerate > 2-oxoisovalerate >> beta-phenylpyruvate > 4-methylthio-2-oxobutyrate, and for amino acids it is L-Ile = L-Leu = L-Val > L-Phe Mycobacterium tuberculosis ATCC 25618 ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Ile > L-Leu > L-Val > L-Met = L-Asp = L-Phe > L-Gly Helicobacter pylori 26695 ?
-
-
additional information the substrate preference of 2-oxoacids is 2-oxobutyrate > 4-methyl-2-oxovalerate = indole-3-pyruvate (L-Trp) > 3-methyl-2-oxovalerate > pyruvate, and for amino acids it is L-Met > L-ornithine > L-Lys > L-Thr > L-Val > L-norVal > L-Ile > L-Leu > L-norLeu > L-Ala > L-Phe > L-Trp Vulcanisaeta moutnovskia 768-28 ?
-
-
additional information the substrate preference of 2-oxoacids is 2-oxobutyrate > 4-methyl-2-oxovalerate = 3-methyl-2-oxovalerate = pyruvate, and for amino acids it is L-Met > L-ornithine > L-Thr > L-Val > L-norVal > L-His > L-Ile = L-Leu = L-norLeu > L-Phe > L-Ala > L-Lys Thermoproteus uzoniensis 768-20 ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu > L-Ile > L-Val > L-norVal > L-Met > L-Phe. No activity with L-alanine, L-aspartate, L-glycine, L-serine, L-threonine, L-tryptophan, and L-tyrosine Pseudomonas aeruginosa JCM 14847 ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu = L-Val > L-Ile > L-Tyr > L-Trp > L-Phe Methanococcus aeolicus OCM 812 ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu = L-Val > L-Ile > L-Tyr > L-Trp > L-Phe Methanococcus aeolicus ATCC BAA-1280 ?
-
-
additional information the substrate preference of 2-oxoacids is specific for 2-oxoglutarate, and for amino acids it is L-Leu = L-Val > L-Ile > L-Tyr > L-Trp > L-Phe Methanococcus aeolicus Nankai-3 ?
-
-
norleucine + 2-oxoglutarate
-
Thermoproteus uzoniensis 2-oxohexanoate + L-glutamate
-
r
norleucine + 2-oxoglutarate
-
Gluconobacter oxydans 2-oxohexanoate + L-glutamate
-
r
norleucine + 2-oxoglutarate
-
Brevibacillus brevis 2-oxohexanoate + L-glutamate
-
r
norvaline + 2-oxoglutarate
-
Thermoproteus uzoniensis 2-oxovalerate + L-glutamate
-
r
norvaline + 2-oxoglutarate
-
Pseudomonas aeruginosa 2-oxovalerate + L-glutamate
-
r
norvaline + 2-oxoglutarate
-
Gluconobacter oxydans 2-oxovalerate + L-glutamate
-
r
norvaline + 2-oxoglutarate
-
Brevibacillus brevis 2-oxovalerate + L-glutamate
-
r
pyruvate + L-alanine
-
Thermoproteus uzoniensis L-alanine + pyruvate
-
r
pyruvate + L-alanine
-
Vulcanisaeta moutnovskia L-alanine + pyruvate
-
r
pyruvate + L-glutamate
-
Pseudomonas sp. L-alanine + 2-oxoglutarate
-
r
pyruvate + L-glutamate low activity Lactococcus lactis L-alanine + 2-oxoglutarate
-
r
pyruvate + L-glutamate low activity Lacticaseibacillus paracasei L-alanine + 2-oxoglutarate
-
r
trimethylpyruvate + L-glutamate
-
Escherichia coli L-tert-Leu + 2-oxoglutarate
-
r

Subunits

Subunits Comment Organism
? x * 37800, SDS-PAGE Lacticaseibacillus paracasei
homodimer 2 * 34000, SDS-PAGE Mycobacterium tuberculosis
homodimer 2 * 39000, SDS-PAGE Gluconobacter oxydans
homodimer 2 * 47500, SDS-PAGE Thermococcus sp. CKU-1
homodimer 2 * 37400, SDS-PAGE Lactococcus lactis
homodimer 2 * 37500, SDS-PAGE Helicobacter pylori
homodimer 2 * 32800, SDS-PAGE Thermoproteus uzoniensis
homodimer 2 * 40100, SDS-PAGE Brevibacillus brevis
homohexamer 6 * 34000, SDS-PAGE Escherichia coli
homohexamer 6 * 31800, SDS-PAGE Methanococcus aeolicus
homotetramer 4 * 34000, SDS-PAGE Pseudomonas aeruginosa
homotetramer 4 * 35300, SDS-PAGE Vulcanisaeta moutnovskia

Synonyms

Synonyms Comment Organism
BcaT
-
Lactococcus lactis
BcaT
-
Pseudomonas sp.
BcaT
-
Mycobacterium tuberculosis
BcaT
-
Escherichia coli
BcaT
-
Thermoproteus uzoniensis
BcaT
-
Pseudomonas aeruginosa
BcaT
-
Gluconobacter oxydans
BcaT
-
Lacticaseibacillus paracasei
BcaT
-
Brevibacillus brevis
BcaT
-
Helicobacter pylori
BcaT
-
Methanococcus aeolicus
BcaT
-
Vulcanisaeta moutnovskia
BcaT
-
Thermococcus sp. CKU-1
branched-chain amino acid aminotransferase
-
Lactococcus lactis
branched-chain amino acid aminotransferase
-
Pseudomonas sp.
branched-chain amino acid aminotransferase
-
Mycobacterium tuberculosis
branched-chain amino acid aminotransferase
-
Escherichia coli
branched-chain amino acid aminotransferase
-
Thermoproteus uzoniensis
branched-chain amino acid aminotransferase
-
Pseudomonas aeruginosa
branched-chain amino acid aminotransferase
-
Gluconobacter oxydans
branched-chain amino acid aminotransferase
-
Lacticaseibacillus paracasei
branched-chain amino acid aminotransferase
-
Brevibacillus brevis
branched-chain amino acid aminotransferase
-
Helicobacter pylori
branched-chain amino acid aminotransferase
-
Methanococcus aeolicus
branched-chain amino acid aminotransferase
-
Vulcanisaeta moutnovskia
branched-chain amino acid aminotransferase
-
Thermococcus sp. CKU-1
eBCAT
-
Escherichia coli
IlvE
-
Helicobacter pylori
IlvE
-
Lactococcus lactis
IlvE
-
Mycobacterium tuberculosis
IlvE
-
Escherichia coli
IlvE
-
Thermoproteus uzoniensis
IlvE
-
Pseudomonas aeruginosa
IlvE
-
Gluconobacter oxydans
IlvE
-
Lacticaseibacillus paracasei
IlvE
-
Methanococcus aeolicus
IlvE
-
Vulcanisaeta moutnovskia
IlvE
-
Thermococcus sp. CKU-1

Temperature Optimum [°C]

Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
25
-
assay at Escherichia coli
30
-
assay at Pseudomonas sp.
37
-
assay at Lactococcus lactis
37
-
assay at Mycobacterium tuberculosis
37
-
assay at Pseudomonas aeruginosa
37
-
assay at Gluconobacter oxydans
37
-
assay at Lacticaseibacillus paracasei
37
-
assay at Brevibacillus brevis
37
-
assay at Helicobacter pylori
37
-
assay at Methanococcus aeolicus
65
-
assay at Thermoproteus uzoniensis
65
-
assay at Vulcanisaeta moutnovskia
90
-
assay at Thermococcus sp. CKU-1

Turnover Number [1/s]

Turnover Number Minimum [1/s] Turnover Number Maximum [1/s] Substrate Comment Organism Structure
0.07
-
3-methyl-2-oxopentanoate pH 8.0, 25°C Escherichia coli
0.08
-
4-methyl-2-oxopentanoate pH 8.0, 25°C Escherichia coli
0.08
-
4,4-dimethyl-2-oxovalerate pH 8.0, 25°C Escherichia coli
0.15
-
trimethylpyruvate pH 8.0, 25°C Escherichia coli
0.2
-
3-methyl-2-oxobutanoate pH 8.0, 25°C Escherichia coli
0.22
-
2-Oxohexanoate pH 8.0, 25°C Escherichia coli
0.6
-
2-oxovalerate pH 8.0, 25°C Escherichia coli
3.37
-
2-oxobutyrate pH 8.0, 25°C Escherichia coli
48
-
L-leucine pH 8.0, 25°C Escherichia coli
48
-
L-isoleucine pH 8.0, 25°C Escherichia coli
56
-
pyruvate pH 8.0, 25°C Escherichia coli

pH Optimum

pH Optimum Minimum pH Optimum Maximum Comment Organism
7.3
-
assay at Thermococcus sp. CKU-1
7.4
-
assay at Mycobacterium tuberculosis
7.4
-
assay at Lacticaseibacillus paracasei
7.5
-
assay at Lactococcus lactis
7.5
-
assay at Methanococcus aeolicus
8
-
assay at Pseudomonas sp.
8
-
assay at Escherichia coli
8
-
assay at Thermoproteus uzoniensis
8
-
assay at Pseudomonas aeruginosa
8
-
assay at Brevibacillus brevis
8
-
assay at Helicobacter pylori
8
-
assay at Vulcanisaeta moutnovskia
9
-
assay at Gluconobacter oxydans

Cofactor

Cofactor Comment Organism Structure
pyridoxal 5'-phosphate PLP, dependent on Lactococcus lactis
pyridoxal 5'-phosphate PLP, dependent on Pseudomonas sp.
pyridoxal 5'-phosphate PLP, dependent on Mycobacterium tuberculosis
pyridoxal 5'-phosphate PLP, dependent on Escherichia coli
pyridoxal 5'-phosphate PLP, dependent on Thermoproteus uzoniensis
pyridoxal 5'-phosphate PLP, dependent on Pseudomonas aeruginosa
pyridoxal 5'-phosphate PLP, dependent on Gluconobacter oxydans
pyridoxal 5'-phosphate PLP, dependent on Lacticaseibacillus paracasei
pyridoxal 5'-phosphate PLP, dependent on Brevibacillus brevis
pyridoxal 5'-phosphate PLP, dependent on Helicobacter pylori
pyridoxal 5'-phosphate PLP, dependent on Methanococcus aeolicus
pyridoxal 5'-phosphate PLP, dependent on Vulcanisaeta moutnovskia
pyridoxal 5'-phosphate PLP, dependent on Thermococcus sp. CKU-1

General Information

General Information Comment Organism
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Lactococcus lactis
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Pseudomonas sp.
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Mycobacterium tuberculosis
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Escherichia coli
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Thermoproteus uzoniensis
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Pseudomonas aeruginosa
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Gluconobacter oxydans
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Lacticaseibacillus paracasei
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Brevibacillus brevis
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Helicobacter pylori
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Methanococcus aeolicus
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Vulcanisaeta moutnovskia
evolution branched-chain amino acid aminotransferases (BCATs) differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the lock and key mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate alpha-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis Thermococcus sp. CKU-1
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Lactococcus lactis
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Pseudomonas sp.
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Mycobacterium tuberculosis
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Escherichia coli
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Thermoproteus uzoniensis
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Pseudomonas aeruginosa
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Gluconobacter oxydans
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Lacticaseibacillus paracasei
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Brevibacillus brevis
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Helicobacter pylori
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Methanococcus aeolicus
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Vulcanisaeta moutnovskia
metabolism BCAT are the key enzymes of BCAA metabolism in all organisms Thermococcus sp. CKU-1
additional information structure-function analysis and substrate specificity, comparisons, overview Lactococcus lactis
additional information structure-function analysis and substrate specificity, comparisons, overview Pseudomonas sp.
additional information structure-function analysis and substrate specificity, comparisons, overview Mycobacterium tuberculosis
additional information structure-function analysis and substrate specificity, comparisons, overview Escherichia coli
additional information structure-function analysis and substrate specificity, comparisons, overview Thermoproteus uzoniensis
additional information structure-function analysis and substrate specificity, comparisons, overview Pseudomonas aeruginosa
additional information structure-function analysis and substrate specificity, comparisons, overview Gluconobacter oxydans
additional information structure-function analysis and substrate specificity, comparisons, overview Lacticaseibacillus paracasei
additional information structure-function analysis and substrate specificity, comparisons, overview Brevibacillus brevis
additional information structure-function analysis and substrate specificity, comparisons, overview Helicobacter pylori
additional information structure-function analysis and substrate specificity, comparisons, overview Methanococcus aeolicus
additional information structure-function analysis and substrate specificity, comparisons, overview Vulcanisaeta moutnovskia
additional information structure-function analysis and substrate specificity, comparisons, overview Thermococcus sp. CKU-1
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Lactococcus lactis
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Pseudomonas sp.
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Mycobacterium tuberculosis
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Escherichia coli
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Thermoproteus uzoniensis
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Pseudomonas aeruginosa
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Gluconobacter oxydans
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Lacticaseibacillus paracasei
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Brevibacillus brevis
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Helicobacter pylori
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Methanococcus aeolicus
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Vulcanisaeta moutnovskia
physiological function branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP) Thermococcus sp. CKU-1