BRENDA - Enzyme Database
show all sequences of 2.5.1.73

Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys)

Zhang, C.M.; Liu, C.; Slater, S.; Hou, Y.M.; Nat. Struct. Mol. Biol. 15, 507-514 (2008)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
expressed in Escherichia coli BL21(DE3)-RIL cells
Methanocaldococcus jannaschii
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
O-phospho-L-seryl-tRNACys + sulfide
Methanocaldococcus jannaschii
Methanocaldococcus jannaschii synthesizes Cys-tRNACys by an indirect pathway, whereby O-phosphoseryl–tRNA synthetase (SepRS) acylates tRNACys with phosphoserine (Sep), and Sep-tRNA–Cys-tRNA synthase (SepCysS) converts the tRNA-bound phosphoserine to cysteine
L-cysteinyl-tRNACys + phosphate
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Methanocaldococcus jannaschii
-
-
-
Methanocaldococcus jannaschii
Q59072
-
-
Purification (Commentary)
Commentary
Organism
Q Sepharose FF column chromatography and FPLC Mono Q column chromatography
Methanocaldococcus jannaschii
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
O-phospho-L-seryl-tRNACys + sulfide
-
689145
Methanocaldococcus jannaschii
L-cysteinyl-tRNACys + phosphate
-
-
-
?
O-phospho-L-seryl-tRNACys + sulfide
Methanocaldococcus jannaschii synthesizes Cys-tRNACys by an indirect pathway, whereby O-phosphoseryl–tRNA synthetase (SepRS) acylates tRNACys with phosphoserine (Sep), and Sep-tRNA–Cys-tRNA synthase (SepCysS) converts the tRNA-bound phosphoserine to cysteine
689145
Methanocaldococcus jannaschii
L-cysteinyl-tRNACys + phosphate
-
-
-
?
O-phospho-L-seryl-tRNACys + sulfide
Methanocaldococcus jannaschii synthesizes Cys-tRNACys by an indirect pathway, whereby O-phosphoseryl–tRNA synthetase (SepRS) acylates tRNACys with phosphoserine (Sep), and Sep-tRNA–Cys-tRNA synthase (SepCysS) converts the tRNA-bound phosphoserine to cysteine. O-Phosphoseryl–tRNA synthetase and Sep-tRNA–Cys-tRNA synthase bind the reaction intermediate O-phospho-L-serine-tRNACys tightly, and these two enzymes form a stable binary complex that promotes conversion of the intermediate to the product and sequesters the intermediate from binding to elongation factor EF-1a or infiltrating into the ribosome
689145
Methanocaldococcus jannaschii
L-cysteinyl-tRNACys + phosphate
-
-
-
?
Subunits
Subunits
Commentary
Organism
More
both SepRS and SepCysS are active as a monomer in theSepRS–SepCysS binary complex
Methanocaldococcus jannaschii
Cloned(Commentary) (protein specific)
Commentary
Organism
expressed in Escherichia coli BL21(DE3)-RIL cells
Methanocaldococcus jannaschii
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
O-phospho-L-seryl-tRNACys + sulfide
Methanocaldococcus jannaschii
Methanocaldococcus jannaschii synthesizes Cys-tRNACys by an indirect pathway, whereby O-phosphoseryl–tRNA synthetase (SepRS) acylates tRNACys with phosphoserine (Sep), and Sep-tRNA–Cys-tRNA synthase (SepCysS) converts the tRNA-bound phosphoserine to cysteine
L-cysteinyl-tRNACys + phosphate
-
-
?
Purification (Commentary) (protein specific)
Commentary
Organism
Q Sepharose FF column chromatography and FPLC Mono Q column chromatography
Methanocaldococcus jannaschii
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
O-phospho-L-seryl-tRNACys + sulfide
-
689145
Methanocaldococcus jannaschii
L-cysteinyl-tRNACys + phosphate
-
-
-
?
O-phospho-L-seryl-tRNACys + sulfide
Methanocaldococcus jannaschii synthesizes Cys-tRNACys by an indirect pathway, whereby O-phosphoseryl–tRNA synthetase (SepRS) acylates tRNACys with phosphoserine (Sep), and Sep-tRNA–Cys-tRNA synthase (SepCysS) converts the tRNA-bound phosphoserine to cysteine
689145
Methanocaldococcus jannaschii
L-cysteinyl-tRNACys + phosphate
-
-
-
?
O-phospho-L-seryl-tRNACys + sulfide
Methanocaldococcus jannaschii synthesizes Cys-tRNACys by an indirect pathway, whereby O-phosphoseryl–tRNA synthetase (SepRS) acylates tRNACys with phosphoserine (Sep), and Sep-tRNA–Cys-tRNA synthase (SepCysS) converts the tRNA-bound phosphoserine to cysteine. O-Phosphoseryl–tRNA synthetase and Sep-tRNA–Cys-tRNA synthase bind the reaction intermediate O-phospho-L-serine-tRNACys tightly, and these two enzymes form a stable binary complex that promotes conversion of the intermediate to the product and sequesters the intermediate from binding to elongation factor EF-1a or infiltrating into the ribosome
689145
Methanocaldococcus jannaschii
L-cysteinyl-tRNACys + phosphate
-
-
-
?
Subunits (protein specific)
Subunits
Commentary
Organism
More
both SepRS and SepCysS are active as a monomer in theSepRS–SepCysS binary complex
Methanocaldococcus jannaschii
Other publictions for EC 2.5.1.73
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
728697
Liu
Ancient translation factor is ...
Methanocaldococcus jannaschii, Methanocaldococcus jannaschii DSM 2661
Proc. Natl. Acad. Sci. USA
111
10520-10505
2014
1
-
-
1
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
722286
Helgadottir
Mutational analysis of Sep-tRN ...
Methanocaldococcus jannaschii
FEBS Lett.
586
60-63
2012
-
-
-
-
19
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
19
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
722799
Liu
Catalytic mechanism of Sep-tRN ...
Methanocaldococcus jannaschii, Methanocaldococcus jannaschii DSM 2661
J. Biol. Chem.
287
5426-5433
2012
-
-
1
-
6
-
-
-
-
-
-
-
-
6
-
-
1
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
722261
Yuan
A tRNA-dependent cysteine bios ...
Escherichia coli
FEBS Lett.
584
2857-2861
2010
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
684126
Yuan
Amino acid modifications on tR ...
Archaeoglobus fulgidus, Methanococcus maripaludis, no activity in Methanobrevibacter smithii, no activity in Methanosphaera stadtmanae
Acta Biochim. Biophys. Sin. (Shanghai)
40
539-553
2008
-
-
-
1
-
-
-
-
-
-
-
1
-
5
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
3
2
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
687743
Hauenstein
Redundant synthesis of cystein ...
Methanosarcina mazei
J. Biol. Chem.
283
22007-22017
2008
-
-
1
-
-
-
-
-
-
-
3
-
-
4
-
-
1
-
-
-
1
-
3
1
-
-
-
-
-
-
-
1
-
-
-
-
-
2
2
-
-
-
-
-
-
-
-
-
3
-
-
-
-
2
-
-
1
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689145
Zhang
Aminoacylation of tRNA with ph ...
Methanocaldococcus jannaschii
Nat. Struct. Mol. Biol.
15
507-514
2008
-
-
1
-
-
-
-
-
-
-
-
1
-
3
-
-
1
-
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
675447
Fukunaga
Structural insights into the s ...
Archaeoglobus fulgidus
J. Mol. Biol.
370
128-141
2007
-
-
1
1
-
-
-
-
-
1
-
2
-
3
-
-
1
-
-
-
-
-
4
2
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
-
-
-
-
-
-
-
1
-
2
-
-
-
1
-
-
-
-
4
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676784
O'Donoghue
The evolutionary history of Cy ...
Archaeoglobus fulgidus, Methanococcoides burtonii, Methanopyrus kandleri, Methanospirillum hungatei
Proc. Natl. Acad. Sci. USA
102
19003-19008
2005
-
-
4
-
-
-
-
-
-
-
-
4
-
4
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
4
-
-
-
-
-
4
4
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
677118
Sauerwald
RNA-dependent cysteine biosynt ...
Methanocaldococcus jannaschii, Methanococcus maripaludis
Science
307
1969-1972
2005
-
-
1
-
1
-
-
-
-
-
-
2
-
5
-
-
1
-
-
-
-
-
4
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
1
-
-
-
-
-
-
-
-
2
-
-
-
1
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-