BRENDA - Enzyme Database
show all sequences of 2.4.99.B7

Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli

Gronow, S.; Brabetz, W.; Brade, H.; Eur. J. Biochem. 267, 6602-6611 (2000)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
-
Escherichia coli
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ADP-L-glycero-beta-D-manno-heptose + alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino]-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
Escherichia coli
-
ADP + alpha-L-glycero-D-manno-heptosyl-(1->3)-alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino]-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Escherichia coli
P37692
-
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ADP-alpha-D-mannose + alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
the enzyme is also able to utilize this nonphysiological donor substrate ADP-mannose although with less efficiency than with the natural substrate ADP-L-glycero-beta-D-manno-heptose
727413
Escherichia coli
? + ADP
-
-
-
?
ADP-L-glycero-beta-D-manno-heptose + alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino]-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
-
727413
Escherichia coli
ADP + alpha-L-glycero-D-manno-heptosyl-(1->3)-alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino]-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
-
-
-
?
ADP-L-glycero-beta-D-manno-heptose + alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
-
727413
Escherichia coli
ADP + alpha-L-glycero-D-manno-heptosyl-(1->3)-alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
-
-
-
?
pH Range
pH Minimum
pH Maximum
Commentary
Organism
5.5
10.5
active in the range
Escherichia coli
Cloned(Commentary) (protein specific)
Commentary
Organism
-
Escherichia coli
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ADP-L-glycero-beta-D-manno-heptose + alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino]-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
Escherichia coli
-
ADP + alpha-L-glycero-D-manno-heptosyl-(1->3)-alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino]-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
-
-
?
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ADP-alpha-D-mannose + alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
the enzyme is also able to utilize this nonphysiological donor substrate ADP-mannose although with less efficiency than with the natural substrate ADP-L-glycero-beta-D-manno-heptose
727413
Escherichia coli
? + ADP
-
-
-
?
ADP-L-glycero-beta-D-manno-heptose + alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino]-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
-
727413
Escherichia coli
ADP + alpha-L-glycero-D-manno-heptosyl-(1->3)-alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-(dodecanoyloxy)tetradecanoyl]amino]-3-O-[(3R)-3-(tetradecanoyloxy)tetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
-
-
-
?
ADP-L-glycero-beta-D-manno-heptose + alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
-
727413
Escherichia coli
ADP + alpha-L-glycero-D-manno-heptosyl-(1->3)-alpha-L-glycero-D-manno-heptosyl-(1->5)-[(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->4)]-(3-deoxy-alpha-D-manno-oct-2-ulopyranosylonate)-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phospho-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
-
-
-
?
pH Range (protein specific)
pH Minimum
pH Maximum
Commentary
Organism
5.5
10.5
active in the range
Escherichia coli
Other publictions for EC 2.4.99.B7
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
736375
Wang
Deletion of the genes waaC, wa ...
Escherichia coli, Escherichia coli W3110 / ATCC 27325
J. Basic Microbiol.
56
1021-1035
2016
-
-
-
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
738281
Nguyen
Role of capsular polysaccharid ...
Campylobacter jejuni, Escherichia coli
Foodborne Pathog. Dis.
10
506-513
2013
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
728049
Gronow
Characterization of the physio ...
Escherichia coli
J. Endotoxin Res.
7
263-270
2001
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
727413
Gronow
Comparative functional charact ...
Escherichia coli
Eur. J. Biochem.
267
6602-6611
2000
-
-
1
-
-
-
-
-
-
-
-
1
-
3
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-