BRENDA - Enzyme Database
show all sequences of 2.3.1.157

Depletion of M. tuberculosis GlmU from infected murine lungs effects the clearance of the pathogen

Soni, V.; Upadhayay, S.; Suryadevara, P.; Samla, G.; Singh, A.; Yogeeswari, P.; Sriram, D.; Nandicoori, V.K.; PLoS Pathog. 11, e1005235 (2015)

Data extracted from this reference:

Application
Application
Commentary
Organism
medicine
GlmUMtb is a strong candidate for intervention measures against established tuberculosis infections
Mycobacterium tuberculosis
Cloned(Commentary)
Commentary
Organism
; gene glmU, recombinant expression of N-terminally FLAG-tagged enzyme
Mycobacterium tuberculosis
Crystallization (Commentary)
Crystallization
Organism
docking surface representation of the GlmU allosteric site in complex with inhibitor (4Z)-4-(4-benzyloxybenzylidene)-2-(naphthalen-2-yl)-1,3-oxazol-5(4H)-one. Residues Tyr150, Glu250 and Arg 253 are in hydrogen bonding with carbonyl oxygen over the oxazole ring. Leu144, Pro147, Phe148, Tyr150, Ala233, Ala236 and Leu247 participate in strong hydrophobic interactions
Mycobacterium tuberculosis
Inhibitors
Inhibitors
Commentary
Organism
Structure
(4Z)-4-(4-benzyloxybenzylidene)-2-(naphthalen-2-yl)-1,3-oxazol-5(4H)-one
a oxazolidine derivative that specifically inhibits GlmU. Administration to infected mice results in significant decrease in the bacillary load
Mycobacterium tuberculosis
4-(4-(benzyloxy)benzylidene)-2-(naphthalen-1-yl)oxazol-5(4H)-one
i.e. Oxa33, syntesis of a specific GlmU inhibitor, molecular docking study, the inhibitor binds to an allosteric site of the uridyltransferase domain., overview. Oxa33 fails to inhibit cell growth even at concentrations as high as 0.150 mM
Mycobacterium tuberculosis
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
acetyl-CoA + alpha-D-glucosamine 1-phosphate
Mycobacterium tuberculosis
-
CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
-
-
?
acetyl-CoA + alpha-D-glucosamine 1-phosphate
Mycobacterium tuberculosis H37Rv
-
CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
-
-
?
acetyl-CoA + alpha-D-glucosamine 1-phosphate
Mycobacterium tuberculosis ATCC 25618
-
CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
-
-
?
additional information
Mycobacterium tuberculosis
the N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) enzyme is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities, catalyzing the reactions of EC 2.3.1.157, N-acetylglucosamine-1-phosphate uridyltransferase, and 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
?
-
-
-
additional information
Mycobacterium tuberculosis H37Rv
the N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) enzyme is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities, catalyzing the reactions of EC 2.3.1.157, N-acetylglucosamine-1-phosphate uridyltransferase, and 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
?
-
-
-
additional information
Mycobacterium tuberculosis ATCC 25618
the N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) enzyme is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities, catalyzing the reactions of EC 2.3.1.157, N-acetylglucosamine-1-phosphate uridyltransferase, and 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
?
-
-
-
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Mycobacterium tuberculosis
P9WMN3
-
-
Mycobacterium tuberculosis ATCC 25618
P9WMN3
-
-
Mycobacterium tuberculosis H37Rv
P9WMN3
-
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
acetyl-CoA + alpha-D-glucosamine 1-phosphate
-
737150
Mycobacterium tuberculosis
CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
-
-
-
?
acetyl-CoA + alpha-D-glucosamine 1-phosphate
-
737150
Mycobacterium tuberculosis H37Rv
CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
-
-
-
?
acetyl-CoA + alpha-D-glucosamine 1-phosphate
-
737150
Mycobacterium tuberculosis ATCC 25618
CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
-
-
-
?
additional information
the N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) enzyme is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities, catalyzing the reactions of EC 2.3.1.157, N-acetylglucosamine-1-phosphate uridyltransferase, and 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
737150
Mycobacterium tuberculosis
?
-
-
-
-
additional information
the N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) enzyme is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities, catalyzing the reactions of EC 2.3.1.157, N-acetylglucosamine-1-phosphate uridyltransferase, and 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
737150
Mycobacterium tuberculosis H37Rv
?
-
-
-
-
additional information
the N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) enzyme is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities, catalyzing the reactions of EC 2.3.1.157, N-acetylglucosamine-1-phosphate uridyltransferase, and 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
737150
Mycobacterium tuberculosis ATCC 25618
?
-
-
-
-
Temperature Optimum [°C]
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
37
-
assay at
Mycobacterium tuberculosis
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7.4
-
assay at
Mycobacterium tuberculosis
Cofactor
Cofactor
Commentary
Organism
Structure
acetyl-CoA
-
Mycobacterium tuberculosis
IC50 Value
IC50 Value
IC50 Value Maximum
Commentary
Organism
Inhibitor
Structure
0.099
-
30°C, pH not specified in the publication
Mycobacterium tuberculosis
(4Z)-4-(4-benzyloxybenzylidene)-2-(naphthalen-2-yl)-1,3-oxazol-5(4H)-one
Application (protein specific)
Application
Commentary
Organism
medicine
GlmUMtb is a strong candidate for intervention measures against established tuberculosis infections
Mycobacterium tuberculosis
Cloned(Commentary) (protein specific)
Commentary
Organism
; gene glmU, recombinant expression of N-terminally FLAG-tagged enzyme
Mycobacterium tuberculosis
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
acetyl-CoA
-
Mycobacterium tuberculosis
Crystallization (Commentary) (protein specific)
Crystallization
Organism
docking surface representation of the GlmU allosteric site in complex with inhibitor (4Z)-4-(4-benzyloxybenzylidene)-2-(naphthalen-2-yl)-1,3-oxazol-5(4H)-one. Residues Tyr150, Glu250 and Arg 253 are in hydrogen bonding with carbonyl oxygen over the oxazole ring. Leu144, Pro147, Phe148, Tyr150, Ala233, Ala236 and Leu247 participate in strong hydrophobic interactions
Mycobacterium tuberculosis
IC50 Value (protein specific)
IC50 Value
IC50 Value Maximum
Commentary
Organism
Inhibitor
Structure
0.099
-
30°C, pH not specified in the publication
Mycobacterium tuberculosis
(4Z)-4-(4-benzyloxybenzylidene)-2-(naphthalen-2-yl)-1,3-oxazol-5(4H)-one
Inhibitors (protein specific)
Inhibitors
Commentary
Organism
Structure
(4Z)-4-(4-benzyloxybenzylidene)-2-(naphthalen-2-yl)-1,3-oxazol-5(4H)-one
a oxazolidine derivative that specifically inhibits GlmU. Administration to infected mice results in significant decrease in the bacillary load
Mycobacterium tuberculosis
4-(4-(benzyloxy)benzylidene)-2-(naphthalen-1-yl)oxazol-5(4H)-one
i.e. Oxa33, syntesis of a specific GlmU inhibitor, molecular docking study, the inhibitor binds to an allosteric site of the uridyltransferase domain., overview. Oxa33 fails to inhibit cell growth even at concentrations as high as 0.150 mM
Mycobacterium tuberculosis
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
acetyl-CoA + alpha-D-glucosamine 1-phosphate
Mycobacterium tuberculosis
-
CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
-
-
?
acetyl-CoA + alpha-D-glucosamine 1-phosphate
Mycobacterium tuberculosis H37Rv
-
CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
-
-
?
acetyl-CoA + alpha-D-glucosamine 1-phosphate
Mycobacterium tuberculosis ATCC 25618
-
CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
-
-
?
additional information
Mycobacterium tuberculosis
the N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) enzyme is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities, catalyzing the reactions of EC 2.3.1.157, N-acetylglucosamine-1-phosphate uridyltransferase, and 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
?
-
-
-
additional information
Mycobacterium tuberculosis H37Rv
the N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) enzyme is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities, catalyzing the reactions of EC 2.3.1.157, N-acetylglucosamine-1-phosphate uridyltransferase, and 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
?
-
-
-
additional information
Mycobacterium tuberculosis ATCC 25618
the N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) enzyme is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities, catalyzing the reactions of EC 2.3.1.157, N-acetylglucosamine-1-phosphate uridyltransferase, and 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
?
-
-
-
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
acetyl-CoA + alpha-D-glucosamine 1-phosphate
-
737150
Mycobacterium tuberculosis
CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
-
-
-
?
acetyl-CoA + alpha-D-glucosamine 1-phosphate
-
737150
Mycobacterium tuberculosis H37Rv
CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
-
-
-
?
acetyl-CoA + alpha-D-glucosamine 1-phosphate
-
737150
Mycobacterium tuberculosis ATCC 25618
CoA + N-acetyl-alpha-D-glucosamine 1-phosphate
-
-
-
?
additional information
the N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) enzyme is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities, catalyzing the reactions of EC 2.3.1.157, N-acetylglucosamine-1-phosphate uridyltransferase, and 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
737150
Mycobacterium tuberculosis
?
-
-
-
-
additional information
the N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) enzyme is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities, catalyzing the reactions of EC 2.3.1.157, N-acetylglucosamine-1-phosphate uridyltransferase, and 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
737150
Mycobacterium tuberculosis H37Rv
?
-
-
-
-
additional information
the N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) enzyme is a bifunctional enzyme with both acetyltransferase and uridylyltransferase (pyrophosphorylase) activities, catalyzing the reactions of EC 2.3.1.157, N-acetylglucosamine-1-phosphate uridyltransferase, and 2.7.7.23, UDP-N-acetylglucosamine diphosphorylase. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
737150
Mycobacterium tuberculosis ATCC 25618
?
-
-
-
-
Temperature Optimum [°C] (protein specific)
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
37
-
assay at
Mycobacterium tuberculosis
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7.4
-
assay at
Mycobacterium tuberculosis
General Information
General Information
Commentary
Organism
malfunction
GlmUMtb depletion perturbs cell wall structure and affects the bacterial survival in normoxia, overview
Mycobacterium tuberculosis
physiological function
absence of GlmU leads to extensive perturbation of bacterial morphology and substantial reduction in cell wall thickness under normoxic as well as hypoxic conditions. The acetyl- and uridyl-transferase activities of GlmU are independently essential for bacterial survival in vitro, and GlmU is also essential for mycobacterial survival in THP-1 cells as well as in guinea pigs. Depletion of GlmU from infected murine lungs, four weeks post infection, leads to significant reduction in the bacillary load; the acetyl- and uridyltransferase activities of GlmUMtb are independently essential for bacterial survival in vitro, and GlmUMtb is also essential for mycobacterial survival in THP-1 cells as well as in guinea pigs. The administration of Oxa33, a novel oxazolidine derivative that specifically inhibits GlmUMtb, to infected mice results in significant decrease in the bacillary load. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
Mycobacterium tuberculosis
General Information (protein specific)
General Information
Commentary
Organism
malfunction
GlmUMtb depletion perturbs cell wall structure and affects the bacterial survival in normoxia, overview
Mycobacterium tuberculosis
physiological function
absence of GlmU leads to extensive perturbation of bacterial morphology and substantial reduction in cell wall thickness under normoxic as well as hypoxic conditions. The acetyl- and uridyl-transferase activities of GlmU are independently essential for bacterial survival in vitro, and GlmU is also essential for mycobacterial survival in THP-1 cells as well as in guinea pigs. Depletion of GlmU from infected murine lungs, four weeks post infection, leads to significant reduction in the bacillary load; the acetyl- and uridyltransferase activities of GlmUMtb are independently essential for bacterial survival in vitro, and GlmUMtb is also essential for mycobacterial survival in THP-1 cells as well as in guinea pigs. The administration of Oxa33, a novel oxazolidine derivative that specifically inhibits GlmUMtb, to infected mice results in significant decrease in the bacillary load. The synthesis of the two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc is catalyzed by the C- and N-terminal domains, respectively
Mycobacterium tuberculosis
Other publictions for EC 2.3.1.157
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
746844
Honda
Improvement of ST0452 N-acety ...
Sulfurisphaera tokodaii, Sulfurisphaera tokodaii DSM 16993
Appl. Environ. Microbiol.
84
e002213-18
2018
-
-
1
1
2
-
-
-
-
-
-
-
-
10
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
736517
Sharma
Escherichia coli N-acetylgluco ...
Escherichia coli, Escherichia coli ATCC 25922
J. Biomol. Screen.
21
342-353
2016
-
-
1
-
-
-
3
-
-
1
-
2
-
10
-
-
1
-
-
-
-
-
2
-
1
-
-
-
1
-
-
1
4
-
2
-
-
1
1
-
-
-
2
4
4
-
-
1
-
2
-
-
-
1
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
737096
Dziadek
Mycobacterium tuberculosis Ats ...
Mycobacterium tuberculosis, Mycobacterium tuberculosis ATCC 25618, Mycobacterium tuberculosis H37Rv
PLoS ONE
11
e0148030
2016
-
1
1
-
1
-
-
-
-
-
-
3
-
15
-
-
1
-
-
-
-
-
6
-
-
-
-
-
-
-
-
1
-
-
-
-
1
1
1
-
1
-
-
-
-
-
-
-
-
3
-
-
-
1
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
729696
Zhang
Characterization of the amino ...
Sulfurisphaera tokodaii, Sulfurisphaera tokodaii 7, Sulfurisphaera tokodaii DSM 16993 / JCM 10545 / NBRC 100140 / 7
Extremophiles
19
417-427
2015
-
1
1
-
7
-
1
9
-
1
-
6
-
8
-
-
1
-
-
-
12
-
9
2
1
-
1
6
1
-
-
1
-
-
-
-
1
1
1
-
7
-
-
1
-
9
-
1
-
6
-
-
-
1
-
-
12
-
9
2
1
-
1
6
1
-
-
-
-
2
2
-
6
6
735518
Sharma
Identification and characteriz ...
Escherichia coli, Escherichia coli ATCC 25922, Haemophilus influenzae, Haemophilus influenzae ATCC 51907
Appl. Microbiol. Biotechnol.
100
3071-3085
2015
-
-
1
-
-
-
15
-
-
-
-
8
-
12
-
-
1
-
-
-
-
-
10
-
2
-
-
-
2
-
-
2
2
-
11
-
-
1
2
-
-
-
12
17
2
-
-
-
-
8
-
-
-
1
-
-
-
-
10
-
2
-
-
-
2
-
-
-
-
-
-
-
-
-
735569
Patin
Purification and biochemical c ...
Yersinia pestis, Yersinia pestis YPIII, Yersinia pseudotuberculosis, Yersinia pseudotuberculosis YPIII
Arch. Microbiol.
197
371-378
2015
1
-
2
-
1
-
2
4
-
2
-
2
-
6
-
-
1
-
-
-
-
-
4
2
1
-
-
4
1
-
-
1
-
-
-
1
-
2
1
-
1
-
-
2
-
4
-
2
-
2
-
-
-
1
-
-
-
-
4
2
1
-
-
4
1
-
-
-
-
2
2
-
-
-
737150
Soni
Depletion of M. tuberculosis G ...
Mycobacterium tuberculosis, Mycobacterium tuberculosis ATCC 25618, Mycobacterium tuberculosis H37Rv
PLoS Pathog.
11
e1005235
2015
-
1
1
1
-
-
2
-
-
-
-
6
-
12
-
-
-
-
-
-
-
-
6
-
1
-
-
-
1
-
-
1
-
-
1
-
1
1
1
1
-
-
1
2
-
-
-
-
-
6
-
-
-
-
-
-
-
-
6
-
1
-
-
-
1
-
-
-
-
2
2
-
-
-
737291
Rani
High-throughput screen identif ...
Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv
Tuberculosis
95
664-677
2015
-
-
1
-
-
-
6
3
-
1
-
4
-
11
-
-
1
-
-
-
-
-
5
-
1
-
-
-
1
-
-
1
5
-
10
-
-
1
1
-
-
-
10
8
5
5
-
1
-
4
-
-
-
1
-
-
-
-
5
-
1
-
-
-
1
-
-
-
-
2
2
-
-
-
735396
Vithani
GlmU (N-acetylglucosamine-1-ph ...
Mycobacterium tuberculosis, Mycobacterium tuberculosis ATCC 25618
Acta Crystallogr. Sect. F
70
703-708
2014
-
-
1
1
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
736058
Mehra
Identification and optimizatio ...
Escherichia coli, Escherichia coli ATCC 25922
Eur. J. Med. Chem.
92
78-90
2014
-
-
-
-
-
-
12
-
-
-
-
2
-
5
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
1
-
-
2
-
-
-
1
-
-
-
2
14
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
719064
Green
Inhibitors of acetyltransferas ...
Escherichia coli, Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae
Bioorg. Med. Chem. Lett.
22
1510-1519
2012
-
-
-
2
-
-
156
-
-
-
-
4
-
4
-
-
-
-
-
-
-
-
4
4
4
-
-
-
4
-
-
-
-
-
150
-
-
-
-
2
-
-
150
156
-
-
-
-
-
4
-
-
-
-
-
-
-
-
4
4
4
-
-
-
4
-
-
-
-
4
4
-
-
-
719070
Stokes
Inhibitors of the acetyltransf ...
Escherichia coli, Haemophilus influenzae, Streptococcus pneumoniae
Bioorg. Med. Chem. Lett.
22
7019-7023
2012
-
-
-
-
-
-
54
-
-
-
-
3
-
5
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
52
-
-
-
-
-
-
-
52
54
-
-
-
-
-
3
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
719137
Rodriguez-Diaz
Metabolic engineering of Lacto ...
Lactobacillus casei
Biotechnol. Bioeng.
109
1704-1712
2012
-
-
1
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
719411
Min
Structure-based virtual screen ...
Xanthomonas oryzae
Eur. J. Med. Chem.
53
150-158
2012
-
-
-
-
-
-
-
-
-
-
-
1
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
719574
Zhou
Identification of amino acids ...
Mycobacterium tuberculosis
Glycoconj. J.
29
297-303
2012
-
-
1
-
10
-
-
14
-
-
1
1
-
3
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
10
-
-
-
-
14
-
-
1
1
-
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
720042
Jagtap
Substrate bound crystal struct ...
Mycobacterium tuberculosis
J. Biol. Chem.
287
39524-39537
2012
1
1
-
1
13
-
-
6
-
-
-
4
-
2
-
1
-
1
-
-
-
-
6
1
1
-
-
-
1
-
-
1
-
-
-
1
2
-
1
2
20
-
-
-
-
6
-
-
-
4
-
-
1
-
-
-
-
-
6
2
2
-
-
-
2
-
-
-
-
5
7
-
-
-
720872
Singh
Kinetic modelling of GlmU reac ...
Mycobacterium tuberculosis
PLoS ONE
7
e43969
2012
-
1
-
-
-
-
1
5
-
-
-
1
-
1
-
-
-
1
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
5
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
718708
Zhou
Kinetic properties of Mycobact ...
Mycobacterium tuberculosis
Arch. Microbiol.
193
751-757
2011
-
1
-
-
-
-
-
3
-
1
-
2
-
3
-
-
-
-
-
-
-
-
2
-
1
1
-
2
1
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
1
-
2
-
-
-
-
-
-
-
-
2
-
1
1
-
2
1
1
-
-
-
1
1
-
-
-
719224
Li
Design and synthesis of novel ...
Mycobacterium tuberculosis
Carbohydr. Res.
346
1714-1720
2011
-
-
1
-
-
-
2
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
719986
Buurman
In vitro validation of acetylt ...
Escherichia coli, Escherichia coli ATCC 27325, Haemophilus influenzae, Haemophilus influenzae ATCC 51907, Staphylococcus aureus, Staphylococcus aureus RN4220, Streptococcus pneumoniae, Streptococcus pneumoniae NCTC 7466
J. Biol. Chem.
286
40734-40742
2011
-
4
4
-
-
-
25
-
-
-
-
8
-
28
-
-
4
-
-
-
-
-
8
-
-
-
-
-
4
-
-
-
1
-
20
-
4
4
-
-
-
-
20
25
1
-
-
-
-
8
-
-
-
4
-
-
-
-
8
-
-
-
-
-
4
-
-
-
-
4
4
-
-
-
725249
Zhang
Identification of novel acetyl ...
Sulfurisphaera tokodaii, Sulfurisphaera tokodaii 7
J. Bacteriol.
192
3287-3293
2010
-
-
-
-
-
-
5
2
-
1
-
2
-
7
-
-
1
1
-
-
1
-
4
-
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
2
-
1
-
2
-
-
-
1
-
-
1
-
4
-
1
-
-
1
1
-
-
-
-
1
1
-
1
1
701468
Zhang
Structure and function of GlmU ...
Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv
Acta Crystallogr. Sect. D
65
275-283
2009
1
-
1
1
-
-
-
-
-
-
-
-
-
9
-
-
1
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
701520
Verma
Structure of N-acetylglucosami ...
Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv
Acta Crystallogr. Sect. F
65
435-439
2009
-
-
1
1
-
-
-
-
-
-
-
-
-
10
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
705135
Parikh
PknB-mediated phosphorylation ...
Mycobacterium tuberculosis
J. Mol. Biol.
386
451-464
2009
-
-
1
1
7
-
-
2
-
-
-
-
-
2
-
1
-
-
-
-
-
-
1
1
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
7
-
-
-
-
2
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
687124
Zhang
Expression, essentiality, and ...
Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv
Int. J. Biochem. Cell Biol.
40
2560-2571
2008
-
1
1
-
-
-
-
-
-
-
1
-
-
13
-
-
1
1
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
706622
Mochalkin
Structure of a small-molecule ...
Mycobacterium tuberculosis
Protein Sci.
17
577-582
2008
-
-
1
1
-
-
-
-
-
-
-
-
-
4
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
677026
Olsen
Structure of the E. coli bifun ...
Escherichia coli
Protein Sci.
16
1230-1235
2007
-
-
-
1
-
-
-
-
-
-
-
-
-
3
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
288687
Olsen
Purification, crystallization ...
Escherichia coli
Acta Crystallogr. Sect. D
57
296-297
2001
-
-
1
1
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
288688
Pompeo
Dissection of the bifunctional ...
Escherichia coli, Escherichia coli JM83
J. Biol. Chem.
276
3833-3839
2001
-
-
1
1
-
-
-
-
-
-
3
2
-
10
-
-
1
-
-
-
5
-
6
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
3
2
-
-
-
1
-
-
5
-
6
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
643073
Sulzenbacher
Crystal structure of Streptoco ...
Streptococcus pneumoniae
J. Biol. Chem.
276
11844-11851
2001
-
-
-
1
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
643075
Olsen
Structure of the Escherichia c ...
Escherichia coli
Biochemistry
40
1913-1921
2001
-
-
-
1
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
643076
Kostrewa
Crystal structures of Streptoc ...
Streptococcus pneumoniae
J. Mol. Biol.
305
279-289
2001
-
-
-
1
-
-
-
-
-
1
-
1
-
3
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
288686
Pompeo
Probing the role of cysteine r ...
Bacillus subtilis, Escherichia coli, Escherichia coli JM83, Neisseria gonorrhoeae
J. Bacteriol.
180
4799-4803
1998
-
-
-
-
-
1
5
10
-
-
-
4
-
12
-
-
1
-
-
-
-
-
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
5
-
10
-
-
-
4
-
-
-
1
-
-
-
-
9
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
288685
Mengin-Lecreulx
Copurification of glucosamine- ...
Bacillus subtilis, Escherichia coli, Escherichia coli JM83
J. Bacteriol.
176
5788-5795
1994
-
-
-
-
-
1
4
4
1
1
1
3
-
11
-
-
1
1
-
-
2
-
8
1
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
4
-
4
1
1
1
3
-
-
-
1
-
-
2
-
8
1
-
-
-
1
1
-
-
-
-
-
-
-
-
-