BRENDA - Enzyme Database
show all sequences of 1.7.5.1

A new paradigm for electron transfer through Escherichia coli nitrate reductase A

Fedor, J.; Rothery, R.; Weiner, J.; Biochemistry 53, 4549-4556 (2014)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
gene cluster NarGHI, overexpression in Escherichia coli strain LCB79; gene cluster NarGHI, overexpression in Escherichia coli strain LCB79; gene cluster NarGHI, overexpression in Escherichia coli strain LCB79
Escherichia coli
Engineering
Amino acid exchange
Commentary
Organism
G65A
site-directed mutageness of subunit NarI, mutant G65A is able to support growth and retains significant quinol:nitrate oxidoreductase activity; site-directed mutageness of subunit NarI, mutant G65A is able to support growth and retains significant quinol:nitrate oxidoreductase activity; site-directed mutageness of subunit NarI, mutant G65A is able to support growth and retains significant quinol:nitrate oxidoreductase activity
Escherichia coli
Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
membrane
the NarI subunit anchors the NarGH subunits to the inside of the cytoplasmic membrane; the NarI subunit anchors the NarGH subunits to the inside of the cytoplasmic membrane; the NarI subunit anchors the NarGH subunits to the inside of the cytoplasmic membrane
Escherichia coli
16020
-
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
nitrite + a quinone + H2O
Escherichia coli
-
nitrate + a quinol
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Escherichia coli
P09152
NarG
-
Escherichia coli
P11349
NarH
-
Escherichia coli
P11350
NarI
-
Reaction
Reaction
Commentary
Organism
nitrate + a quinol = nitrite + a quinone + H2O
electrons flow in the overall thermodynamically downhill direction from menaquinol (MQ) or ubiquinol (UQ) through the two hemes of NarI, the four [Fe-S] clusters of NarH, and then through the single [4Fe-4S] cluster of NarG to the Mo-bisPGD cofactor, where nitrate is reduced to nitrite; electrons flow in the overall thermodynamically downhill direction from menaquinol (MQ) or ubiquinol (UQ) through the two hemes of NarI, the four [Fe-S] clusters of NarH, and then through the single [4Fe-4S] cluster of NarG to the Mo-bisPGD cofactor, where nitrate is reduced to nitrite; electrons flow in the overall thermodynamically downhill direction from menaquinol (MQ) or ubiquinol (UQ) through the two hemes of NarI, the four [Fe-S] clusters of NarH, and then through the single [4Fe-4S] cluster of NarG to the Mo-bisPGD cofactor, where nitrate is reduced to nitrite
Escherichia coli
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
nitrite + a quinone + H2O
-
741900
Escherichia coli
nitrate + a quinol
-
-
-
?
Subunits
Subunits
Commentary
Organism
?
x * 140000, NarG subunit, SDS-PAGE; x * 26000, NarI subunit, SDS-PAGE; x * 58000, NarH subunit, SDS-PAGE
Escherichia coli
Temperature Optimum [C]
Temperature Optimum [C]
Temperature Optimum Maximum [C]
Commentary
Organism
25
-
assay at; assay at; assay at
Escherichia coli
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7
-
assay at; assay at; assay at
Escherichia coli
Cofactor
Cofactor
Commentary
Organism
Structure
heme
the membrane subunit (NarI) of Escherichia coli nitrate reductase A (NarGHI) contains two b-type hemes, both of which are the highly anisotropic low-spin type. Heme bD is distal to NarGH and constitutes part of the quinone binding and oxidation site (Q-site) through the axially coordinating His66 residue and one of the heme bD propionate groups. Bound quinone participates in hydrogen bonds with both the imidazole of His66 and the heme propionate; the membrane subunit (NarI) of Escherichia coli nitrate reductase A (NarGHI) contains two b-type hemes, both of which are the highly anisotropic low-spin type. Heme bD is distal to NarGH and constitutes part of the quinone binding and oxidation site (Q-site) through the axially coordinating His66 residue and one of the heme bD propionate groups. Bound quinone participates in hydrogen bonds with both the imidazole of His66 and the heme propionate; the membrane subunit (NarI) of Escherichia coli nitrate reductase A (NarGHI) contains two b-type hemes, both of which are the highly anisotropic low-spin type. Heme bD is distal to NarGH and constitutes part of the quinone binding and oxidation site (Q-site) through the axially coordinating His66 residue and one of the heme bD propionate groups. Bound quinone participates in hydrogen bonds with both the imidazole of His66 and the heme propionate
Escherichia coli
molybdo-bis(pyranopterin guanine dinucleotide)
Mo-bisPGD cofactor, bound to subunit NarG. NarI anchors the NarGH subunits to the inside of the cytoplasmic membrane and contains two hemes b that are proximal (bP) and distal (bD) to the NarGH subunits, respectively; Mo-bisPGD cofactor, bound to subunit NarG. NarI anchors the NarGH subunits to the inside of the cytoplasmic membrane and contains two hemes b that are proximal (bP) and distal (bD) to the NarGH subunits, respectively; Mo-bisPGD cofactor, bound to subunit NarG. NarI anchors the NarGH subunits to the inside of the cytoplasmic membrane and contains two hemes b that are proximal (bP) and distal (bD) to the NarGH subunits, respectively
Escherichia coli
quinone
heme bD is distal to NarGH and constitutes part of the quinone binding and oxidation site (Q-site) through the axially coordinating His66 residue and one of the heme bD propionate groups. Bound quinone participates in hydrogen bonds with both the imidazole of His66 and the heme propionate; heme bD is distal to NarGH and constitutes part of the quinone binding and oxidation site (Q-site) through the axially coordinating His66 residue and one of the heme bD propionate groups. Bound quinone participates in hydrogen bonds with both the imidazole of His66 and the heme propionate; heme bD is distal to NarGH and constitutes part of the quinone binding and oxidation site (Q-site) through the axially coordinating His66 residue and one of the heme bD propionate groups. Bound quinone participates in hydrogen bonds with both the imidazole of His66 and the heme propionate
Escherichia coli
[4Fe-4S]-center
a single tetranuclear iron-sulfur [4Fe-4S] cluster, known as FS0, is bound to subunit NarG. NarH contains three [4Fe-4S] clusters (FS1-FS3) and one trinuclear iron-sulfur cluster ([3Fe-4S], FS4); a single tetranuclear iron-sulfur [4Fe-4S] cluster, known as FS0, is bound to subunit NarG. NarH contains three [4Fe-4S] clusters (FS1-FS3) and one trinuclear iron-sulfur cluster ([3Fe-4S], FS4); a single tetranuclear iron-sulfur [4Fe-4S] cluster, known as FS0, is bound to subunit NarG. NarH contains three [4Fe-4S] clusters (FS1-FS3) and one trinuclear iron-sulfur cluster ([3Fe-4S], FS4)
Escherichia coli
Cloned(Commentary) (protein specific)
Commentary
Organism
gene cluster NarGHI, overexpression in Escherichia coli strain LCB79
Escherichia coli
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
heme
the membrane subunit (NarI) of Escherichia coli nitrate reductase A (NarGHI) contains two b-type hemes, both of which are the highly anisotropic low-spin type. Heme bD is distal to NarGH and constitutes part of the quinone binding and oxidation site (Q-site) through the axially coordinating His66 residue and one of the heme bD propionate groups. Bound quinone participates in hydrogen bonds with both the imidazole of His66 and the heme propionate
Escherichia coli
molybdo-bis(pyranopterin guanine dinucleotide)
Mo-bisPGD cofactor, bound to subunit NarG. NarI anchors the NarGH subunits to the inside of the cytoplasmic membrane and contains two hemes b that are proximal (bP) and distal (bD) to the NarGH subunits, respectively
Escherichia coli
quinone
heme bD is distal to NarGH and constitutes part of the quinone binding and oxidation site (Q-site) through the axially coordinating His66 residue and one of the heme bD propionate groups. Bound quinone participates in hydrogen bonds with both the imidazole of His66 and the heme propionate
Escherichia coli
[4Fe-4S]-center
a single tetranuclear iron-sulfur [4Fe-4S] cluster, known as FS0, is bound to subunit NarG. NarH contains three [4Fe-4S] clusters (FS1-FS3) and one trinuclear iron-sulfur cluster ([3Fe-4S], FS4)
Escherichia coli
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
G65A
site-directed mutageness of subunit NarI, mutant G65A is able to support growth and retains significant quinol:nitrate oxidoreductase activity
Escherichia coli
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
membrane
the NarI subunit anchors the NarGH subunits to the inside of the cytoplasmic membrane
Escherichia coli
16020
-
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
nitrite + a quinone + H2O
Escherichia coli
-
nitrate + a quinol
-
-
?
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
nitrite + a quinone + H2O
-
741900
Escherichia coli
nitrate + a quinol
-
-
-
?
Subunits (protein specific)
Subunits
Commentary
Organism
?
x * 140000, NarG subunit, SDS-PAGE
Escherichia coli
?
x * 58000, NarH subunit, SDS-PAGE
Escherichia coli
?
x * 26000, NarI subunit, SDS-PAGE
Escherichia coli
Temperature Optimum [C] (protein specific)
Temperature Optimum [C]
Temperature Optimum Maximum [C]
Commentary
Organism
25
-
assay at
Escherichia coli
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7
-
assay at
Escherichia coli
General Information
General Information
Commentary
Organism
malfunction
quinone site variants Lys86 and Gly65, Q-site inhibitor HOQNO, and their effects on heme bD, overview; quinone site variants Lys86 and Gly65, Q-site inhibitor HOQNO, and their effects on heme bD, overview; quinone site variants Lys86 and Gly65, Q-site inhibitor HOQNO, and their effects on heme bD, overview
Escherichia coli
additional information
NarGHI comprises a catalytic subunit (NarG, 140 kDa), an electron-transfer subunit (NarH, 58 kDa), and a membrane anchor subunit (NarI, 26 kDa). NarG contains a Mo-bisPGD cofactor that is the site of nitrate reduction as well as a single tetranuclear iron-sulfur ([4Fe-4S]) cluster known as FS0. NarH contains three [4Fe-4S] clusters (FS1-FS3) and one trinuclear iron-sulfur cluster ([3Fe-4S], FS4). NarI anchors the NarGH subunits to the inside of the cytoplasmic membrane and contains two hemes b that are proximal (bP) and distal (bD) to the NarGH subunits, respectively; NarGHI comprises a catalytic subunit (NarG, 140 kDa), an electron-transfer subunit (NarH, 58 kDa), and a membrane anchor subunit (NarI, 26 kDa). NarG contains a Mo-bisPGD cofactor that is the site of nitrate reduction as well as a single tetranuclear iron-sulfur ([4Fe-4S]) cluster known as FS0. NarH contains three [4Fe-4S] clusters (FS1-FS3) and one trinuclear iron-sulfur cluster ([3Fe-4S], FS4). NarI anchors the NarGH subunits to the inside of the cytoplasmic membrane and contains two hemes b that are proximal (bP) and distal (bD) to the NarGH subunits, respectively; NarGHI comprises a catalytic subunit (NarG, 140 kDa), an electron-transfer subunit (NarH, 58 kDa), and a membrane anchor subunit (NarI, 26 kDa). NarG contains a Mo-bisPGD cofactor that is the site of nitrate reduction as well as a single tetranuclear iron-sulfur ([4Fe-4S]) cluster known as FS0. NarH contains three [4Fe-4S] clusters (FS1-FS3) and one trinuclear iron-sulfur cluster ([3Fe-4S], FS4). NarI anchors the NarGH subunits to the inside of the cytoplasmic membrane and contains two hemes b that are proximal (bP) and distal (bD) to the NarGH subunits, respectively
Escherichia coli
General Information (protein specific)
General Information
Commentary
Organism
malfunction
quinone site variants Lys86 and Gly65, Q-site inhibitor HOQNO, and their effects on heme bD, overview
Escherichia coli
additional information
NarGHI comprises a catalytic subunit (NarG, 140 kDa), an electron-transfer subunit (NarH, 58 kDa), and a membrane anchor subunit (NarI, 26 kDa). NarG contains a Mo-bisPGD cofactor that is the site of nitrate reduction as well as a single tetranuclear iron-sulfur ([4Fe-4S]) cluster known as FS0. NarH contains three [4Fe-4S] clusters (FS1-FS3) and one trinuclear iron-sulfur cluster ([3Fe-4S], FS4). NarI anchors the NarGH subunits to the inside of the cytoplasmic membrane and contains two hemes b that are proximal (bP) and distal (bD) to the NarGH subunits, respectively
Escherichia coli
Other publictions for EC 1.7.5.1
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
742333
Vazquez-Torres
Nitrate, nitrite and nitric o ...
Escherichia coli, Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv, Salmonella enterica subsp. enterica serovar Typhimurium, Salmonella enterica subsp. enterica serovar Typhimurium LT2
Curr. Opin. Microbiol.
29
1-8
2016
-
-
3
-
-
-
-
-
3
6
-
5
-
5
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
18
-
-
-
-
-
3
18
-
-
-
-
-
-
-
3
6
-
5
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
2
4
4
2
-
-
741971
Rendon
Demethylmenaquinol is a subst ...
Escherichia coli
Biochim. Biophys. Acta
1847
739-747
2015
-
-
-
-
-
-
-
-
1
-
-
3
-
4
-
-
-
-
-
-
-
-
18
-
1
-
-
-
1
-
-
5
-
-
-
-
-
-
11
-
-
-
-
-
-
-
3
-
-
3
-
-
-
-
-
-
-
-
18
-
3
-
-
-
3
-
-
-
-
1
3
-
-
-
741900
Fedor
A new paradigm for electron t ...
Escherichia coli
Biochemistry
53
4549-4556
2014
-
-
1
-
1
-
-
-
2
-
-
3
-
5
-
-
-
1
-
-
-
-
3
1
1
-
-
-
1
-
-
4
-
-
-
-
-
3
12
-
3
-
-
-
-
-
4
-
-
3
-
-
-
-
-
-
-
-
3
3
3
-
-
-
3
-
-
-
-
2
6
-
-
-
724233
Rowley
Resolving the contributions of ...
Salmonella enterica subsp. enterica serovar Typhimurium, Salmonella enterica subsp. enterica serovar Typhimurium SL1344
Biochem. J.
441
755-762
2012
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
712493
Rothery
Protein crystallography reveal ...
Escherichia coli, Escherichia coli LCB79
J. Biol. Chem.
285
8801-8807
2010
-
-
-
1
3
-
-
-
1
-
-
-
-
4
-
-
1
-
-
-
-
-
4
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
1
3
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
725900
Fischer
The obligate aerobe Streptomyc ...
Streptomyces coelicolor, Streptomyces coelicolor A3(2)
Microbiology
156
3166-3179
2010
-
-
-
-
-
-
-
-
-
-
-
-
-
43
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
726366
Moebius
Heme biosynthesis is coupled t ...
Escherichia coli
Proc. Natl. Acad. Sci. USA
107
10436-10441
2010
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
700276
Cava
A cytochrome c containing nitr ...
Thermus thermophilus
Mol. Microbiol.
70
507-518
2008
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
696212
Lanciano
High-stability semiquinone int ...
Escherichia coli
Biochemistry
46
5323-5329
2007
-
-
-
-
4
-
-
-
1
-
-
1
-
3
-
-
-
-
-
-
-
-
11
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
4
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
11
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
674613
Vergnes
NarJ chaperone binds on two di ...
Escherichia coli
J. Biol. Chem.
281
2170-2176
2006
-
-
-
-
-
-
-
-
1
1
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
672331
Pinho
Isolation and spectroscopic ch ...
Pseudomonas chlororaphis
Biochim. Biophys. Acta
1723
151-162
2005
-
-
-
-
-
-
-
-
-
2
3
-
-
3
-
-
1
-
-
-
1
-
2
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
3
-
-
-
-
1
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
674425
Bertero
Structural and biochemical cha ...
Escherichia coli
J. Biol. Chem.
280
14836-14843
2005
-
-
-
1
1
-
2
1
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
1
2
-
2
-
-
-
1
1
1
-
2
2
2
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
658071
Rothery
The catalytic subunit of Esche ...
Escherichia coli
Biochemistry
43
5324-5333
2004
-
-
-
1
-
-
-
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696520
Vergnes
Involvement of the molybdenum ...
Escherichia coli
Biol. Chem.
279
41398-41403
2004
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
697708
Giordani
Evidence for two different ele ...
Escherichia coli
Eur. J. Biochem.
271
2400-2407
2004
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696200
Zhao
Effects of site-directed mutat ...
Escherichia coli
Biochemistry
42
14225-14233
2003
-
-
-
-
4
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
4
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696201
Zhao
Transient kinetic studies of h ...
Escherichia coli
Biochemistry
42
5403-5413
2003
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
700372
Bertero
Insights into the respiratory ...
Escherichia coli
Nat. Struct. Biol.
10
681-687
2003
-
-
-
1
-
-
-
-
3
2
1
2
-
4
-
-
1
-
-
-
-
-
4
1
-
-
-
-
-
-
-
3
-
-
-
-
-
-
4
2
-
-
-
-
-
-
3
3
1
2
-
-
-
2
-
-
-
-
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
698645
Uchimura
Nitrate reductase-formate dehy ...
Fusarium oxysporum
J. Biochem.
131
579-586
2002
-
-
-
-
-
-
-
-
1
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
395191
Anderson
Catalytic protein film voltamm ...
Paracoccus pantotrophus
Biochemistry
40
11294-11307
2001
-
-
-
-
-
-
-
-
1
-
-
1
-
2
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
697207
Blasco
The coordination and function ...
Escherichia coli
Cell. Mol. Life Sci.
58
179-193
2001
-
-
-
-
-
-
-
-
1
1
-
1
-
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
700254
Chang
Expression of the Escherichia ...
Escherichia coli
Mol. Microbiol.
34
756-766
1999
-
-
-
-
-
-
-
-
-
-
-
1
-
4
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696079
Rothery
Hydroxylated naphthoquinones a ...
Escherichia coli
Biochem. J.
332
35-41
1998
-
-
-
-
-
-
1
2
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
2
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
696187
Guigliarelli
Complete coordination of the f ...
Escherichia coli
Biochemistry
35
4828-4836
1996
-
-
-
-
4
-
-
-
-
1
-
-
-
4
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696375
Berks
Enzymes and associated electro ...
Escherichia coli
Biochim. Biophys. Acta
1232
97-173
1995
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
695649
Bonnefoy
Nitrate reductases in Escheric ...
Escherichia coli
Antonie van Leeuwenhoek
66
47-56
1994
-
-
-
-
-
-
-
-
1
-
-
1
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
697693
Guigliarelli
EPR and redox characterization ...
Escherichia coli
Eur. J. Biochem.
207
61-68
1992
-
-
-
-
-
-
-
-
1
1
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
1
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
697691
Iobbi-Nivol
Purification and further chara ...
Escherichia coli
Eur. J. Biochem.
188
679-687
1990
-
-
-
-
-
1
3
1
1
1
3
1
-
5
1
-
1
-
-
-
-
2
4
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
1
-
3
-
1
1
1
3
1
-
1
-
1
-
-
-
2
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
700218
Blasco
Nitrate reductase of Escherich ...
Escherichia coli
Mol. Gen. Genet.
218
249-256
1989
-
-
1
-
-
-
-
-
-
1
4
1
-
1
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
4
1
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
395162
Ballard
Respiratory nitrate reductase ...
Paracoccus denitrificans
Eur. J. Biochem.
174
207-212
1988
-
-
-
-
-
-
-
-
1
-
1
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
1
-
-
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
697689
Iobbi
Biochemical and immunological ...
Escherichia coli K-12
Eur. J. Biochem.
168
451-459
1987
-
-
-
-
-
-
2
1
1
1
-
1
-
3
-
-
-
-
-
-
-
-
3
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
1
1
1
-
1
-
-
-
-
-
-
-
-
3
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
395164
Morpeth
Kinetic analysis of respirator ...
Escherichia coli
Biochemistry
24
40-46
1985
-
-
-
-
-
-
2
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696060
Enoch
Role of a novel cytochrome b-c ...
Escherichia coli
Biochem. Biophys. Res. Commun.
61
1234-1241
1974
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-