BRENDA - Enzyme Database show
show all sequences of 1.3.98.3

Gametophyte development needs mitochondrial coproporphyrinogen III oxidase function

Pratibha, P.; Singh, S.K.; Srinivasan, R.; Bhat, S.R.; Sreenivasulu, Y.; Plant Physiol. 174, 258-275 (2017)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
gene HEMN1, promoter and transcript analyses of AtHEMN1, recombinant expression of AtHEMN1-GFP fusion protein in mitochondria, quantitative reverse transcription PCR enzyme expression analysis
Arabidopsis thaliana
Engineering
Amino acid exchange
Commentary
Organism
additional information
enzyme knockout by T-DNA insertions in the HEMN1 gene. A 17fold downregulation of AtHEMN1 transcripts occurs in the mutant. The plastidial CPO gene (LIN2) also shows 3.7fold downregulation. The AtHEMN1 mutation prevents the fusion of polar nuclei in the female gametophyte and affects endosperm proliferation. Phenotype, overview
Arabidopsis thaliana
Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
mitochondrion
recombinant AtHEMN1-GFP fusion protein is targeted to mitochondria
Arabidopsis thaliana
5739
-
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Arabidopsis thaliana
Q9FMJ4
-
-
Source Tissue
Source Tissue
Commentary
Organism
Textmining
anther
-
Arabidopsis thaliana
-
embryo sac
-
Arabidopsis thaliana
-
endosperm
of developing seeds
Arabidopsis thaliana
-
flower
promoter and transcript analyses indicate that AtHEMN1 is expressed mainly in floral tissues and developing seeds
Arabidopsis thaliana
-
gametophyte
-
Arabidopsis thaliana
-
plant ovule
-
Arabidopsis thaliana
-
seed
promoter and transcript analyses indicate that AtHEMN1 is expressed mainly in floral tissues and developing seeds
Arabidopsis thaliana
-
Cloned(Commentary) (protein specific)
Commentary
Organism
gene HEMN1, promoter and transcript analyses of AtHEMN1, recombinant expression of AtHEMN1-GFP fusion protein in mitochondria, quantitative reverse transcription PCR enzyme expression analysis
Arabidopsis thaliana
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
additional information
enzyme knockout by T-DNA insertions in the HEMN1 gene. A 17fold downregulation of AtHEMN1 transcripts occurs in the mutant. The plastidial CPO gene (LIN2) also shows 3.7fold downregulation. The AtHEMN1 mutation prevents the fusion of polar nuclei in the female gametophyte and affects endosperm proliferation. Phenotype, overview
Arabidopsis thaliana
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
mitochondrion
recombinant AtHEMN1-GFP fusion protein is targeted to mitochondria
Arabidopsis thaliana
5739
-
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
anther
-
Arabidopsis thaliana
-
embryo sac
-
Arabidopsis thaliana
-
endosperm
of developing seeds
Arabidopsis thaliana
-
flower
promoter and transcript analyses indicate that AtHEMN1 is expressed mainly in floral tissues and developing seeds
Arabidopsis thaliana
-
gametophyte
-
Arabidopsis thaliana
-
plant ovule
-
Arabidopsis thaliana
-
seed
promoter and transcript analyses indicate that AtHEMN1 is expressed mainly in floral tissues and developing seeds
Arabidopsis thaliana
-
General Information
General Information
Commentary
Organism
malfunction
mutation in Arabidopsis thaliana CPO-coding gene AtHEMN1 adversely affects silique length, ovule number, and seed set. T-DNA insertions in gene HEMN1 cause seed sterility. Athemn1 mutant alleles are transmitted via both male and female gametes, but homozygous mutants are never recovered. Plants carrying Athemn1 mutant alleles show defects in gametophyte development, including nonviable pollen and embryo sacs with unfused polar nuclei. Improper differentiation of the central cell leads to defects in endosperm development. Consequently, embryo development is arrested at the globular stage. Reactive oxygen species Accumulates around the central cell in the female gametophytes. The mutant phenotype is completely rescued by transgenic expression of AtHEMN1. Blockage of tetrapyrrole biosynthesis in the AtHEMN1 mutant leads to increased reactive oxygen species accumulation in anthers and embryo sacs. The accumulated reactive oxygen species disrupt mitochondrial function by altering their membrane polarity in floral tissues. The AtHEMN1 mutation prevents the fusion of polar nuclei in the female gametophyte and affects endosperm proliferation. T-DNA insertion mutant lines of Arabidopsis thaliana show bushy habit and short siliques. Cell specification is not affected in Athemn1-1 mutant embryo sacs. Phenotype, overview
Arabidopsis thaliana
metabolism
the enzyme plays an important role in the tetrapyrrole biosynthesis pathway in plants, overview
Arabidopsis thaliana
physiological function
tetrapyrrole biosynthesis is one of the most essential metabolic pathways in almost all organisms. Coproporphyrinogen III oxidase catalyzes the oxidative decarboxylation of coproporphyrinogen III (coprogen) to yield protoporphyrinogen IX (protogen) in the tetrapyrrole biosynthesis pathway
Arabidopsis thaliana
General Information (protein specific)
General Information
Commentary
Organism
malfunction
mutation in Arabidopsis thaliana CPO-coding gene AtHEMN1 adversely affects silique length, ovule number, and seed set. T-DNA insertions in gene HEMN1 cause seed sterility. Athemn1 mutant alleles are transmitted via both male and female gametes, but homozygous mutants are never recovered. Plants carrying Athemn1 mutant alleles show defects in gametophyte development, including nonviable pollen and embryo sacs with unfused polar nuclei. Improper differentiation of the central cell leads to defects in endosperm development. Consequently, embryo development is arrested at the globular stage. Reactive oxygen species Accumulates around the central cell in the female gametophytes. The mutant phenotype is completely rescued by transgenic expression of AtHEMN1. Blockage of tetrapyrrole biosynthesis in the AtHEMN1 mutant leads to increased reactive oxygen species accumulation in anthers and embryo sacs. The accumulated reactive oxygen species disrupt mitochondrial function by altering their membrane polarity in floral tissues. The AtHEMN1 mutation prevents the fusion of polar nuclei in the female gametophyte and affects endosperm proliferation. T-DNA insertion mutant lines of Arabidopsis thaliana show bushy habit and short siliques. Cell specification is not affected in Athemn1-1 mutant embryo sacs. Phenotype, overview
Arabidopsis thaliana
metabolism
the enzyme plays an important role in the tetrapyrrole biosynthesis pathway in plants, overview
Arabidopsis thaliana
physiological function
tetrapyrrole biosynthesis is one of the most essential metabolic pathways in almost all organisms. Coproporphyrinogen III oxidase catalyzes the oxidative decarboxylation of coproporphyrinogen III (coprogen) to yield protoporphyrinogen IX (protogen) in the tetrapyrrole biosynthesis pathway
Arabidopsis thaliana
Other publictions for EC 1.3.98.3
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
746121
Pratibha
Gametophyte development needs ...
Arabidopsis thaliana
Plant Physiol.
174
258-275
2017
-
-
1
-
1
-
-
-
1
-
-
-
-
3
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
739104
Kim
Role of HemF and HemN in the h ...
Vibrio vulnificus, Vibrio vulnificus ATCC 29307
Mol. Microbiol.
96
497-512
2015
-
-
1
-
1
-
-
4
-
-
1
2
-
2
-
-
1
-
-
-
-
-
2
1
-
-
-
2
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
4
-
-
1
2
-
-
-
1
-
-
-
-
2
1
-
-
-
2
-
-
-
-
-
-
-
-
2
2
726009
Azzouzi
Coproporphyrin III excretion i ...
Rubrivivax gelatinosus
Mol. Microbiol.
88
339-351
2013
-
-
-
-
-
-
2
-
-
1
-
1
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
2
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
4
4
-
-
-
745799
Azzouzi
Coproporphyrin III excretion ...
Rubrivivax gelatinosus
Mol. Microbiol.
88
339-351
2013
-
-
-
-
-
-
1
-
-
-
-
1
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
2
2
1
-
-
724235
Abicht
Lactococcus lactis HemW (HemN) ...
Lactococcus lactis
Biochem. J.
442
335-343
2012
-
-
1
-
-
-
-
-
2
1
-
1
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
2
1
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
711084
Shaveta
Structural characterization re ...
Homo sapiens
Biochem. Biophys. Res. Commun.
391
1390-1395
2010
-
-
1
-
-
-
-
-
-
1
-
-
-
3
-
-
1
-
1
1
-
-
-
1
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
711348
Rand
The oxygen-independent copropo ...
Escherichia coli
Biol. Chem.
391
55-63
2010
-
-
1
-
-
-
1
-
-
1
-
2
-
1
-
-
1
1
-
-
-
-
6
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
1
-
-
-
1
-
2
-
-
-
1
-
-
-
-
6
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
712016
Duschene
The antiviral protein viperin ...
Homo sapiens
FEBS Lett.
584
1263-1267
2010
-
-
1
-
-
-
-
-
-
1
-
1
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
1
1
-
-
-
713258
Goto
Functional differentiation of ...
Synechocystis sp.
Plant Cell Physiol.
51
650-663
2010
2
-
1
-
1
-
-
-
-
-
-
1
-
3
-
-
1
-
-
-
-
-
2
-
1
-
-
-
1
-
-
2
-
-
-
2
-
1
2
-
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
685280
Yokoyama
Mechanistic study on the react ...
Bacillus circulans
Biochemistry
47
8950-8960
2008
-
-
1
-
-
-
-
1
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
1
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
686237
Frey
The radical SAM superfamily ...
Homo sapiens
Crit. Rev. Biochem. Mol. Biol.
43
63-88
2008
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
687282
Yokoyama
Characterization and mechanist ...
Bacillus circulans
J. Am. Chem. Soc.
129
15147-15155
2007
-
-
1
-
-
-
2
2
-
-
-
-
-
2
-
-
1
-
-
-
-
-
5
-
-
-
-
2
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
2
-
2
-
-
-
-
-
-
-
1
-
-
-
-
5
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
674567
Layer
The substrate radical of Esche ...
Escherichia coli
J. Biol. Chem.
281
15727-15734
2006
-
1
-
-
-
-
-
-
-
-
-
-
-
3
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
672473
Layer
Structural and functional comp ...
Bacillus subtilis, Cupriavidus necator, Escherichia coli, Rhodobacter sphaeroides, Salmonella enterica subsp. enterica serovar Typhimurium
Biol. Chem.
386
971-980
2005
-
-
-
1
-
-
-
-
-
1
-
-
-
6
-
-
1
-
-
-
-
-
2
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
674462
Layer
Radical S-adenosylmethionine e ...
Escherichia coli
J. Biol. Chem.
280
29038-29046
2005
-
-
1
1
8
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
1
8
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
658501
Layer
Structure and function of radi ...
Escherichia coli
Curr. Opin. Chem. Biol.
8
468-476
2004
-
-
-
1
-
-
-
-
-
-
-
1
-
1
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
655340
Layer
Crystal structure of coproporp ...
Escherichia coli
EMBO J.
22
6214-6224
2003
-
1
1
1
-
-
-
-
-
-
-
1
-
3
-
-
1
1
-
-
-
-
2
1
-
-
-
-
-
-
-
2
-
-
-
-
1
1
2
1
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
656073
Layer
Oxygen-independent coproporphy ...
Escherichia coli
J. Biol. Chem.
277
34136-34142
2002
-
-
1
-
8
-
2
-
-
-
1
-
-
4
-
-
1
1
-
-
-
-
1
1
1
-
-
-
-
-
-
4
-
-
-
-
-
1
4
-
8
-
-
2
-
-
-
-
1
-
-
-
-
1
-
-
-
-
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-