Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 1.2.1.30 extracted from

  • Finnigan, W.; Thomas, A.; Cromar, H.; Gough, B.; Snajdrova, R.; Adams, J.P.; Littlechild, J.A.; Harmer, N.J.
    Characterization of carboxylic acid reductases as enzymes in the toolbox for synthetic chemistry (2017), ChemCatChem, 9, 1005-1017 .
    View publication on PubMedView publication on EuropePMC

Application

Application Comment Organism
synthesis carboxylic acid reductases are important enzymes in the toolbox for sustainable chemistry and provide specific use as biocatalysts Neurospora crassa
synthesis carboxylic acid reductases are important enzymes in the toolbox for sustainable chemistry and provide specific use as biocatalysts Mycolicibacterium phlei
synthesis carboxylic acid reductases are important enzymes in the toolbox for sustainable chemistry and provide specific use as biocatalysts Nocardia asteroides
synthesis carboxylic acid reductases are important enzymes in the toolbox for sustainable chemistry and provide specific use as biocatalysts, application for the reduction of fatty acids to fatty alcohols Mycolicibacterium smegmatis
synthesis carboxylic acid reductases are important enzymes in the toolbox for sustainable chemistry and provide specific use as biocatalysts, application for the reduction of fatty acids to fatty alcohols Trametes versicolor
synthesis carboxylic acid reductases are important enzymes in the toolbox for sustainable chemistry and provide specific use as biocatalysts, application for the reduction of fatty acids to fatty alcohols Syncephalastrum racemosum
synthesis carboxylic acid reductases are important enzymes in the toolbox for sustainable chemistry and provide specific use as biocatalysts, application for the reduction of fatty acids to fatty alcohols Nocardia otitidiscaviarum
synthesis carboxylic acid reductases are important enzymes in the toolbox for sustainable chemistry and provide specific use as biocatalysts, application for the reduction of fatty acids to fatty alcohols Tsukamurella paurometabola
synthesis carboxylic acid reductases are important enzymes in the toolbox for sustainable chemistry and provide specific use as biocatalysts, application for the reduction of fatty acids to fatty alcohols Nocardia brasiliensis
synthesis carboxylic acid reductases are important enzymes in the toolbox for sustainable chemistry and provide specific use as biocatalysts, application for the reduction of fatty acids to fatty alcohols Mycobacterium marinum
synthesis carboxylic acid reductases are important enzymes in the toolbox for sustainable chemistry and provide specific use as biocatalysts. The reduction of racemic ibuprofen by whole Nocardia iowensis cells gives an enantiomeric excess (ee) of 61.2%, which is attributed to enantioselectivity by niCAR based on kinetic data for its reduction of (S)-(+)- and (R)-(-)-ibuprofen enantiomers Nocardia iowensis

Cloned(Commentary)

Cloned (Comment) Organism
DNA and amino acid sequence determination and analysis, phylogenetic analysis Mycolicibacterium smegmatis
DNA and amino acid sequence determination and analysis, phylogenetic analysis Neurospora crassa
DNA and amino acid sequence determination and analysis, phylogenetic analysis Mycolicibacterium phlei
DNA and amino acid sequence determination and analysis, phylogenetic analysis Nocardia asteroides
DNA and amino acid sequence determination and analysis, phylogenetic analysis Trametes versicolor
DNA and amino acid sequence determination and analysis, phylogenetic analysis Syncephalastrum racemosum
DNA and amino acid sequence determination and analysis, phylogenetic analysis Nocardia otitidiscaviarum
DNA and amino acid sequence determination and analysis, phylogenetic analysis Tsukamurella paurometabola
DNA and amino acid sequence determination and analysis, phylogenetic analysis Nocardia iowensis
DNA and amino acid sequence determination and analysis, phylogenetic analysis Nocardia brasiliensis
DNA and amino acid sequence determination and analysis, phylogenetic analysis Mycobacterium marinum

Inhibitors

Inhibitors Comment Organism Structure
AMP product inhibition Mycobacterium marinum
AMP product inhibition, competitive versus ATP Mycolicibacterium phlei
AMP product inhibition Mycolicibacterium smegmatis
AMP product inhibition Neurospora crassa
AMP product inhibition Nocardia asteroides
AMP product inhibition Nocardia brasiliensis
AMP product inhibition Nocardia iowensis
AMP product inhibition Nocardia otitidiscaviarum
AMP product inhibition Syncephalastrum racemosum
AMP product inhibition Trametes versicolor
AMP product inhibition Tsukamurella paurometabola
diphosphate product inhibition Mycobacterium marinum
diphosphate product inhibition, mixed inhibition with ATP, competitive versus 4-methylbenzoic acid Mycolicibacterium phlei
diphosphate product inhibition Mycolicibacterium smegmatis
diphosphate product inhibition Neurospora crassa
diphosphate product inhibition Nocardia asteroides
diphosphate product inhibition Nocardia brasiliensis
diphosphate product inhibition Nocardia iowensis
diphosphate product inhibition Nocardia otitidiscaviarum
diphosphate product inhibition Syncephalastrum racemosum
diphosphate product inhibition Trametes versicolor
diphosphate product inhibition Tsukamurella paurometabola
NADP+ product inhibition Mycobacterium marinum
NADP+ product inhibition, NADP+ shows competitive inhibition with NADPH Mycolicibacterium phlei
NADP+ product inhibition Mycolicibacterium smegmatis
NADP+ product inhibition Neurospora crassa
NADP+ product inhibition Nocardia asteroides
NADP+ product inhibition Nocardia brasiliensis
NADP+ product inhibition Nocardia iowensis
NADP+ product inhibition Nocardia otitidiscaviarum
NADP+ product inhibition Syncephalastrum racemosum
NADP+ product inhibition Trametes versicolor
NADP+ product inhibition Tsukamurella paurometabola

KM Value [mM]

KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
additional information
-
additional information kinetic analysis Mycolicibacterium smegmatis
additional information
-
additional information kinetic analysis Mycolicibacterium phlei
additional information
-
additional information kinetic analysis Nocardia otitidiscaviarum
additional information
-
additional information kinetic analysis Tsukamurella paurometabola
additional information
-
additional information kinetic analysis Nocardia iowensis
0.006
-
trans-2-phenylcyclopropane-1-carboxylate pH 8.0, 30°C Mycolicibacterium smegmatis
0.02
-
dodecanoate pH 7.5, 30°C Nocardia iowensis
0.02
-
octadecanoate pH 7.5, 30°C Nocardia otitidiscaviarum
0.02
-
octadecanoate pH 7.8, 30°C Tsukamurella paurometabola
0.04
-
dodecanoate pH 7.5, 30°C Nocardia otitidiscaviarum
0.04
-
dodecanoate pH 7.8, 30°C Tsukamurella paurometabola
0.05
-
(E)-3-phenylprop-2-enoate pH 7.5, 30°C Nocardia iowensis
0.05
-
dodecanoate pH 8.0, 30°C Mycolicibacterium smegmatis
0.061
-
trans-2-phenylcyclopropane-1-carboxylate pH 7.8, 30°C Tsukamurella paurometabola
0.075
-
(E)-3-phenylprop-2-enoate pH 8.0, 30°C Mycolicibacterium smegmatis
0.09
-
3-phenylprop-2-ynoate pH 7.8, 30°C Tsukamurella paurometabola
0.09
-
dodecanoate pH 7.3, 30°C Mycolicibacterium phlei
0.09
-
octadecanoate pH 7.3, 30°C Mycolicibacterium phlei
0.1
-
Octanoate pH 8.0, 30°C Mycolicibacterium smegmatis
0.16
-
3-Phenylpropionate pH 8.0, 30°C Mycolicibacterium smegmatis
0.16
-
4-Methylbenzoate pH 7.8, 30°C Mycolicibacterium smegmatis
0.19
-
4-Methoxybenzoate pH 7.8, 30°C Mycolicibacterium smegmatis
0.2
-
Octanoate pH 7.5, 30°C Nocardia otitidiscaviarum
0.2
-
Octanoate pH 7.5, 30°C Nocardia iowensis
0.2
-
Octanoate pH 7.8, 30°C Tsukamurella paurometabola
0.21
-
trans-2-phenylcyclopropane-1-carboxylate pH 7.5, 30°C Nocardia iowensis
0.25
-
4-Methoxybenzoate pH 7.5, 30°C Nocardia iowensis
0.27
-
3-oxo-3-phenylpropanoate pH 8.0, 30°C Mycolicibacterium smegmatis
0.29
-
3-oxo-3-phenylpropanoate pH 7.5, 30°C Nocardia otitidiscaviarum
0.3
-
3-Nitrobenzoate pH 7.3, 30°C Mycolicibacterium phlei
0.3
-
(E)-3-phenylprop-2-enoate pH 7.3, 30°C Mycolicibacterium phlei
0.31
-
(E)-3-phenylprop-2-enoate pH 7.8, 30°C Tsukamurella paurometabola
0.32
-
3-Phenylpropionate pH 7.8, 30°C Tsukamurella paurometabola
0.39
-
3-oxo-3-phenylpropanoate pH 7.5, 30°C Nocardia iowensis
0.45
-
4-Methoxybenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.5
-
3-Nitrobenzoate pH 7.8, 30°C Mycolicibacterium smegmatis
0.55
-
3-oxo-3-phenylpropanoate pH 7.8, 30°C Tsukamurella paurometabola
0.56
-
3-Methoxybenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.6
-
octadecanoate pH 8.0, 30°C Mycolicibacterium smegmatis
0.6
-
4-nitrobenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.68
-
3-Methoxybenzoate pH 7.5, 30°C Nocardia iowensis
0.69
-
4-Methylbenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.7
-
octadecanoate pH 7.5, 30°C Nocardia iowensis
0.7
-
3-Nitrobenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.72
-
(E)-3-phenylprop-2-enoate pH 7.5, 30°C Nocardia otitidiscaviarum
0.9
-
benzoate pH 7.5, 30°C Nocardia iowensis
0.9
-
3-Methoxybenzoate pH 7.5, 30°C Nocardia otitidiscaviarum
0.97
-
3-Phenylpropionate pH 7.5, 30°C Nocardia iowensis
1
-
4-Methylbenzoate pH 7.5, 30°C Nocardia iowensis
1
-
Thiophene-2-carboxylate pH 7.5, 30°C Nocardia iowensis
1
-
trans-2-phenylcyclopropane-1-carboxylate pH 7.5, 30°C Nocardia otitidiscaviarum
1.1
-
4-Methoxybenzoate pH 7.5, 30°C Nocardia otitidiscaviarum
1.2
-
4-Methylbenzoate pH 7.5, 30°C Nocardia otitidiscaviarum
1.3
-
3-phenylprop-2-ynoate pH 7.5, 30°C Nocardia iowensis
1.8
-
trans-2-phenylcyclopropane-1-carboxylate pH 7.3, 30°C Mycolicibacterium phlei
2
-
benzoate pH 7.8, 30°C Tsukamurella paurometabola
2
-
Octanoate pH 7.3, 30°C Mycolicibacterium phlei
2.1
-
benzoate pH 7.5, 30°C Nocardia otitidiscaviarum
2.5
-
3-Nitrobenzoate pH 7.5, 30°C Nocardia otitidiscaviarum
2.6
-
Thiophene-2-carboxylate pH 7.5, 30°C Nocardia otitidiscaviarum
2.7
-
3-Phenylpropionate pH 7.5, 30°C Nocardia otitidiscaviarum
2.8
-
4-Methoxybenzoate pH 7.3, 30°C Mycolicibacterium phlei
3
-
3-Methoxybenzoate pH 7.3, 30°C Mycolicibacterium phlei
3
-
3-Phenylpropionate pH 7.3, 30°C Mycolicibacterium phlei
3.3
-
Thiophene-2-carboxylate pH 8.0, 30°C Mycolicibacterium smegmatis
3.3
-
Thiophene-2-carboxylate pH 7.8, 30°C Tsukamurella paurometabola
3.4
-
benzoate pH 7.8, 30°C Mycolicibacterium smegmatis
3.7
-
4-Methylbenzoate pH 7.3, 30°C Mycolicibacterium phlei
3.8
-
3-oxo-3-phenylpropanoate pH 7.3, 30°C Mycolicibacterium phlei
4.7
-
furan-2-carboxylate pH 7.8, 30°C Tsukamurella paurometabola
5
-
Butanoate pH 7.8, 30°C Tsukamurella paurometabola
5.6
-
3-Nitrobenzoate pH 7.5, 30°C Nocardia iowensis
7.9
-
Butanoate pH 8.0, 30°C Mycolicibacterium smegmatis
9
-
2-Methoxybenzoate pH 7.8, 30°C Tsukamurella paurometabola
12
-
3-Methoxybenzoate pH 7.8, 30°C Mycolicibacterium smegmatis
13
-
furan-2-carboxylate pH 8.0, 30°C Mycolicibacterium smegmatis
20
-
pyridine-2-carboxylate pH 7.5, 30°C Nocardia otitidiscaviarum
20
-
benzoate pH 7.3, 30°C Mycolicibacterium phlei
24
-
pyridine-2-carboxylate pH 7.8, 30°C Tsukamurella paurometabola
32
-
Butanoate pH 7.5, 30°C Nocardia iowensis
50
-
Butanoate pH 7.5, 30°C Nocardia otitidiscaviarum
50
-
Thiophene-2-carboxylate pH 7.3, 30°C Mycolicibacterium phlei

Organism

Organism UniProt Comment Textmining
Mycobacterium marinum B2HN69
-
-
Mycobacterium marinum ATCC BAA-535 B2HN69
-
-
Mycolicibacterium phlei
-
-
-
Mycolicibacterium smegmatis
-
-
-
Neurospora crassa
-
-
-
Nocardia asteroides
-
-
-
Nocardia asteroides JCM 3016
-
-
-
Nocardia brasiliensis
-
-
-
Nocardia iowensis Q6RKB1
-
-
Nocardia otitidiscaviarum
-
-
-
Syncephalastrum racemosum
-
-
-
Trametes versicolor
-
-
-
Tsukamurella paurometabola
-
-
-

Reaction

Reaction Comment Organism Reaction ID
an aromatic aldehyde + NADP+ + AMP + diphosphate = an aromatic acid + NADPH + H+ + ATP product inhibition by NADP+, adenosine monophosphate, and diphosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first, proposed catalytic mechanism in 4 steps, overview. The first two steps, the relatively unreactive carboxylic acid is activated to form a thioester with the phosphopantetheine arm at the N-terminal adenylation domain (1) ATP and a carboxylic acid enter the active site of the adenylation domain in which the alpha-phosphate of ATP is attacked by an O atom from the carboxylic acid to form an AMP-acyl phosphoester with the release of diphosphate.(2) The thiol group of the phosphopantetheine arm can then attack the carbonyl carbon atom of the AMP-acyl phosphoester intermediate nucleophilically to release AMP and to form an acyl thioester with the phosphopantetheine arm. (3) The phosphopantetheine arm transfers to the C-terminal reductase domain in which (4) the thioester is reduced by NADPH, the aldehyde and NADP+ are released, and the thiol of the phosphopantetheine arm is regenerated in the process Mycolicibacterium smegmatis
an aromatic aldehyde + NADP+ + AMP + diphosphate = an aromatic acid + NADPH + H+ + ATP product inhibition by NADP+, adenosine monophosphate, and diphosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first, proposed catalytic mechanism in 4 steps, overview. The first two steps, the relatively unreactive carboxylic acid is activated to form a thioester with the phosphopantetheine arm at the N-terminal adenylation domain (1) ATP and a carboxylic acid enter the active site of the adenylation domain in which the alpha-phosphate of ATP is attacked by an O atom from the carboxylic acid to form an AMP-acyl phosphoester with the release of diphosphate.(2) The thiol group of the phosphopantetheine arm can then attack the carbonyl carbon atom of the AMP-acyl phosphoester intermediate nucleophilically to release AMP and to form an acyl thioester with the phosphopantetheine arm. (3) The phosphopantetheine arm transfers to the C-terminal reductase domain in which (4) the thioester is reduced by NADPH, the aldehyde and NADP+ are released, and the thiol of the phosphopantetheine arm is regenerated in the process Neurospora crassa
an aromatic aldehyde + NADP+ + AMP + diphosphate = an aromatic acid + NADPH + H+ + ATP product inhibition by NADP+, adenosine monophosphate, and diphosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first, proposed catalytic mechanism in 4 steps, overview. The first two steps, the relatively unreactive carboxylic acid is activated to form a thioester with the phosphopantetheine arm at the N-terminal adenylation domain (1) ATP and a carboxylic acid enter the active site of the adenylation domain in which the alpha-phosphate of ATP is attacked by an O atom from the carboxylic acid to form an AMP-acyl phosphoester with the release of diphosphate.(2) The thiol group of the phosphopantetheine arm can then attack the carbonyl carbon atom of the AMP-acyl phosphoester intermediate nucleophilically to release AMP and to form an acyl thioester with the phosphopantetheine arm. (3) The phosphopantetheine arm transfers to the C-terminal reductase domain in which (4) the thioester is reduced by NADPH, the aldehyde and NADP+ are released, and the thiol of the phosphopantetheine arm is regenerated in the process Nocardia asteroides
an aromatic aldehyde + NADP+ + AMP + diphosphate = an aromatic acid + NADPH + H+ + ATP product inhibition by NADP+, adenosine monophosphate, and diphosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first, proposed catalytic mechanism in 4 steps, overview. The first two steps, the relatively unreactive carboxylic acid is activated to form a thioester with the phosphopantetheine arm at the N-terminal adenylation domain (1) ATP and a carboxylic acid enter the active site of the adenylation domain in which the alpha-phosphate of ATP is attacked by an O atom from the carboxylic acid to form an AMP-acyl phosphoester with the release of diphosphate.(2) The thiol group of the phosphopantetheine arm can then attack the carbonyl carbon atom of the AMP-acyl phosphoester intermediate nucleophilically to release AMP and to form an acyl thioester with the phosphopantetheine arm. (3) The phosphopantetheine arm transfers to the C-terminal reductase domain in which (4) the thioester is reduced by NADPH, the aldehyde and NADP+ are released, and the thiol of the phosphopantetheine arm is regenerated in the process Trametes versicolor
an aromatic aldehyde + NADP+ + AMP + diphosphate = an aromatic acid + NADPH + H+ + ATP product inhibition by NADP+, adenosine monophosphate, and diphosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first, proposed catalytic mechanism in 4 steps, overview. The first two steps, the relatively unreactive carboxylic acid is activated to form a thioester with the phosphopantetheine arm at the N-terminal adenylation domain (1) ATP and a carboxylic acid enter the active site of the adenylation domain in which the alpha-phosphate of ATP is attacked by an O atom from the carboxylic acid to form an AMP-acyl phosphoester with the release of diphosphate.(2) The thiol group of the phosphopantetheine arm can then attack the carbonyl carbon atom of the AMP-acyl phosphoester intermediate nucleophilically to release AMP and to form an acyl thioester with the phosphopantetheine arm. (3) The phosphopantetheine arm transfers to the C-terminal reductase domain in which (4) the thioester is reduced by NADPH, the aldehyde and NADP+ are released, and the thiol of the phosphopantetheine arm is regenerated in the process Syncephalastrum racemosum
an aromatic aldehyde + NADP+ + AMP + diphosphate = an aromatic acid + NADPH + H+ + ATP product inhibition by NADP+, adenosine monophosphate, and diphosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first, proposed catalytic mechanism in 4 steps, overview. The first two steps, the relatively unreactive carboxylic acid is activated to form a thioester with the phosphopantetheine arm at the N-terminal adenylation domain (1) ATP and a carboxylic acid enter the active site of the adenylation domain in which the alpha-phosphate of ATP is attacked by an O atom from the carboxylic acid to form an AMP-acyl phosphoester with the release of diphosphate.(2) The thiol group of the phosphopantetheine arm can then attack the carbonyl carbon atom of the AMP-acyl phosphoester intermediate nucleophilically to release AMP and to form an acyl thioester with the phosphopantetheine arm. (3) The phosphopantetheine arm transfers to the C-terminal reductase domain in which (4) the thioester is reduced by NADPH, the aldehyde and NADP+ are released, and the thiol of the phosphopantetheine arm is regenerated in the process Nocardia otitidiscaviarum
an aromatic aldehyde + NADP+ + AMP + diphosphate = an aromatic acid + NADPH + H+ + ATP product inhibition by NADP+, adenosine monophosphate, and diphosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first, proposed catalytic mechanism in 4 steps, overview. The first two steps, the relatively unreactive carboxylic acid is activated to form a thioester with the phosphopantetheine arm at the N-terminal adenylation domain (1) ATP and a carboxylic acid enter the active site of the adenylation domain in which the alpha-phosphate of ATP is attacked by an O atom from the carboxylic acid to form an AMP-acyl phosphoester with the release of diphosphate.(2) The thiol group of the phosphopantetheine arm can then attack the carbonyl carbon atom of the AMP-acyl phosphoester intermediate nucleophilically to release AMP and to form an acyl thioester with the phosphopantetheine arm. (3) The phosphopantetheine arm transfers to the C-terminal reductase domain in which (4) the thioester is reduced by NADPH, the aldehyde and NADP+ are released, and the thiol of the phosphopantetheine arm is regenerated in the process Tsukamurella paurometabola
an aromatic aldehyde + NADP+ + AMP + diphosphate = an aromatic acid + NADPH + H+ + ATP product inhibition by NADP+, adenosine monophosphate, and diphosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first, proposed catalytic mechanism in 4 steps, overview. The first two steps, the relatively unreactive carboxylic acid is activated to form a thioester with the phosphopantetheine arm at the N-terminal adenylation domain (1) ATP and a carboxylic acid enter the active site of the adenylation domain in which the alpha-phosphate of ATP is attacked by an O atom from the carboxylic acid to form an AMP-acyl phosphoester with the release of diphosphate.(2) The thiol group of the phosphopantetheine arm can then attack the carbonyl carbon atom of the AMP-acyl phosphoester intermediate nucleophilically to release AMP and to form an acyl thioester with the phosphopantetheine arm. (3) The phosphopantetheine arm transfers to the C-terminal reductase domain in which (4) the thioester is reduced by NADPH, the aldehyde and NADP+ are released, and the thiol of the phosphopantetheine arm is regenerated in the process Nocardia iowensis
an aromatic aldehyde + NADP+ + AMP + diphosphate = an aromatic acid + NADPH + H+ + ATP product inhibition by NADP+, adenosine monophosphate, and diphosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first, proposed catalytic mechanism in 4 steps, overview. The first two steps, the relatively unreactive carboxylic acid is activated to form a thioester with the phosphopantetheine arm at the N-terminal adenylation domain (1) ATP and a carboxylic acid enter the active site of the adenylation domain in which the alpha-phosphate of ATP is attacked by an O atom from the carboxylic acid to form an AMP-acyl phosphoester with the release of diphosphate.(2) The thiol group of the phosphopantetheine arm can then attack the carbonyl carbon atom of the AMP-acyl phosphoester intermediate nucleophilically to release AMP and to form an acyl thioester with the phosphopantetheine arm. (3) The phosphopantetheine arm transfers to the C-terminal reductase domain in which (4) the thioester is reduced by NADPH, the aldehyde and NADP+ are released, and the thiol of the phosphopantetheine arm is regenerated in the process Nocardia brasiliensis
an aromatic aldehyde + NADP+ + AMP + diphosphate = an aromatic acid + NADPH + H+ + ATP product inhibition by NADP+, adenosine monophosphate, and diphosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first, proposed catalytic mechanism in 4 steps, overview. The first two steps, the relatively unreactive carboxylic acid is activated to form a thioester with the phosphopantetheine arm at the N-terminal adenylation domain (1) ATP and a carboxylic acid enter the active site of the adenylation domain in which the alpha-phosphate of ATP is attacked by an O atom from the carboxylic acid to form an AMP-acyl phosphoester with the release of diphosphate.(2) The thiol group of the phosphopantetheine arm can then attack the carbonyl carbon atom of the AMP-acyl phosphoester intermediate nucleophilically to release AMP and to form an acyl thioester with the phosphopantetheine arm. (3) The phosphopantetheine arm transfers to the C-terminal reductase domain in which (4) the thioester is reduced by NADPH, the aldehyde and NADP+ are released, and the thiol of the phosphopantetheine arm is regenerated in the process Mycobacterium marinum
an aromatic aldehyde + NADP+ + AMP + diphosphate = an aromatic acid + NADPH + H+ + ATP product inhibition by NADP+, adenosine monophosphate, and diphosphate indicates that the binding of substrates at the adenylation domain is ordered with ATP binding first, proposed catalytic mechanism in 4 steps, overview. The first two steps, the relatively unreactive carboxylic acid is activated to form a thioester with the phosphopantetheine arm at the N-terminal adenylation domain (1) ATP and a carboxylic acid enter the active site of the adenylation domain in which the alpha-phosphate of ATP is attacked by an O-atom from the carboxylic acid to form an AMP-acyl phosphoester with the release of diphosphate.(2) The thiol group of the phosphopantetheine arm can then attack the carbonyl carbon atom of the AMP-acyl phosphoester intermediate nucleophilically to release AMP and to form an acyl thioester with the phosphopantetheine arm. (3) The phosphopantetheine arm transfers to the C-terminal reductase domain in which (4) the thioester is reduced by NADPH, the aldehyde and NADP+ are released, and the thiol of the phosphopantetheine arm is regenerated in the process Mycolicibacterium phlei

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
(E)-3-phenylprop-2-enoate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum (E)-3-phenylprop-2-enal + NADP+ + AMP + diphosphate
-
?
(E)-3-phenylprop-2-enoate + NADPH + H+ + ATP
-
Nocardia iowensis (E)-3-phenylprop-2-enal + NADP+ + AMP + diphosphate
-
?
(E)-3-phenylprop-2-enoate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis (E)-3-phenylprop2-enal + NADP+ + AMP + diphosphate
-
?
(E)-3-phenylprop-2-enoate + NADPH + H+ + ATP
-
Mycolicibacterium phlei (E)-3-phenylprop2-enal + NADP+ + AMP + diphosphate
-
?
(E)-3-phenylprop-2-enoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola (E)-3-phenylprop2-enal + NADP+ + AMP + diphosphate
-
?
2-methoxybenzoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola 2-methoxybenzaldehyde + NADP+ + AMP + diphosphate
-
?
3-methoxybenzoate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis 3-methoxybenzaldehyde + NADP+ + AMP + diphosphate
-
?
3-methoxybenzoate + NADPH + H+ + ATP
-
Mycolicibacterium phlei 3-methoxybenzaldehyde + NADP+ + AMP + diphosphate
-
?
3-methoxybenzoate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum 3-methoxybenzaldehyde + NADP+ + AMP + diphosphate
-
?
3-methoxybenzoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola 3-methoxybenzaldehyde + NADP+ + AMP + diphosphate
-
?
3-methoxybenzoate + NADPH + H+ + ATP
-
Nocardia iowensis 3-methoxybenzaldehyde + NADP+ + AMP + diphosphate
-
?
3-nitrobenzoate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis 3-nitrobenzaldehyde + NADP+ + AMP + diphosphate
-
?
3-nitrobenzoate + NADPH + H+ + ATP
-
Mycolicibacterium phlei 3-nitrobenzaldehyde + NADP+ + AMP + diphosphate
-
?
3-nitrobenzoate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum 3-nitrobenzaldehyde + NADP+ + AMP + diphosphate
-
?
3-nitrobenzoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola 3-nitrobenzaldehyde + NADP+ + AMP + diphosphate
-
?
3-nitrobenzoate + NADPH + H+ + ATP
-
Nocardia iowensis 3-nitrobenzaldehyde + NADP+ + AMP + diphosphate
-
?
3-oxo-3-phenylpropanoate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis 3-oxo-3-phenylpropanal + NADP+ + AMP + diphosphate
-
?
3-oxo-3-phenylpropanoate + NADPH + H+ + ATP
-
Mycolicibacterium phlei 3-oxo-3-phenylpropanal + NADP+ + AMP + diphosphate
-
?
3-oxo-3-phenylpropanoate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum 3-oxo-3-phenylpropanal + NADP+ + AMP + diphosphate
-
?
3-oxo-3-phenylpropanoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola 3-oxo-3-phenylpropanal + NADP+ + AMP + diphosphate
-
?
3-oxo-3-phenylpropanoate + NADPH + H+ + ATP
-
Nocardia iowensis 3-oxo-3-phenylpropanal + NADP+ + AMP + diphosphate
-
?
3-phenylprop-2-ynoate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum 3-phenylprop-2-ynal + NADP+ + AMP + diphosphate
-
?
3-phenylprop-2-ynoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola 3-phenylprop-2-ynal + NADP+ + AMP + diphosphate
-
?
3-phenylprop-2-ynoate + NADPH + H+ + ATP
-
Nocardia iowensis 3-phenylprop-2-ynal + NADP+ + AMP + diphosphate
-
?
3-phenylpropionate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis 3-phenylpropionaldehyde + NADP+ + AMP + diphosphate
-
?
3-phenylpropionate + NADPH + H+ + ATP
-
Mycolicibacterium phlei 3-phenylpropionaldehyde + NADP+ + AMP + diphosphate
-
?
3-phenylpropionate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum 3-phenylpropionaldehyde + NADP+ + AMP + diphosphate
-
?
3-phenylpropionate + NADPH + H+ + ATP
-
Tsukamurella paurometabola 3-phenylpropionaldehyde + NADP+ + AMP + diphosphate
-
?
3-phenylpropionate + NADPH + H+ + ATP
-
Nocardia iowensis 3-phenylpropionaldehyde + NADP+ + AMP + diphosphate
-
?
4-methoxybenzoate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis 4-methoxybenzaldehyde + NADP+ + AMP + diphosphate
-
?
4-methoxybenzoate + NADPH + H+ + ATP
-
Mycolicibacterium phlei 4-methoxybenzaldehyde + NADP+ + AMP + diphosphate
-
?
4-methoxybenzoate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum 4-methoxybenzaldehyde + NADP+ + AMP + diphosphate
-
?
4-methoxybenzoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola 4-methoxybenzaldehyde + NADP+ + AMP + diphosphate
-
?
4-methoxybenzoate + NADPH + H+ + ATP
-
Nocardia iowensis 4-methoxybenzaldehyde + NADP+ + AMP + diphosphate
-
?
4-methylbenzoate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis 4-methylbenzaldehyde + NADP+ + AMP + diphosphate
-
?
4-methylbenzoate + NADPH + H+ + ATP
-
Mycolicibacterium phlei 4-methylbenzaldehyde + NADP+ + AMP + diphosphate
-
?
4-methylbenzoate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum 4-methylbenzaldehyde + NADP+ + AMP + diphosphate
-
?
4-methylbenzoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola 4-methylbenzaldehyde + NADP+ + AMP + diphosphate
-
?
4-methylbenzoate + NADPH + H+ + ATP
-
Nocardia iowensis 4-methylbenzaldehyde + NADP+ + AMP + diphosphate
-
?
4-nitrobenzoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola 4-nitrobenzaldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Neurospora crassa aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Mycolicibacterium phlei aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Nocardia asteroides aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Trametes versicolor aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Syncephalastrum racemosum aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Tsukamurella paurometabola aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Nocardia iowensis aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Nocardia brasiliensis aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Mycobacterium marinum aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Mycobacterium marinum ATCC BAA-535 aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
aromatic acid + NADPH + H+ + ATP
-
Nocardia asteroides JCM 3016 aromatic aldehyde + NADP+ + AMP + diphosphate
-
?
benzoate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis benzaldehyde + NADP+ + AMP + diphosphate
-
?
benzoate + NADPH + H+ + ATP
-
Mycolicibacterium phlei benzaldehyde + NADP+ + AMP + diphosphate
-
?
benzoate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum benzaldehyde + NADP+ + AMP + diphosphate
-
?
benzoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola benzaldehyde + NADP+ + AMP + diphosphate
-
?
benzoate + NADPH + H+ + ATP
-
Nocardia iowensis benzaldehyde + NADP+ + AMP + diphosphate
-
?
butanoate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis butyraldehyde + NADP+ + AMP + diphosphate
-
?
butanoate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum butyraldehyde + NADP+ + AMP + diphosphate
-
?
butanoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola butyraldehyde + NADP+ + AMP + diphosphate
-
?
butanoate + NADPH + H+ + ATP
-
Nocardia iowensis butyraldehyde + NADP+ + AMP + diphosphate
-
?
dodecanoate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis dodecanal + NADP+ + AMP + diphosphate
-
?
dodecanoate + NADPH + H+ + ATP
-
Mycolicibacterium phlei dodecanal + NADP+ + AMP + diphosphate
-
?
dodecanoate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum dodecanal + NADP+ + AMP + diphosphate
-
?
dodecanoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola dodecanal + NADP+ + AMP + diphosphate
-
?
dodecanoate + NADPH + H+ + ATP
-
Nocardia iowensis dodecanal + NADP+ + AMP + diphosphate
-
?
furan-2-carboxylate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis furan-2-carbaldehyde + NADP+ + AMP + diphosphate
-
?
furan-2-carboxylate + NADPH + H+ + ATP
-
Tsukamurella paurometabola furan-2-carbaldehyde + NADP+ + AMP + diphosphate
-
?
additional information enzyme CAR prefers substrates in which the carboxylic acid is the only polar or charged group, which gives a useful insight into the substrate specificity of the enzymes. Model development for the prediction of CAR reactivity Nocardia brasiliensis ?
-
-
additional information enzyme CAR prefers substrates in which the carboxylic acid is the only polar or charged group, which gives a useful insight into the substrate specificity of the enzymes. Model development for the prediction of CAR reactivity. No activity with 2-methoxybenzoate, 4-nitrobenzoate, 2-nitrobenzoate, phenylpropynoate, pyridine-2-carboxylate, and 1H-pyrrole-2-carboxylate Mycolicibacterium smegmatis ?
-
-
additional information no activity with 2-methoxybenzoate, 4-nitrobenzoate, 2-nitrobenzoate, 1H-pyrrole-2-carboxylate and furan-2-carboxylate Nocardia otitidiscaviarum ?
-
-
additional information no activity with 2-methoxybenzoate, 4-nitrobenzoate, 2-nitrobenzoate, phenylpropynoate, butanoate, pyridine-2-carboxylate, 1H-pyrrole-2-carboxylate, and furan-2-carboxylate Mycolicibacterium phlei ?
-
-
additional information no activity with 2-methoxybenzoate, 4-nitrobenzoate, 2-nitrobenzoate, pyridine-2-carboxylate, 1H-pyrrole-2-carboxylate, and furan-2-carboxylate Nocardia iowensis ?
-
-
additional information no activity with 2-nitrobenzoate and 1H-pyrrole-2-carboxylate Tsukamurella paurometabola ?
-
-
additional information the enzyme is active against C2-C18 fatty acids Trametes versicolor ?
-
-
additional information the enzyme is active against C2-C18 fatty acids Syncephalastrum racemosum ?
-
-
additional information the enzyme is active against C2-C18 fatty acids. Enzyme CAR prefers substrates in which the carboxylic acid is the only polar or charged group, which gives a useful insight into the substrate specificity of the enzymes. Model development for the prediction of CAR reactivity Mycobacterium marinum ?
-
-
additional information the enzyme prefers benzoates and aliphatic acids that are substituted with a phenyl group in the 3-position. No reaction of this CAR with simple aliphatic acids Nocardia asteroides ?
-
-
additional information the enzyme is active against C2-C18 fatty acids. Enzyme CAR prefers substrates in which the carboxylic acid is the only polar or charged group, which gives a useful insight into the substrate specificity of the enzymes. Model development for the prediction of CAR reactivity Mycobacterium marinum ATCC BAA-535 ?
-
-
additional information the enzyme prefers benzoates and aliphatic acids that are substituted with a phenyl group in the 3-position. No reaction of this CAR with simple aliphatic acids Nocardia asteroides JCM 3016 ?
-
-
octadecanoate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis octadecanal + NADP+ + AMP + diphosphate
-
?
octadecanoate + NADPH + H+ + ATP
-
Mycolicibacterium phlei octadecanal + NADP+ + AMP + diphosphate
-
?
octadecanoate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum octadecanal + NADP+ + AMP + diphosphate
-
?
octadecanoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola octadecanal + NADP+ + AMP + diphosphate
-
?
octadecanoate + NADPH + H+ + ATP
-
Nocardia iowensis octadecanal + NADP+ + AMP + diphosphate
-
?
octanoate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis octanal + NADP+ + AMP + diphosphate
-
?
octanoate + NADPH + H+ + ATP
-
Mycolicibacterium phlei octanal + NADP+ + AMP + diphosphate
-
?
octanoate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum octanal + NADP+ + AMP + diphosphate
-
?
octanoate + NADPH + H+ + ATP
-
Tsukamurella paurometabola octanal + NADP+ + AMP + diphosphate
-
?
octanoate + NADPH + H+ + ATP
-
Nocardia iowensis octanal + NADP+ + AMP + diphosphate
-
?
pyridine-2-carboxylate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum pyridine-2-carbaldehyde + NADP+ + AMP + diphosphate
-
?
pyridine-2-carboxylate + NADPH + H+ + ATP
-
Tsukamurella paurometabola pyridine-2-carbaldehyde + NADP+ + AMP + diphosphate
-
?
thiophene-2-carboxylate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis thiophene-2-carbaldehyde + NADP+ + AMP + diphosphate
-
?
thiophene-2-carboxylate + NADPH + H+ + ATP
-
Mycolicibacterium phlei thiophene-2-carbaldehyde + NADP+ + AMP + diphosphate
-
?
thiophene-2-carboxylate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum thiophene-2-carbaldehyde + NADP+ + AMP + diphosphate
-
?
thiophene-2-carboxylate + NADPH + H+ + ATP
-
Tsukamurella paurometabola thiophene-2-carbaldehyde + NADP+ + AMP + diphosphate
-
?
thiophene-2-carboxylate + NADPH + H+ + ATP
-
Nocardia iowensis thiophene-2-carbaldehyde + NADP+ + AMP + diphosphate
-
?
trans-2-phenylcyclopropane-1-carboxylate + NADPH + H+ + ATP
-
Mycolicibacterium smegmatis trans-2-phenylcyclopropane-1-carbaldehyde + NADP+ + AMP + diphosphate
-
?
trans-2-phenylcyclopropane-1-carboxylate + NADPH + H+ + ATP
-
Mycolicibacterium phlei trans-2-phenylcyclopropane-1-carbaldehyde + NADP+ + AMP + diphosphate
-
?
trans-2-phenylcyclopropane-1-carboxylate + NADPH + H+ + ATP
-
Nocardia otitidiscaviarum trans-2-phenylcyclopropane-1-carbaldehyde + NADP+ + AMP + diphosphate
-
?
trans-2-phenylcyclopropane-1-carboxylate + NADPH + H+ + ATP
-
Tsukamurella paurometabola trans-2-phenylcyclopropane-1-carbaldehyde + NADP+ + AMP + diphosphate
-
?
trans-2-phenylcyclopropane-1-carboxylate + NADPH + H+ + ATP
-
Nocardia iowensis trans-2-phenylcyclopropane-1-carbaldehyde + NADP+ + AMP + diphosphate
-
?

Synonyms

Synonyms Comment Organism
aryl aldehyde:NADP+ oxidoreductase
-
Neurospora crassa
ATP/NADPH-dependent carboxylic acid reductase
-
Mycobacterium marinum
CAR
-
Mycolicibacterium smegmatis
CAR
-
Neurospora crassa
CAR
-
Mycolicibacterium phlei
CAR
-
Nocardia asteroides
CAR
-
Trametes versicolor
CAR
-
Syncephalastrum racemosum
CAR
-
Nocardia otitidiscaviarum
CAR
-
Tsukamurella paurometabola
CAR
-
Nocardia iowensis
CAR
-
Nocardia brasiliensis
CAR
-
Mycobacterium marinum
Carboxylic acid reductase
-
Mycolicibacterium smegmatis
Carboxylic acid reductase
-
Neurospora crassa
Carboxylic acid reductase
-
Mycolicibacterium phlei
Carboxylic acid reductase
-
Nocardia asteroides
Carboxylic acid reductase
-
Trametes versicolor
Carboxylic acid reductase
-
Syncephalastrum racemosum
Carboxylic acid reductase
-
Nocardia otitidiscaviarum
Carboxylic acid reductase
-
Tsukamurella paurometabola
Carboxylic acid reductase
-
Nocardia iowensis
Carboxylic acid reductase
-
Nocardia brasiliensis
Carboxylic acid reductase
-
Mycobacterium marinum
mpCAR
-
Mycolicibacterium phlei
mpCAR
-
Nocardia asteroides
msCAR
-
Mycolicibacterium smegmatis
niCAR
-
Nocardia iowensis
noCAR
-
Nocardia otitidiscaviarum
tpCAR
-
Tsukamurella paurometabola

Temperature Optimum [°C]

Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
30
-
assay at Mycolicibacterium smegmatis
30
-
assay at Mycolicibacterium phlei
30
-
assay at Nocardia iowensis
31
-
-
Tsukamurella paurometabola
38
-
-
Nocardia otitidiscaviarum
40
-
-
Nocardia asteroides

Temperature Stability [°C]

Temperature Stability Minimum [°C] Temperature Stability Maximum [°C] Comment Organism
additional information
-
enzyme half-lives at different conditions, overview Mycolicibacterium smegmatis
additional information
-
enzyme half-lives at different conditions, overview Mycolicibacterium phlei
additional information
-
enzyme half-lives at different conditions, overview Nocardia otitidiscaviarum
additional information
-
enzyme half-lives at different conditions, overview Tsukamurella paurometabola
additional information
-
enzyme half-lives at different conditions, overview Nocardia iowensis
30
-
half-life is 132.2 h Mycolicibacterium phlei
30
-
half-life is 35.3 h Nocardia otitidiscaviarum
30
-
half-life is 42.9 h Nocardia iowensis
30
-
half-life is 53.7 h Mycolicibacterium smegmatis
30
-
half-life of the enzyme is 25 h Tsukamurella paurometabola
42 50 enzyme mpCAR retains 92% of its activity following the same incubation at 42°C. mpCAR is able to retain residual activity up to 50°C Mycolicibacterium phlei

Turnover Number [1/s]

Turnover Number Minimum [1/s] Turnover Number Maximum [1/s] Substrate Comment Organism Structure
0.062
-
3-Nitrobenzoate pH 7.3, 30°C Mycolicibacterium phlei
0.062
-
octadecanoate pH 7.3, 30°C Mycolicibacterium phlei
0.1
-
3-phenylprop-2-ynoate pH 7.8, 30°C Tsukamurella paurometabola
0.117
-
3-phenylprop-2-ynoate pH 7.5, 30°C Nocardia iowensis
0.128
-
(E)-3-phenylprop-2-enoate pH 7.5, 30°C Nocardia iowensis
0.18
-
trans-2-phenylcyclopropane-1-carboxylate pH 7.5, 30°C Nocardia iowensis
0.183
-
octadecanoate pH 7.5, 30°C Nocardia otitidiscaviarum
0.25
-
octadecanoate pH 7.8, 30°C Tsukamurella paurometabola
0.3
-
3-Nitrobenzoate pH 7.5, 30°C Nocardia iowensis
0.3
-
3-Methoxybenzoate pH 7.8, 30°C Mycolicibacterium smegmatis
0.3
-
3-oxo-3-phenylpropanoate pH 7.3, 30°C Mycolicibacterium phlei
0.317
-
2-Methoxybenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.32
-
furan-2-carboxylate pH 7.8, 30°C Tsukamurella paurometabola
0.33
-
trans-2-phenylcyclopropane-1-carboxylate pH 7.3, 30°C Mycolicibacterium phlei
0.358
-
3-Phenylpropionate pH 7.3, 30°C Mycolicibacterium phlei
0.37
-
trans-2-phenylcyclopropane-1-carboxylate pH 8.0, 30°C Mycolicibacterium smegmatis
0.38
-
pyridine-2-carboxylate pH 7.8, 30°C Tsukamurella paurometabola
0.55
-
3-Nitrobenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.618
-
3-oxo-3-phenylpropanoate pH 7.5, 30°C Nocardia iowensis
0.63
-
(E)-3-phenylprop-2-enoate pH 7.8, 30°C Tsukamurella paurometabola
0.67
-
3-Nitrobenzoate pH 7.8, 30°C Mycolicibacterium smegmatis
0.717
-
trans-2-phenylcyclopropane-1-carboxylate pH 7.8, 30°C Tsukamurella paurometabola
0.77
-
octadecanoate pH 8.0, 30°C Mycolicibacterium smegmatis
0.8
-
trans-2-phenylcyclopropane-1-carboxylate pH 7.5, 30°C Nocardia otitidiscaviarum
0.82
-
4-Methoxybenzoate pH 7.5, 30°C Nocardia iowensis
0.83
-
furan-2-carboxylate pH 8.0, 30°C Mycolicibacterium smegmatis
0.83
-
Thiophene-2-carboxylate pH 7.3, 30°C Mycolicibacterium phlei
0.92
-
dodecanoate pH 7.3, 30°C Mycolicibacterium phlei
0.97
-
Octanoate pH 7.3, 30°C Mycolicibacterium phlei
0.983
-
3-Nitrobenzoate pH 7.5, 30°C Nocardia otitidiscaviarum
1.01
-
Thiophene-2-carboxylate pH 7.5, 30°C Nocardia iowensis
1.05
-
3-oxo-3-phenylpropanoate pH 7.5, 30°C Nocardia otitidiscaviarum
1.12
-
(E)-3-phenylprop-2-enoate pH 7.3, 30°C Mycolicibacterium phlei
1.13
-
octadecanoate pH 7.5, 30°C Nocardia iowensis
1.25
-
3-oxo-3-phenylpropanoate pH 8.0, 30°C Mycolicibacterium smegmatis
1.27
-
pyridine-2-carboxylate pH 7.5, 30°C Nocardia otitidiscaviarum
1.37
-
Butanoate pH 7.8, 30°C Tsukamurella paurometabola
1.37
-
Thiophene-2-carboxylate pH 7.8, 30°C Tsukamurella paurometabola
1.42
-
3-oxo-3-phenylpropanoate pH 7.8, 30°C Tsukamurella paurometabola
1.43
-
3-Phenylpropionate pH 7.5, 30°C Nocardia iowensis
1.55
-
3-Methoxybenzoate pH 7.5, 30°C Nocardia iowensis
1.57
-
4-Methylbenzoate pH 7.5, 30°C Nocardia iowensis
1.63
-
benzoate pH 7.5, 30°C Nocardia iowensis
1.65
-
dodecanoate pH 7.5, 30°C Nocardia otitidiscaviarum
1.73
-
3-Methoxybenzoate pH 7.3, 30°C Mycolicibacterium phlei
1.75
-
(E)-3-phenylprop-2-enoate pH 7.5, 30°C Nocardia otitidiscaviarum
1.97
-
(E)-3-phenylprop-2-enoate pH 8.0, 30°C Mycolicibacterium smegmatis
2.03
-
4-Methylbenzoate pH 7.3, 30°C Mycolicibacterium phlei
2.05
-
Thiophene-2-carboxylate pH 8.0, 30°C Mycolicibacterium smegmatis
2.15
-
Butanoate pH 8.0, 30°C Mycolicibacterium smegmatis
2.17
-
4-Methoxybenzoate pH 7.8, 30°C Tsukamurella paurometabola
2.17
-
4-nitrobenzoate pH 7.8, 30°C Tsukamurella paurometabola
2.18
-
dodecanoate pH 8.0, 30°C Mycolicibacterium smegmatis
2.2
-
4-Methoxybenzoate pH 7.3, 30°C Mycolicibacterium phlei
2.25
-
Thiophene-2-carboxylate pH 7.5, 30°C Nocardia otitidiscaviarum
2.27
-
3-Methoxybenzoate pH 7.5, 30°C Nocardia otitidiscaviarum
2.3
-
4-Methoxybenzoate pH 7.5, 30°C Nocardia otitidiscaviarum
2.3
-
4-Methylbenzoate pH 7.5, 30°C Nocardia otitidiscaviarum
2.33
-
3-Phenylpropionate pH 7.5, 30°C Nocardia otitidiscaviarum
2.33
-
benzoate pH 7.3, 30°C Mycolicibacterium phlei
2.35
-
Octanoate pH 7.5, 30°C Nocardia otitidiscaviarum
2.37
-
benzoate pH 7.8, 30°C Tsukamurella paurometabola
2.53
-
4-Methylbenzoate pH 7.8, 30°C Tsukamurella paurometabola
2.57
-
4-Methylbenzoate pH 7.8, 30°C Mycolicibacterium smegmatis
2.62
-
dodecanoate pH 7.5, 30°C Nocardia iowensis
2.62
-
dodecanoate pH 7.8, 30°C Tsukamurella paurometabola
2.63
-
3-Phenylpropionate pH 7.8, 30°C Tsukamurella paurometabola
2.83
-
Butanoate pH 7.5, 30°C Nocardia otitidiscaviarum
2.98
-
4-Methoxybenzoate pH 7.8, 30°C Mycolicibacterium smegmatis
3.05
-
benzoate pH 7.5, 30°C Nocardia otitidiscaviarum
3.07
-
3-Phenylpropionate pH 8.0, 30°C Mycolicibacterium smegmatis
3.1
-
3-Methoxybenzoate pH 7.8, 30°C Tsukamurella paurometabola
3.28
-
benzoate pH 7.8, 30°C Mycolicibacterium smegmatis
3.65
-
Octanoate pH 7.8, 30°C Tsukamurella paurometabola
3.88
-
Octanoate pH 7.5, 30°C Nocardia iowensis
4.33
-
Butanoate pH 7.5, 30°C Nocardia iowensis
4.93
-
Octanoate pH 8.0, 30°C Mycolicibacterium smegmatis

pH Optimum

pH Optimum Minimum pH Optimum Maximum Comment Organism
7.3
-
-
Mycolicibacterium phlei
7.5
-
-
Nocardia asteroides
7.5
-
-
Nocardia otitidiscaviarum
7.5
-
-
Nocardia iowensis
7.8
-
-
Tsukamurella paurometabola
8
-
-
Mycolicibacterium smegmatis

Cofactor

Cofactor Comment Organism Structure
ATP
-
Mycolicibacterium smegmatis
ATP
-
Neurospora crassa
ATP
-
Mycolicibacterium phlei
ATP
-
Nocardia asteroides
ATP
-
Trametes versicolor
ATP
-
Syncephalastrum racemosum
ATP
-
Nocardia otitidiscaviarum
ATP
-
Tsukamurella paurometabola
ATP
-
Nocardia iowensis
ATP
-
Nocardia brasiliensis
ATP
-
Mycobacterium marinum
NADPH
-
Mycolicibacterium smegmatis
NADPH
-
Neurospora crassa
NADPH
-
Mycolicibacterium phlei
NADPH
-
Nocardia asteroides
NADPH
-
Trametes versicolor
NADPH
-
Syncephalastrum racemosum
NADPH
-
Nocardia otitidiscaviarum
NADPH
-
Tsukamurella paurometabola
NADPH
-
Nocardia iowensis
NADPH
-
Nocardia brasiliensis
NADPH
-
Mycobacterium marinum

Ki Value [mM]

Ki Value [mM] Ki Value maximum [mM] Inhibitor Comment Organism Structure
0.143
-
NADP+ pH and temperature not specified in the publication Mycolicibacterium phlei
0.22
-
diphosphate pH and temperature not specified in the publication, versus ATP Mycolicibacterium phlei
0.34
-
diphosphate pH and temperature not specified in the publication, versus 4-methylbenzoic acid Mycolicibacterium phlei
8.3
-
AMP pH and temperature not specified in the publication Mycolicibacterium phlei

General Information

General Information Comment Organism
physiological function requirement for the presence of a phosphopantetheine transferase for the loading of a phosphopantetheine group onto the CAR enzyme is shown for niCAR. Enzyme CAR prefers substrates in which the carboxylic acid is the only polar or charged group, which gives a useful insight into the substrate specificity of the enzymes. Model development for the prediction of CAR reactivity Nocardia iowensis

kcat/KM [mM/s]

kcat/KM Value [1/mMs-1] kcat/KM Value Maximum [1/mMs-1] Substrate Comment Organism Structure
0.016
-
pyridine-2-carboxylate pH 7.8, 30°C Tsukamurella paurometabola
0.0166
-
Thiophene-2-carboxylate pH 7.3, 30°C Mycolicibacterium phlei
0.025
-
3-Methoxybenzoate pH 7.8, 30°C Mycolicibacterium smegmatis
0.035
-
2-Methoxybenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.054
-
3-Nitrobenzoate pH 7.5, 30°C Nocardia iowensis
0.0566
-
Butanoate pH 7.5, 30°C Nocardia otitidiscaviarum
0.0635
-
pyridine-2-carboxylate pH 7.5, 30°C Nocardia otitidiscaviarum
0.064
-
furan-2-carboxylate pH 8.0, 30°C Mycolicibacterium smegmatis
0.068
-
furan-2-carboxylate pH 7.8, 30°C Tsukamurella paurometabola
0.079
-
3-oxo-3-phenylpropanoate pH 7.3, 30°C Mycolicibacterium phlei
0.09
-
3-phenylprop-2-ynoate pH 7.5, 30°C Nocardia iowensis
0.119
-
3-Phenylpropionate pH 7.3, 30°C Mycolicibacterium phlei
0.12
-
benzoate pH 7.3, 30°C Mycolicibacterium phlei
0.135
-
Butanoate pH 7.5, 30°C Nocardia iowensis
0.183
-
trans-2-phenylcyclopropane-1-carboxylate pH 7.3, 30°C Mycolicibacterium phlei
0.21
-
3-Nitrobenzoate pH 7.3, 30°C Mycolicibacterium phlei
0.27
-
Butanoate pH 8.0, 30°C Mycolicibacterium smegmatis
0.274
-
Butanoate pH 7.8, 30°C Tsukamurella paurometabola
0.393
-
3-Nitrobenzoate pH 7.5, 30°C Nocardia otitidiscaviarum
0.415
-
Thiophene-2-carboxylate pH 7.8, 30°C Tsukamurella paurometabola
0.45
-
4-Methoxybenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.485
-
Octanoate pH 7.3, 30°C Mycolicibacterium phlei
0.55
-
4-Methylbenzoate pH 7.3, 30°C Mycolicibacterium phlei
0.56
-
3-Methoxybenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.58
-
3-Methoxybenzoate pH 7.3, 30°C Mycolicibacterium phlei
0.6
-
4-nitrobenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.62
-
Thiophene-2-carboxylate pH 8.0, 30°C Mycolicibacterium smegmatis
0.625
-
Thiophene-2-carboxylate pH 7.5, 30°C Nocardia otitidiscaviarum
0.689
-
octadecanoate pH 7.3, 30°C Mycolicibacterium phlei
0.69
-
4-Methylbenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.7
-
3-Nitrobenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.786
-
3-Nitrobenzoate pH 7.8, 30°C Tsukamurella paurometabola
0.79
-
4-Methoxybenzoate pH 7.3, 30°C Mycolicibacterium phlei
0.8
-
trans-2-phenylcyclopropane-1-carboxylate pH 7.5, 30°C Nocardia otitidiscaviarum
0.86
-
trans-2-phenylcyclopropane-1-carboxylate pH 7.5, 30°C Nocardia iowensis
0.863
-
3-Phenylpropionate pH 7.5, 30°C Nocardia otitidiscaviarum
0.965
-
benzoate pH 7.8, 30°C Mycolicibacterium smegmatis
1.01
-
Thiophene-2-carboxylate pH 7.5, 30°C Nocardia iowensis
1.11
-
3-phenylprop-2-ynoate pH 7.8, 30°C Tsukamurella paurometabola
1.185
-
benzoate pH 7.8, 30°C Tsukamurella paurometabola
1.28
-
octadecanoate pH 8.0, 30°C Mycolicibacterium smegmatis
1.34
-
3-Methoxybenzoate pH 7.8, 30°C Tsukamurella paurometabola
1.34
-
3-Nitrobenzoate pH 7.8, 30°C Mycolicibacterium smegmatis
1.45
-
benzoate pH 7.5, 30°C Nocardia otitidiscaviarum
1.47
-
3-Phenylpropionate pH 7.5, 30°C Nocardia iowensis
1.57
-
4-Methylbenzoate pH 7.5, 30°C Nocardia iowensis
1.59
-
3-oxo-3-phenylpropanoate pH 7.5, 30°C Nocardia iowensis
1.61
-
octadecanoate pH 7.5, 30°C Nocardia iowensis
1.81
-
benzoate pH 7.5, 30°C Nocardia iowensis
1.92
-
4-Methylbenzoate pH 7.5, 30°C Nocardia otitidiscaviarum
2
-
benzoate pH 7.8, 30°C Tsukamurella paurometabola
2.03
-
(E)-3-phenylprop-2-enoate pH 7.8, 30°C Tsukamurella paurometabola
2.09
-
4-Methoxybenzoate pH 7.5, 30°C Nocardia otitidiscaviarum
2.28
-
3-Methoxybenzoate pH 7.5, 30°C Nocardia iowensis
2.35
-
Octanoate pH 7.5, 30°C Nocardia otitidiscaviarum
2.431
-
(E)-3-phenylprop-2-enoate pH 7.5, 30°C Nocardia otitidiscaviarum
2.52
-
3-Methoxybenzoate pH 7.5, 30°C Nocardia otitidiscaviarum
2.56
-
(E)-3-phenylprop-2-enoate pH 7.5, 30°C Nocardia iowensis
2.58
-
3-oxo-3-phenylpropanoate pH 7.8, 30°C Tsukamurella paurometabola
3.28
-
4-Methoxybenzoate pH 7.5, 30°C Nocardia iowensis
3.617
-
4-nitrobenzoate pH 7.8, 30°C Tsukamurella paurometabola
3.621
-
3-oxo-3-phenylpropanoate pH 7.5, 30°C Nocardia otitidiscaviarum
3.67
-
4-Methylbenzoate pH 7.8, 30°C Tsukamurella paurometabola
3.73
-
(E)-3-phenylprop-2-enoate pH 7.3, 30°C Mycolicibacterium phlei
4.63
-
3-oxo-3-phenylpropanoate pH 8.0, 30°C Mycolicibacterium smegmatis
4.82
-
4-Methoxybenzoate pH 7.8, 30°C Tsukamurella paurometabola
8.22
-
3-Phenylpropionate pH 7.8, 30°C Tsukamurella paurometabola
9
-
2-Methoxybenzoate pH 7.8, 30°C Tsukamurella paurometabola
9.15
-
octadecanoate pH 7.5, 30°C Nocardia otitidiscaviarum
10.22
-
dodecanoate pH 7.3, 30°C Mycolicibacterium phlei
11.75
-
trans-2-phenylcyclopropane-1-carboxylate pH 7.8, 30°C Tsukamurella paurometabola
11.75
-
dodecanoate pH 7.5, 30°C Nocardia otitidiscaviarum
12.5
-
octadecanoate pH 7.8, 30°C Tsukamurella paurometabola
15.68
-
4-Methoxybenzoate pH 7.8, 30°C Mycolicibacterium smegmatis
16.06
-
4-Methylbenzoate pH 7.8, 30°C Mycolicibacterium smegmatis
18.25
-
Octanoate pH 7.8, 30°C Tsukamurella paurometabola
19.19
-
3-Phenylpropionate pH 8.0, 30°C Mycolicibacterium smegmatis
19.4
-
Octanoate pH 7.5, 30°C Nocardia iowensis
26.27
-
(E)-3-phenylprop-2-enoate pH 8.0, 30°C Mycolicibacterium smegmatis
43.6
-
dodecanoate pH 8.0, 30°C Mycolicibacterium smegmatis
49.3
-
Octanoate pH 8.0, 30°C Mycolicibacterium smegmatis
61.67
-
trans-2-phenylcyclopropane-1-carboxylate pH 8.0, 30°C Mycolicibacterium smegmatis
65.5
-
dodecanoate pH 7.8, 30°C Tsukamurella paurometabola
131
-
dodecanoate pH 7.5, 30°C Nocardia iowensis