BRENDA - Enzyme Database
show all sequences of 1.17.1.4

Xanthine dehydrogenase an old enzyme with new knowledge and prospects

Wang, C.H.; Zhang, C.; Xing, X.H.; Bioengineered 7, 395-405 (2016)

Data extracted from this reference:

Application
Application
Commentary
Organism
biotechnology
the enzyme can be useful in biotechnlogical applications requiring special conditions, e.g. extreme pH values
Acinetobacter baumannii
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Acinetobacter baumannii
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Arabidopsis thaliana
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Arthrobacter luteolus
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Bos taurus
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Clostridium cylindrosporum
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Drosophila melanogaster
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Enterobacter cloacae
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Gallus gallus
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Homo sapiens
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Micrococcus sp.
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Ovis aries
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Pseudomonas putida
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Rattus norvegicus
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Rhodobacter capsulatus
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Streptomyces cyanogenus
Cloned(Commentary)
Commentary
Organism
gene xdh, sequence comparisons and phylogenetic analysis
Arthrobacter luteolus
gene xdh, sequence comparisons and phylogenetic analysis
Bos taurus
gene xdh, sequence comparisons and phylogenetic analysis
Clostridium cylindrosporum
gene xdh, sequence comparisons and phylogenetic analysis
Drosophila melanogaster
gene xdh, sequence comparisons and phylogenetic analysis
Enterobacter cloacae
gene xdh, sequence comparisons and phylogenetic analysis
Gallus gallus
gene xdh, sequence comparisons and phylogenetic analysis
Homo sapiens
gene xdh, sequence comparisons and phylogenetic analysis
Micrococcus sp.
gene xdh, sequence comparisons and phylogenetic analysis
Ovis aries
gene xdh, sequence comparisons and phylogenetic analysis
Pseudomonas putida
gene xdh, sequence comparisons and phylogenetic analysis
Streptomyces cyanogenus
gene xdh, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli
Acinetobacter baumannii
gene xdh, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli
Escherichia coli
gene xdh, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli
Rhodobacter capsulatus
gene xdh, sequence comparisons and phylogenetic analysis, recombinant expression in Pichia pastoris
Arabidopsis thaliana
gene xdh, sequence comparisons and phylogenetic analysis, recombinant expression of liver XDH in insect cell system
Rattus norvegicus
Crystallization (Commentary)
Crystallization
Organism
crystal structure determination
Bos taurus
crystal structure determination
Homo sapiens
crystal structure determination
Rattus norvegicus
crystal structure determination
Rhodobacter capsulatus
Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
extracellular
-
Bos taurus
-
-
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Fe2+
in the [2Fe-2S] center
Acinetobacter baumannii
Fe2+
in the [2Fe-2S] center
Acinetobacter phage Ab105-3phi
Fe2+
in the [2Fe-2S] center
Arabidopsis thaliana
Fe2+
in the [2Fe-2S] center
Arthrobacter luteolus
Fe2+
in the [2Fe-2S] center
Bos taurus
Fe2+
in the [2Fe-2S] center
Clostridium cylindrosporum
Fe2+
in the [2Fe-2S] center
Drosophila melanogaster
Fe2+
in the [2Fe-2S] center
Enterobacter cloacae
Fe2+
in the [2Fe-2S] center
Escherichia coli
Fe2+
in the [2Fe-2S] center
Gallus gallus
Fe2+
in the [2Fe-2S] center
Homo sapiens
Fe2+
in the [2Fe-2S] center
Micrococcus sp.
Fe2+
in the [2Fe-2S] center
Ovis aries
Fe2+
in the [2Fe-2S] center
Pseudomonas putida
Fe2+
in the [2Fe-2S] center
Rattus norvegicus
Fe2+
in the [2Fe-2S] center
Rhodobacter capsulatus
Fe2+
in the [2Fe-2S] center
Streptomyces cyanogenus
Molybdenum
a molybdenum-containing flavoprotein
Acinetobacter baumannii
Molybdenum
a molybdenum-containing flavoprotein
Acinetobacter phage Ab105-3phi
Molybdenum
a molybdenum-containing flavoprotein, biosynthesis of sulfurated molybdenum cofactor, overview
Arabidopsis thaliana
Molybdenum
a molybdenum-containing flavoprotein
Arthrobacter luteolus
Molybdenum
a molybdenum-containing flavoprotein
Bos taurus
Molybdenum
a molybdenum-containing flavoprotein
Clostridium cylindrosporum
Molybdenum
a molybdenum-containing flavoprotein
Drosophila melanogaster
Molybdenum
a molybdenum-containing flavoprotein
Enterobacter cloacae
Molybdenum
a molybdenum-containing flavoprotein
Escherichia coli
Molybdenum
a molybdenum-containing flavoprotein
Gallus gallus
Molybdenum
a molybdenum-containing flavoprotein
Homo sapiens
Molybdenum
a molybdenum-containing flavoprotein
Micrococcus sp.
Molybdenum
a molybdenum-containing flavoprotein
Ovis aries
Molybdenum
a molybdenum-containing flavoprotein
Pseudomonas putida
Molybdenum
a molybdenum-containing flavoprotein
Rattus norvegicus
Molybdenum
a molybdenum-containing flavoprotein
Rhodobacter capsulatus
Molybdenum
a molybdenum-containing flavoprotein
Streptomyces cyanogenus
Molecular Weight [Da]
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
128000
-
-
Enterobacter cloacae
160000
-
-
Arthrobacter luteolus
160000
-
-
Escherichia coli
270000
-
-
Rhodobacter capsulatus
290000
-
-
Acinetobacter baumannii
290000
-
-
Bos taurus
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
xanthine + NAD+ + H2O
Gallus gallus
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Drosophila melanogaster
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Homo sapiens
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Rattus norvegicus
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Bos taurus
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Ovis aries
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Enterobacter cloacae
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Pseudomonas putida
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Rhodobacter capsulatus
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Clostridium cylindrosporum
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Micrococcus sp.
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Acinetobacter baumannii
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Streptomyces cyanogenus
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Arabidopsis thaliana
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Escherichia coli
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Acinetobacter phage Ab105-3phi
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Arthrobacter luteolus
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Rhodobacter capsulatus B10XDHB
-
urate + NADH + H+
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Acinetobacter baumannii
-
-
-
Acinetobacter phage Ab105-3phi
-
-
-
Arabidopsis thaliana
Q8GUQ8
-
-
Arthrobacter luteolus
-
-
-
Bos taurus
-
-
-
Clostridium cylindrosporum
-
-
-
Drosophila melanogaster
-
-
-
Enterobacter cloacae
-
-
-
Escherichia coli
Q46799 AND Q46800
subunits encoding genes xdhA and xdhB
-
Gallus gallus
-
-
-
Homo sapiens
-
-
-
Micrococcus sp.
-
-
-
Ovis aries
-
-
-
Pseudomonas putida
-
-
-
Rattus norvegicus
-
-
-
Rhodobacter capsulatus
-
-
-
Rhodobacter capsulatus B10XDHB
-
-
-
Streptomyces cyanogenus
-
-
-
Purification (Commentary)
Commentary
Organism
native enzyme
Enterobacter cloacae
purification of native enzyme
Arthrobacter luteolus
purification of native XDH
Clostridium cylindrosporum
purification of native XDH
Drosophila melanogaster
purification of native XDH
Gallus gallus
purification of native XDH
Homo sapiens
purification of native XDH
Micrococcus sp.
purification of native XDH
Ovis aries
purification of native XDH
Rattus norvegicus
purification of native XDH
Rhodobacter capsulatus
purification of native XDH
Streptomyces cyanogenus
Source Tissue
Source Tissue
Commentary
Organism
Textmining
liver
-
Rattus norvegicus
-
milk
-
Bos taurus
-
Specific Activity [micromol/min/mg]
Specific Activity Minimum [µmol/min/mg]
Specific Activity Maximum [µmol/min/mg]
Commentary
Organism
1.8
-
purified native enzyme, pH and temperature not specified in the publication
Bos taurus
7
-
purified recombinant enzyme, pH and temperature not specified in the publication
Escherichia coli
7.5
-
purified native enzyme, pH and temperature not specified in the publication
Enterobacter cloacae
10
-
purified native enzyme, pH and temperature not specified in the publication
Arthrobacter luteolus
17.5
-
purified enzyme, pH and temperature not specified in the publication
Rhodobacter capsulatus
29.1
-
purified recombinant enzyme, pH and temperature not specified in the publication
Acinetobacter baumannii
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Gallus gallus
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Drosophila melanogaster
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Homo sapiens
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Rattus norvegicus
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Bos taurus
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Ovis aries
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Enterobacter cloacae
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Pseudomonas putida
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Rhodobacter capsulatus
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Clostridium cylindrosporum
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Micrococcus sp.
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Acinetobacter baumannii
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Streptomyces cyanogenus
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Arabidopsis thaliana
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Escherichia coli
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Acinetobacter phage Ab105-3phi
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Arthrobacter luteolus
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Rhodobacter capsulatus B10XDHB
?
-
-
-
-
xanthine + NAD+ + H2O
-
744450
Gallus gallus
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Drosophila melanogaster
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Homo sapiens
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Rattus norvegicus
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Bos taurus
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Ovis aries
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Enterobacter cloacae
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Pseudomonas putida
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Rhodobacter capsulatus
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Clostridium cylindrosporum
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Micrococcus sp.
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Acinetobacter baumannii
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Streptomyces cyanogenus
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Arabidopsis thaliana
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Escherichia coli
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Acinetobacter phage Ab105-3phi
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Arthrobacter luteolus
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Rhodobacter capsulatus B10XDHB
urate + NADH + H+
-
-
-
?
Subunits
Subunits
Commentary
Organism
homodimer
the enzyme exists as (alpha)2 form
Arabidopsis thaliana
homodimer
2 * 80000, (alpha)2
Arthrobacter luteolus
homodimer
2 * 145000, the enzyme exists as (alpha)2 form
Bos taurus
homodimer
2 * 69000
Enterobacter cloacae
homodimer
the enzyme exists as (alpha)2 form
Gallus gallus
homodimer
the enzyme exists as (alpha)2 form
Rattus norvegicus
More
bacterial XDHs, including Rhodobacter capsulatus, Pseudomonas putida and Streptomyces cyanogenus, are found in the alpha2, alpha4, (alphabeta)2, (alphabeta)4, and alphabetagamma forms
Pseudomonas putida
More
bacterial XDHs, including Rhodobacter capsulatus, Pseudomonas putida and Streptomyces cyanogenus, are found in the alpha2, alpha4, (alphabeta)2, (alphabeta)4 and alphabetagamma forms
Rhodobacter capsulatus
More
bacterial XDHs, including Rhodobacter capsulatus, Pseudomonas putida and Streptomyces cyanogenus, are found in the alpha2, alpha4, (alphabeta)2, (alphabeta)4, and alphabetagamma forms
Streptomyces cyanogenus
tetramer
2 * 87000, alpha-subunit, + 2 * 56000, beta-subunit, alpha2beta2
Acinetobacter baumannii
tetramer
2 * 50000, alpha-subunit, + 2 * 80000, beta-subunit, alpha2beta2
Rhodobacter capsulatus
Temperature Optimum [°C]
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
25
35
-
Bos taurus
35
40
-
Rhodobacter capsulatus
35
45
-
Enterobacter cloacae
55
60
-
Arthrobacter luteolus
65
-
-
Escherichia coli
Turnover Number [1/s]
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
25
-
xanthine
pH and temperature not specified in the publication
Acinetobacter baumannii
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
6.5
7.5
-
Enterobacter cloacae
7.5
8
-
Arthrobacter luteolus
7.5
8
-
Escherichia coli
7.5
8.5
-
Rhodobacter capsulatus
8.5
9
-
Acinetobacter baumannii
8.5
-
-
Bos taurus
pH Range
pH Minimum
pH Maximum
Commentary
Organism
additional information
-
Acinetobacter baumannii XDH extends the pH tolerance to pH 11.0
Acinetobacter baumannii
Cofactor
Cofactor
Commentary
Organism
Structure
FAD
a molybdenum-containing flavoprotein
Acinetobacter baumannii
FAD
a molybdenum-containing flavoprotein
Acinetobacter phage Ab105-3phi
FAD
a molybdenum-containing flavoprotein
Arabidopsis thaliana
FAD
a molybdenum-containing flavoprotein
Arthrobacter luteolus
FAD
a molybdenum-containing flavoprotein
Bos taurus
FAD
a molybdenum-containing flavoprotein
Clostridium cylindrosporum
FAD
a molybdenum-containing flavoprotein
Drosophila melanogaster
FAD
a molybdenum-containing flavoprotein
Enterobacter cloacae
FAD
a molybdenum-containing flavoprotein
Escherichia coli
FAD
a molybdenum-containing flavoprotein
Gallus gallus
FAD
a molybdenum-containing flavoprotein
Homo sapiens
FAD
a molybdenum-containing flavoprotein
Micrococcus sp.
FAD
a molybdenum-containing flavoprotein
Ovis aries
FAD
a molybdenum-containing flavoprotein
Pseudomonas putida
FAD
a molybdenum-containing flavoprotein
Rattus norvegicus
FAD
a molybdenum-containing flavoprotein
Rhodobacter capsulatus
FAD
a molybdenum-containing flavoprotein
Streptomyces cyanogenus
molybdenum cofactor
a molybdenum-containing flavoprotein
Acinetobacter baumannii
molybdenum cofactor
a molybdenum-containing flavoprotein
Acinetobacter phage Ab105-3phi
molybdenum cofactor
a molybdenum-containing flavoprotein
Arabidopsis thaliana
molybdenum cofactor
a molybdenum-containing flavoprotein
Arthrobacter luteolus
molybdenum cofactor
a molybdenum-containing flavoprotein
Bos taurus
molybdenum cofactor
a molybdenum-containing flavoprotein
Clostridium cylindrosporum
molybdenum cofactor
a molybdenum-containing flavoprotein
Drosophila melanogaster
molybdenum cofactor
a molybdenum-containing flavoprotein
Enterobacter cloacae
molybdenum cofactor
a molybdenum-containing flavoprotein, biosynthesis of sulfurated molybdenum cofactor, overview
Escherichia coli
molybdenum cofactor
a molybdenum-containing flavoprotein
Gallus gallus
molybdenum cofactor
a molybdenum-containing flavoprotein
Homo sapiens
molybdenum cofactor
a molybdenum-containing flavoprotein
Micrococcus sp.
molybdenum cofactor
a molybdenum-containing flavoprotein
Ovis aries
molybdenum cofactor
a molybdenum-containing flavoprotein
Pseudomonas putida
molybdenum cofactor
a molybdenum-containing flavoprotein
Rattus norvegicus
molybdenum cofactor
a molybdenum-containing flavoprotein
Rhodobacter capsulatus
molybdenum cofactor
a molybdenum-containing flavoprotein
Streptomyces cyanogenus
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Acinetobacter baumannii
additional information
cofactor domain amino acid sequence comparisons, overview
Acinetobacter phage Ab105-3phi
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Arabidopsis thaliana
additional information
cofactor domain amino acid sequence comparisons, overview
Arthrobacter luteolus
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Bos taurus
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Clostridium cylindrosporum
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Drosophila melanogaster
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Enterobacter cloacae
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Escherichia coli
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Gallus gallus
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Homo sapiens
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Micrococcus sp.
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Ovis aries
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Pseudomonas putida
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Rattus norvegicus
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species. Rhodobacter capsulatus alpha2beta2 XDH arranges the FAD and [2Fe-2S] domains and the Moco domain into 2 separate subunits
Rhodobacter capsulatus
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Streptomyces cyanogenus
NAD+
-
Acinetobacter baumannii
NAD+
-
Acinetobacter phage Ab105-3phi
NAD+
-
Arthrobacter luteolus
NAD+
-
Bos taurus
NAD+
-
Clostridium cylindrosporum
NAD+
-
Drosophila melanogaster
NAD+
-
Enterobacter cloacae
NAD+
-
Escherichia coli
NAD+
-
Gallus gallus
NAD+
-
Homo sapiens
NAD+
-
Micrococcus sp.
NAD+
-
Ovis aries
NAD+
-
Pseudomonas putida
NAD+
-
Streptomyces cyanogenus
NAD+
-
Rattus norvegicus
NAD+
-
Rhodobacter capsulatus
NAD+
-
Arabidopsis thaliana
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Acinetobacter baumannii
[2Fe-2S]-center
-
Acinetobacter phage Ab105-3phi
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Arabidopsis thaliana
[2Fe-2S]-center
-
Arthrobacter luteolus
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Bos taurus
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Clostridium cylindrosporum
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Drosophila melanogaster
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Enterobacter cloacae
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Escherichia coli
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Gallus gallus
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Homo sapiens
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Micrococcus sp.
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Ovis aries
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Pseudomonas putida
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Rattus norvegicus
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Rhodobacter capsulatus
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Streptomyces cyanogenus
Application (protein specific)
Application
Commentary
Organism
biotechnology
the enzyme can be useful in biotechnlogical applications requiring special conditions, e.g. extreme pH values
Acinetobacter baumannii
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Acinetobacter baumannii
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Arabidopsis thaliana
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Arthrobacter luteolus
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Bos taurus
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Clostridium cylindrosporum
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Drosophila melanogaster
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Enterobacter cloacae
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Gallus gallus
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Homo sapiens
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Micrococcus sp.
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Ovis aries
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Pseudomonas putida
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Rattus norvegicus
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Rhodobacter capsulatus
environmental protection
XDHs can find applications in environmental degradation of pollutants like aldehydes and industrial application in nucleoside drugs like ribavirin
Streptomyces cyanogenus
Cloned(Commentary) (protein specific)
Commentary
Organism
gene xdh, sequence comparisons and phylogenetic analysis
Arthrobacter luteolus
gene xdh, sequence comparisons and phylogenetic analysis
Bos taurus
gene xdh, sequence comparisons and phylogenetic analysis
Clostridium cylindrosporum
gene xdh, sequence comparisons and phylogenetic analysis
Drosophila melanogaster
gene xdh, sequence comparisons and phylogenetic analysis
Enterobacter cloacae
gene xdh, sequence comparisons and phylogenetic analysis
Gallus gallus
gene xdh, sequence comparisons and phylogenetic analysis
Homo sapiens
gene xdh, sequence comparisons and phylogenetic analysis
Micrococcus sp.
gene xdh, sequence comparisons and phylogenetic analysis
Ovis aries
gene xdh, sequence comparisons and phylogenetic analysis
Pseudomonas putida
gene xdh, sequence comparisons and phylogenetic analysis
Streptomyces cyanogenus
gene xdh, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli
Acinetobacter baumannii
gene xdh, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli
Escherichia coli
gene xdh, sequence comparisons and phylogenetic analysis, recombinant expression in Escherichia coli
Rhodobacter capsulatus
gene xdh, sequence comparisons and phylogenetic analysis, recombinant expression in Pichia pastoris
Arabidopsis thaliana
gene xdh, sequence comparisons and phylogenetic analysis, recombinant expression of liver XDH in insect cell system
Rattus norvegicus
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
FAD
a molybdenum-containing flavoprotein
Acinetobacter baumannii
FAD
a molybdenum-containing flavoprotein
Acinetobacter phage Ab105-3phi
FAD
a molybdenum-containing flavoprotein
Arabidopsis thaliana
FAD
a molybdenum-containing flavoprotein
Arthrobacter luteolus
FAD
a molybdenum-containing flavoprotein
Bos taurus
FAD
a molybdenum-containing flavoprotein
Clostridium cylindrosporum
FAD
a molybdenum-containing flavoprotein
Drosophila melanogaster
FAD
a molybdenum-containing flavoprotein
Enterobacter cloacae
FAD
a molybdenum-containing flavoprotein
Escherichia coli
FAD
a molybdenum-containing flavoprotein
Gallus gallus
FAD
a molybdenum-containing flavoprotein
Homo sapiens
FAD
a molybdenum-containing flavoprotein
Micrococcus sp.
FAD
a molybdenum-containing flavoprotein
Ovis aries
FAD
a molybdenum-containing flavoprotein
Pseudomonas putida
FAD
a molybdenum-containing flavoprotein
Rattus norvegicus
FAD
a molybdenum-containing flavoprotein
Rhodobacter capsulatus
FAD
a molybdenum-containing flavoprotein
Streptomyces cyanogenus
molybdenum cofactor
a molybdenum-containing flavoprotein
Acinetobacter baumannii
molybdenum cofactor
a molybdenum-containing flavoprotein
Acinetobacter phage Ab105-3phi
molybdenum cofactor
a molybdenum-containing flavoprotein
Arabidopsis thaliana
molybdenum cofactor
a molybdenum-containing flavoprotein
Arthrobacter luteolus
molybdenum cofactor
a molybdenum-containing flavoprotein
Bos taurus
molybdenum cofactor
a molybdenum-containing flavoprotein
Clostridium cylindrosporum
molybdenum cofactor
a molybdenum-containing flavoprotein
Drosophila melanogaster
molybdenum cofactor
a molybdenum-containing flavoprotein
Enterobacter cloacae
molybdenum cofactor
a molybdenum-containing flavoprotein, biosynthesis of sulfurated molybdenum cofactor, overview
Escherichia coli
molybdenum cofactor
a molybdenum-containing flavoprotein
Gallus gallus
molybdenum cofactor
a molybdenum-containing flavoprotein
Homo sapiens
molybdenum cofactor
a molybdenum-containing flavoprotein
Micrococcus sp.
molybdenum cofactor
a molybdenum-containing flavoprotein
Ovis aries
molybdenum cofactor
a molybdenum-containing flavoprotein
Pseudomonas putida
molybdenum cofactor
a molybdenum-containing flavoprotein
Rattus norvegicus
molybdenum cofactor
a molybdenum-containing flavoprotein
Rhodobacter capsulatus
molybdenum cofactor
a molybdenum-containing flavoprotein
Streptomyces cyanogenus
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Acinetobacter baumannii
additional information
cofactor domain amino acid sequence comparisons, overview
Acinetobacter phage Ab105-3phi
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Arabidopsis thaliana
additional information
cofactor domain amino acid sequence comparisons, overview
Arthrobacter luteolus
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Bos taurus
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Clostridium cylindrosporum
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Drosophila melanogaster
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Enterobacter cloacae
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Escherichia coli
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Gallus gallus
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Homo sapiens
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Micrococcus sp.
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Ovis aries
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Pseudomonas putida
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Rattus norvegicus
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species. Rhodobacter capsulatus alpha2beta2 XDH arranges the FAD and [2Fe-2S] domains and the Moco domain into 2 separate subunits
Rhodobacter capsulatus
additional information
cofactor domain amino acid sequence comparisons, overview. XDH consists of 3 redox center domains, XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S]), another that includes a flavin adenine dinucleotide (FAD), and a third that incorporates a sulfurated molybdenum cofactor (Moco). The [2Fe-2S] domain is more conserved than the Moco domain, and the FAD domain is the least conserved one between different species
Streptomyces cyanogenus
NAD+
-
Acinetobacter baumannii
NAD+
-
Acinetobacter phage Ab105-3phi
NAD+
-
Arthrobacter luteolus
NAD+
-
Bos taurus
NAD+
-
Clostridium cylindrosporum
NAD+
-
Drosophila melanogaster
NAD+
-
Enterobacter cloacae
NAD+
-
Escherichia coli
NAD+
-
Gallus gallus
NAD+
-
Homo sapiens
NAD+
-
Micrococcus sp.
NAD+
-
Ovis aries
NAD+
-
Pseudomonas putida
NAD+
-
Rattus norvegicus
NAD+
-
Rhodobacter capsulatus
NAD+
-
Streptomyces cyanogenus
NAD+
-
Arabidopsis thaliana
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Acinetobacter baumannii
[2Fe-2S]-center
-
Acinetobacter phage Ab105-3phi
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Arabidopsis thaliana
[2Fe-2S]-center
-
Arthrobacter luteolus
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Bos taurus
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Clostridium cylindrosporum
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Drosophila melanogaster
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Enterobacter cloacae
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Escherichia coli
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Gallus gallus
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Homo sapiens
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Micrococcus sp.
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Ovis aries
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Pseudomonas putida
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Rattus norvegicus
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Rhodobacter capsulatus
[2Fe-2S]-center
XDH consists of 3 redox center domains, one of which contains 2 distinct iron-sulfur clusters ([2Fe-2S])
Streptomyces cyanogenus
Crystallization (Commentary) (protein specific)
Crystallization
Organism
crystal structure determination
Bos taurus
crystal structure determination
Homo sapiens
crystal structure determination
Rattus norvegicus
crystal structure determination
Rhodobacter capsulatus
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
extracellular
-
Bos taurus
-
-
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Fe2+
in the [2Fe-2S] center
Acinetobacter baumannii
Fe2+
in the [2Fe-2S] center
Acinetobacter phage Ab105-3phi
Fe2+
in the [2Fe-2S] center
Arabidopsis thaliana
Fe2+
in the [2Fe-2S] center
Arthrobacter luteolus
Fe2+
in the [2Fe-2S] center
Bos taurus
Fe2+
in the [2Fe-2S] center
Clostridium cylindrosporum
Fe2+
in the [2Fe-2S] center
Drosophila melanogaster
Fe2+
in the [2Fe-2S] center
Enterobacter cloacae
Fe2+
in the [2Fe-2S] center
Escherichia coli
Fe2+
in the [2Fe-2S] center
Gallus gallus
Fe2+
in the [2Fe-2S] center
Homo sapiens
Fe2+
in the [2Fe-2S] center
Micrococcus sp.
Fe2+
in the [2Fe-2S] center
Ovis aries
Fe2+
in the [2Fe-2S] center
Pseudomonas putida
Fe2+
in the [2Fe-2S] center
Rattus norvegicus
Fe2+
in the [2Fe-2S] center
Rhodobacter capsulatus
Fe2+
in the [2Fe-2S] center
Streptomyces cyanogenus
Molybdenum
a molybdenum-containing flavoprotein
Acinetobacter baumannii
Molybdenum
a molybdenum-containing flavoprotein
Acinetobacter phage Ab105-3phi
Molybdenum
a molybdenum-containing flavoprotein, biosynthesis of sulfurated molybdenum cofactor, overview
Arabidopsis thaliana
Molybdenum
a molybdenum-containing flavoprotein
Arthrobacter luteolus
Molybdenum
a molybdenum-containing flavoprotein
Bos taurus
Molybdenum
a molybdenum-containing flavoprotein
Clostridium cylindrosporum
Molybdenum
a molybdenum-containing flavoprotein
Drosophila melanogaster
Molybdenum
a molybdenum-containing flavoprotein
Enterobacter cloacae
Molybdenum
a molybdenum-containing flavoprotein
Escherichia coli
Molybdenum
a molybdenum-containing flavoprotein
Gallus gallus
Molybdenum
a molybdenum-containing flavoprotein
Homo sapiens
Molybdenum
a molybdenum-containing flavoprotein
Micrococcus sp.
Molybdenum
a molybdenum-containing flavoprotein
Ovis aries
Molybdenum
a molybdenum-containing flavoprotein
Pseudomonas putida
Molybdenum
a molybdenum-containing flavoprotein
Rattus norvegicus
Molybdenum
a molybdenum-containing flavoprotein
Rhodobacter capsulatus
Molybdenum
a molybdenum-containing flavoprotein
Streptomyces cyanogenus
Molecular Weight [Da] (protein specific)
Molecular Weight [Da]
Molecular Weight Maximum [Da]
Commentary
Organism
128000
-
-
Enterobacter cloacae
160000
-
-
Arthrobacter luteolus
160000
-
-
Escherichia coli
270000
-
-
Rhodobacter capsulatus
290000
-
-
Acinetobacter baumannii
290000
-
-
Bos taurus
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
xanthine + NAD+ + H2O
Gallus gallus
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Drosophila melanogaster
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Homo sapiens
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Rattus norvegicus
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Bos taurus
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Ovis aries
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Enterobacter cloacae
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Pseudomonas putida
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Rhodobacter capsulatus
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Clostridium cylindrosporum
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Micrococcus sp.
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Acinetobacter baumannii
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Streptomyces cyanogenus
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Arabidopsis thaliana
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Escherichia coli
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Acinetobacter phage Ab105-3phi
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Arthrobacter luteolus
-
urate + NADH + H+
-
-
?
xanthine + NAD+ + H2O
Rhodobacter capsulatus B10XDHB
-
urate + NADH + H+
-
-
?
Purification (Commentary) (protein specific)
Commentary
Organism
native enzyme
Enterobacter cloacae
purification of native enzyme
Arthrobacter luteolus
purification of native XDH
Clostridium cylindrosporum
purification of native XDH
Drosophila melanogaster
purification of native XDH
Gallus gallus
purification of native XDH
Homo sapiens
purification of native XDH
Micrococcus sp.
purification of native XDH
Ovis aries
purification of native XDH
Rattus norvegicus
purification of native XDH
Rhodobacter capsulatus
purification of native XDH
Streptomyces cyanogenus
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
liver
-
Rattus norvegicus
-
milk
-
Bos taurus
-
Specific Activity [micromol/min/mg] (protein specific)
Specific Activity Minimum [µmol/min/mg]
Specific Activity Maximum [µmol/min/mg]
Commentary
Organism
1.8
-
purified native enzyme, pH and temperature not specified in the publication
Bos taurus
7
-
purified recombinant enzyme, pH and temperature not specified in the publication
Escherichia coli
7.5
-
purified native enzyme, pH and temperature not specified in the publication
Enterobacter cloacae
10
-
purified native enzyme, pH and temperature not specified in the publication
Arthrobacter luteolus
17.5
-
purified enzyme, pH and temperature not specified in the publication
Rhodobacter capsulatus
29.1
-
purified recombinant enzyme, pH and temperature not specified in the publication
Acinetobacter baumannii
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Gallus gallus
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Drosophila melanogaster
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Homo sapiens
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Rattus norvegicus
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Bos taurus
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Ovis aries
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Enterobacter cloacae
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Pseudomonas putida
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Rhodobacter capsulatus
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Clostridium cylindrosporum
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Micrococcus sp.
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Acinetobacter baumannii
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Streptomyces cyanogenus
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Arabidopsis thaliana
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Escherichia coli
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Acinetobacter phage Ab105-3phi
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Arthrobacter luteolus
?
-
-
-
-
additional information
The enzyme catalyzes the oxidation of purines, pterin and aldehydes with NAD+ or NADP+ as electron acceptor, and in some species can be transformed to xanthine oxidase (EC 1.17.3.2, XOD) capable of utilizing oxygen as the electron acceptor
744450
Rhodobacter capsulatus B10XDHB
?
-
-
-
-
xanthine + NAD+ + H2O
-
744450
Gallus gallus
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Drosophila melanogaster
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Homo sapiens
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Rattus norvegicus
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Bos taurus
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Ovis aries
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Enterobacter cloacae
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Pseudomonas putida
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Rhodobacter capsulatus
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Clostridium cylindrosporum
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Micrococcus sp.
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Acinetobacter baumannii
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Streptomyces cyanogenus
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Arabidopsis thaliana
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Escherichia coli
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Acinetobacter phage Ab105-3phi
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Arthrobacter luteolus
urate + NADH + H+
-
-
-
?
xanthine + NAD+ + H2O
-
744450
Rhodobacter capsulatus B10XDHB
urate + NADH + H+
-
-
-
?
Subunits (protein specific)
Subunits
Commentary
Organism
homodimer
the enzyme exists as (alpha)2 form
Arabidopsis thaliana
homodimer
2 * 80000, (alpha)2
Arthrobacter luteolus
homodimer
2 * 145000, the enzyme exists as (alpha)2 form
Bos taurus
homodimer
2 * 69000
Enterobacter cloacae
homodimer
the enzyme exists as (alpha)2 form
Gallus gallus
homodimer
the enzyme exists as (alpha)2 form
Rattus norvegicus
More
bacterial XDHs, including Rhodobacter capsulatus, Pseudomonas putida and Streptomyces cyanogenus, are found in the alpha2, alpha4, (alphabeta)2, (alphabeta)4, and alphabetagamma forms
Pseudomonas putida
More
bacterial XDHs, including Rhodobacter capsulatus, Pseudomonas putida and Streptomyces cyanogenus, are found in the alpha2, alpha4, (alphabeta)2, (alphabeta)4 and alphabetagamma forms
Rhodobacter capsulatus
More
bacterial XDHs, including Rhodobacter capsulatus, Pseudomonas putida and Streptomyces cyanogenus, are found in the alpha2, alpha4, (alphabeta)2, (alphabeta)4, and alphabetagamma forms
Streptomyces cyanogenus
tetramer
2 * 87000, alpha-subunit, + 2 * 56000, beta-subunit, alpha2beta2
Acinetobacter baumannii
tetramer
2 * 50000, alpha-subunit, + 2 * 80000, beta-subunit, alpha2beta2
Rhodobacter capsulatus
Temperature Optimum [°C] (protein specific)
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
25
35
-
Bos taurus
35
40
-
Rhodobacter capsulatus
35
45
-
Enterobacter cloacae
55
60
-
Arthrobacter luteolus
65
-
-
Escherichia coli
Turnover Number [1/s] (protein specific)
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
25
-
xanthine
pH and temperature not specified in the publication
Acinetobacter baumannii
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
6.5
7.5
-
Enterobacter cloacae
7.5
8
-
Arthrobacter luteolus
7.5
8
-
Escherichia coli
7.5
8.5
-
Rhodobacter capsulatus
8.5
9
-
Acinetobacter baumannii
8.5
-
-
Bos taurus
pH Range (protein specific)
pH Minimum
pH Maximum
Commentary
Organism
additional information
-
Acinetobacter baumannii XDH extends the pH tolerance to pH 11.0
Acinetobacter baumannii
General Information
General Information
Commentary
Organism
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis. The unique industrially applicable Acinetobacter baumannii XDH shows only modest similarity to all the previous already-characterized XDHs
Acinetobacter baumannii
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis. The page XDH sequence shows 100% identity to the genomic XDH genes of Acinetobacter baumannii. It seems plausible that the similarity is a result of horizontal gene transfer
Acinetobacter phage Ab105-3phi
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Arabidopsis thaliana
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Arthrobacter luteolus
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Bos taurus
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Clostridium cylindrosporum
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Drosophila melanogaster
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Enterobacter cloacae
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Escherichia coli
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Gallus gallus
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Homo sapiens
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Micrococcus sp.
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Ovis aries
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Pseudomonas putida
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Rattus norvegicus
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Rhodobacter capsulatus
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Streptomyces cyanogenus
additional information
the Arabidopsis thaliana XDH cannot be converted to oxidase form by neither proteolytic cleavage nor oxidation of specific cysteine residues
Arabidopsis thaliana
additional information
Glu802 binds the substrate and stabilizes the transition state, Glu1261 is the catalytic base, Arg880 and Thr1010 bind the substrate and decrease the reaction activation energy, Phe914 and Phe1009 orientate the substrate via pi-pi stacking, Val1011 is the key residue channeling the substrate, and Gln758 is responsible for releasing the product. There is an obvious variation of key residues channeling the substrate and binding pocket, which affect the substrate entry and product release, resulting in different catalytic activity and enzymatic properties. Surprisingly, the 2 pairs of cysteines, C535 and C992, and C1316 and C1324 numbering in bovine XDH, which are proposed to control the reversible post-translational conversion from XDH to XOD, EC 1.17.3.2, by forming 2 cysteine disulfide bonds, are totally absent in other XDHs. Bovine milk XDH can be converted reversibly into active XOD form by forming disulfide bond or irreversibly by limited proteolysis, overview
Bos taurus
additional information
the chicken XDH cannot be converted to oxidase form by neither proteolytic cleavage nor oxidation of specific cysteine residues
Gallus gallus
additional information
rat liver XDH can be converted reversibly into active XOD form by forming disulfide bond or irreversibly by limited proteolysis, overview
Rattus norvegicus
additional information
the Rhodobacter capsulatus XDH cannot be converted to oxidase form by neither proteolytic cleavage nor oxidation of specific cysteine residues
Rhodobacter capsulatus
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Acinetobacter baumannii
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Acinetobacter phage Ab105-3phi
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Arabidopsis thaliana
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Arthrobacter luteolus
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Bos taurus
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Clostridium cylindrosporum
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Drosophila melanogaster
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Enterobacter cloacae
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Escherichia coli
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Gallus gallus
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Homo sapiens
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Micrococcus sp.
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Ovis aries
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Pseudomonas putida
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Rattus norvegicus
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Rhodobacter capsulatus
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Streptomyces cyanogenus
General Information (protein specific)
General Information
Commentary
Organism
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis. The unique industrially applicable Acinetobacter baumannii XDH shows only modest similarity to all the previous already-characterized XDHs
Acinetobacter baumannii
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis. The page XDH sequence shows 100% identity to the genomic XDH genes of Acinetobacter baumannii. It seems plausible that the similarity is a result of horizontal gene transfer
Acinetobacter phage Ab105-3phi
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Arabidopsis thaliana
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Arthrobacter luteolus
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Bos taurus
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Clostridium cylindrosporum
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Drosophila melanogaster
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Enterobacter cloacae
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Escherichia coli
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Gallus gallus
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Homo sapiens
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Micrococcus sp.
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Ovis aries
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Pseudomonas putida
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Rattus norvegicus
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Rhodobacter capsulatus
evolution
XDHs are widely distributed in all eukarya, bacteria and archaea domains, phylogenetic analysis
Streptomyces cyanogenus
additional information
the Arabidopsis thaliana XDH cannot be converted to oxidase form by neither proteolytic cleavage nor oxidation of specific cysteine residues
Arabidopsis thaliana
additional information
Glu802 binds the substrate and stabilizes the transition state, Glu1261 is the catalytic base, Arg880 and Thr1010 bind the substrate and decrease the reaction activation energy, Phe914 and Phe1009 orientate the substrate via pi-pi stacking, Val1011 is the key residue channeling the substrate, and Gln758 is responsible for releasing the product. There is an obvious variation of key residues channeling the substrate and binding pocket, which affect the substrate entry and product release, resulting in different catalytic activity and enzymatic properties. Surprisingly, the 2 pairs of cysteines, C535 and C992, and C1316 and C1324 numbering in bovine XDH, which are proposed to control the reversible post-translational conversion from XDH to XOD, EC 1.17.3.2, by forming 2 cysteine disulfide bonds, are totally absent in other XDHs. Bovine milk XDH can be converted reversibly into active XOD form by forming disulfide bond or irreversibly by limited proteolysis, overview
Bos taurus
additional information
the chicken XDH cannot be converted to oxidase form by neither proteolytic cleavage nor oxidation of specific cysteine residues
Gallus gallus
additional information
rat liver XDH can be converted reversibly into active XOD form by forming disulfide bond or irreversibly by limited proteolysis, overview
Rattus norvegicus
additional information
the Rhodobacter capsulatus XDH cannot be converted to oxidase form by neither proteolytic cleavage nor oxidation of specific cysteine residues
Rhodobacter capsulatus
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Acinetobacter baumannii
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Acinetobacter phage Ab105-3phi
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Arabidopsis thaliana
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Arthrobacter luteolus
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Bos taurus
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Clostridium cylindrosporum
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Drosophila melanogaster
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Enterobacter cloacae
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Escherichia coli
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Gallus gallus
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Homo sapiens
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Micrococcus sp.
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Ovis aries
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Pseudomonas putida
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts
Rattus norvegicus
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Rhodobacter capsulatus
physiological function
XDHs play significant roles in various cellular processes, including purine catabolism and production of reactive oxygen species (ROS) and nitric oxide (NO) in both physiological and pathological contexts. Physiological roles and applications of bacterial XDHs, overview
Streptomyces cyanogenus
KCat/KM [mM/s]
kcat/KM Value [1/mMs-1]
kcat/KM Value Maximum [1/mMs-1]
Substrate
Commentary
Organism
Structure
2740
-
xanthine
pH and temperature not specified in the publication
Acinetobacter baumannii
KCat/KM [mM/s] (protein specific)
KCat/KM Value [1/mMs-1]
KCat/KM Value Maximum [1/mMs-1]
Substrate
Commentary
Organism
Structure
2740
-
xanthine
pH and temperature not specified in the publication
Acinetobacter baumannii
Other publictions for EC 1.17.1.4
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
744255
Wang
-
Enhanced catalytic properties ...
Rhodobacter capsulatus, Rhodobacter capsulatus CGMCC 1.3366
Biochem. Eng. J.
119
1-8
2017
-
-
1
-
1
-
-
6
-
3
-
2
-
2
-
-
-
-
-
-
-
-
2
2
1
-
4
6
1
1
1
5
-
-
-
-
-
1
5
-
1
-
-
-
-
6
-
3
-
2
-
-
-
-
-
-
-
-
2
2
1
-
4
6
1
1
1
-
-
-
-
-
6
6
744521
Wang
Metabolic engineering of Esch ...
Rhodobacter capsulatus, Rhodobacter capsulatus CGMCC 1.3366
Biores. Technol.
245
1782-1789
2017
-
-
1
-
1
-
-
-
-
2
-
2
-
5
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
1
4
-
1
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
744865
Isoe
Xanthine dehydrogenase-1 sile ...
Aedes aegypti
FASEB J.
31
2276-2286
2017
-
1
1
-
-
-
1
-
-
-
-
-
-
3
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
2
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
8
-
-
-
-
-
-
-
-
-
-
-
-
1
2
2
1
-
-
745069
Reschke
Protonation and sulfido versu ...
Rhodobacter capsulatus
Inorg. Chem.
56
2165-2176
2017
-
-
-
-
3
-
-
-
-
1
-
1
-
3
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
3
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
746016
You
-
A Vitis vinifera xanthine deh ...
Vitis vinifera
Plant Biotechnol. Rep.
11
147-160
2017
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
1
1
-
-
-
739772
Correia
The Escherichia coli periplasm ...
Escherichia coli
ACS Chem. Biol.
11
2923-2935
2016
-
-
1
1
2
-
-
12
-
1
-
-
-
4
-
-
-
-
-
-
-
-
2
1
-
-
-
11
-
-
-
4
-
-
-
-
-
1
4
1
2
-
-
-
-
12
-
1
-
-
-
-
-
-
-
-
-
-
2
1
-
-
-
11
-
-
-
-
-
-
-
-
11
11
743904
Sarauli
-
Investigation of the pH-depen ...
Rhodobacter capsulatus
ACS Catal.
6
7152-7159
2016
-
-
1
-
1
-
-
-
-
-
-
1
-
1
-
-
1
-
-
-
-
-
2
-
1
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
-
1
-
-
-
1
1
-
-
-
-
-
-
-
-
744450
Wang
Xanthine dehydrogenase an old ...
Acinetobacter baumannii, Acinetobacter phage Ab105-3phi, Arabidopsis thaliana, Arthrobacter luteolus, Bos taurus, Clostridium cylindrosporum, Drosophila melanogaster, Enterobacter cloacae, Escherichia coli, Gallus gallus, Homo sapiens, Micrococcus sp., Ovis aries, Pseudomonas putida, Rattus norvegicus, Rhodobacter capsulatus, Rhodobacter capsulatus B10XDHB, Streptomyces cyanogenus
Bioengineered
7
395-405
2016
-
16
16
4
-
-
-
-
1
34
6
18
-
22
-
-
11
-
-
2
6
-
36
11
5
-
-
1
6
1
-
85
-
-
-
-
16
16
85
4
-
-
-
-
-
-
1
34
6
18
-
-
-
11
-
2
6
-
36
11
5
-
-
1
6
1
-
-
-
39
39
-
1
1
746030
Hofmann
Opposing functions for plant ...
Arabidopsis thaliana, Arabidopsis thaliana Col-0, Mammalia
Plant Cell
28
1001
2016
-
-
-
-
1
-
-
-
1
-
-
4
-
6
-
-
-
-
-
2
-
-
6
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
4
-
-
-
-
-
2
-
-
6
-
-
-
-
-
-
-
-
-
-
4
4
-
-
-
746031
Ma
Dual and opposing roles of xa ...
Arabidopsis thaliana, Arabidopsis thaliana Col-0
Plant Cell
28
1108-1126
2016
-
-
1
-
4
-
1
-
1
-
-
2
-
6
-
-
-
-
-
3
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
4
-
-
1
-
-
1
-
-
2
-
-
-
-
-
3
-
-
4
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
744875
Nishino
The C-terminal peptide plays ...
Rattus norvegicus
FEBS J.
282
3075-3090
2015
-
-
-
1
4
-
-
2
-
1
-
1
-
4
-
-
-
-
-
2
-
-
2
2
1
-
-
-
1
-
-
4
-
-
-
-
-
-
4
1
4
-
-
-
-
2
-
1
-
1
-
-
-
-
-
2
-
-
2
2
1
-
-
-
1
-
-
-
-
1
1
-
-
-
745314
Hall
The reductive half-reaction o ...
Rhodobacter capsulatus
J. Biol. Chem.
289
32121-32130
2014
-
-
1
-
2
-
-
1
-
-
-
1
-
4
-
-
1
-
-
-
-
-
3
-
1
-
-
-
1
1
-
1
-
-
-
-
-
1
1
-
2
-
-
-
-
1
-
-
-
1
-
-
-
1
-
-
-
-
3
-
1
-
-
-
1
1
-
-
-
1
1
-
-
-
746009
Watanabe
-
Arabidopsis xanthine dehydrog ...
Arabidopsis thaliana, Arabidopsis thaliana Col-0
Plant Biotechnol.
31
173-178
2014
-
-
-
-
1
-
-
-
-
-
-
2
-
4
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
728624
Chen
Mechanism of porcine liver xan ...
Sus scrofa
PLoS ONE
8
e73912
2013
-
-
1
-
8
-
-
10
-
-
1
-
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
8
-
-
-
-
10
-
-
1
-
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
727682
Ishikita
Protein conformational gating ...
Bos taurus
J. Am. Chem. Soc.
134
999-1009
2012
-
-
-
1
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
728189
Kalimuthu
Catalytic electrochemistry of ...
Rhodobacter capsulatus
J. Phys. Chem. B
116
11600-11607
2012
-
-
1
-
-
-
1
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
728646
Settle
The effects of allopurinol, ur ...
Gallus gallus
Poult. Sci.
91
2895-2903
2012
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
3
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
3
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
715157
Cao
-
Substrate orientation and the ...
Rhodobacter capsulatus
Indian J. Chem.
50
355-362
2011
-
-
1
1
1
-
1
-
-
2
-
-
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
1
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
715377
Srivastava
A selenium-dependent xanthine ...
Enterococcus faecalis
J. Bacteriol.
193
1643-1652
2011
-
-
-
-
1
-
-
-
-
1
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
715273
Okamoto
Crystal structures of urate bo ...
Bos taurus, Rattus norvegicus
J. Am. Chem. Soc.
132
17080-17083
2010
-
-
1
2
-
-
-
-
-
4
-
4
-
2
-
-
1
2
-
1
-
-
4
-
-
-
-
-
-
-
-
8
-
-
-
-
-
1
8
2
-
-
-
-
-
-
-
4
-
4
-
-
-
1
-
1
-
-
4
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
702963
Kaminsky
Brain purine metabolism and xa ...
Rattus norvegicus
Brain Res.
1294
193-201
2009
1
-
-
-
-
-
1
-
1
-
-
1
-
2
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
1
-
-
-
-
1
-
-
1
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
703310
Carro
Effects of allopurinol on uric ...
Gallus gallus
Comp. Biochem. Physiol. C
151
12-17
2009
1
-
-
-
-
-
1
-
-
-
-
2
-
1
-
-
-
-
-
4
7
-
2
-
1
-
-
-
1
-
-
1
-
-
-
1
-
-
1
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
4
7
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
704636
Dietzel
Mechanism of substrate and inh ...
Rhodobacter capsulatus
J. Biol. Chem.
284
8768-8776
2009
-
-
1
1
1
-
3
-
2
-
-
2
-
2
-
-
1
1
-
-
-
-
4
1
1
-
-
-
1
-
-
1
2
-
-
-
-
1
1
1
1
-
-
3
2
-
2
-
-
2
-
-
-
1
-
-
-
-
4
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
704789
Taibi
Estradiol decreases xanthine d ...
Homo sapiens
J. Cell. Biochem.
108
688-692
2009
-
-
-
-
-
-
1
-
1
-
-
-
-
2
-
-
-
-
-
5
-
-
-
-
1
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
5
-
-
-
-
1
-
-
-
1
-
-
-
1
1
1
1
-
-
704822
Haidari
Orange juice and hesperetin su ...
Rattus norvegicus
J. Clin. Biochem. Nutr.
45
285-291
2009
-
-
-
-
-
-
3
-
1
1
-
2
-
2
-
-
-
-
-
3
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
3
-
-
1
1
-
2
-
-
-
-
-
3
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
706259
Zarepour
Xanthine dehydrogenase AtXDH1 ...
Arabidopsis thaliana
Plant Mol. Biol.
72
301-310
2009
1
-
1
-
5
-
3
-
-
4
-
4
-
3
-
1
1
-
-
-
4
-
6
1
1
-
-
-
2
1
-
6
-
-
-
1
-
2
8
-
5
-
-
3
-
-
-
4
-
4
-
-
1
2
-
-
4
-
6
1
2
-
-
-
3
1
-
-
-
2
3
-
-
-
706471
Carro
Determination of xanthine oxid ...
Gallus gallus
Poult. Sci.
88
2406-2414
2009
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
8
-
-
1
-
1
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
8
-
-
1
-
1
1
-
-
1
1
-
-
-
-
-
-
-
-
706838
Shimo
FYX-051, a xanthine oxidoreduc ...
Rattus norvegicus
Toxicol. Pathol.
37
438-445
2009
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
687354
Le
Alveolar cell apoptosis is dep ...
Homo sapiens
J. Appl. Physiol.
105
1282-1290
2008
-
1
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
687917
Fini
Migratory activity of human br ...
Homo sapiens, Mus musculus
J. Cell. Biochem.
1005
1008-1026
2008
-
2
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
688044
Khobragade
Microbial and xanthine dehydro ...
Fusarium verticillioides, Gallus gallus, Microsporum canis, Penicillium chrysogenum, Serratia marcescens, Staphylococcus aureus, Trichoderma viride
J. Enzyme Inhib. Med. Chem.
23
341-346
2008
-
-
-
-
-
-
14
7
-
-
-
-
-
17
-
-
-
-
-
7
7
-
7
-
7
-
-
-
7
-
-
-
1
-
-
-
-
-
-
-
-
-
-
14
1
7
-
-
-
-
-
-
-
-
-
7
7
-
7
-
7
-
-
-
7
-
-
-
-
-
-
-
-
-
688558
Okamoto
Crystal structures of mammalia ...
Bos taurus
J. Nippon Med. Sch.
75
2-3
2008
-
-
-
1
-
-
3
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
3
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
688639
Corpas
Peroxisomal xanthine oxidoredu ...
Pisum sativum
J. Plant Physiol.
165
1319-1330
2008
-
-
-
-
-
-
-
-
1
-
2
-
-
4
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689276
Tsujii
Mechanism of transition from x ...
Bos taurus, Rattus norvegicus
Nucleosides Nucleotides Nucleic Acids
27
881-887
2008
-
-
-
-
1
2
3
-
-
-
-
-
-
2
-
-
-
-
2
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
2
-
3
-
-
-
-
-
-
-
-
-
-
2
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689277
Okamoto
Mechanism of inhibition of xan ...
Bos taurus
Nucleosides Nucleotides Nucleic Acids
27
888-893
2008
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
701944
Sulikowski
Effect of trimetazidine on xan ...
Rattus norvegicus
Arch. Med. Res.
39
459-462
2008
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
703626
Nishino
Mammalian xanthine oxidoreduct ...
Bos taurus, Gallus gallus, Homo sapiens, Rattus norvegicus, Rhodobacter capsulatus
FEBS J.
275
3278-3289
2008
1
-
-
1
3
-
-
1
3
-
-
15
-
5
-
-
1
-
-
3
-
-
15
5
-
-
-
-
-
-
-
13
-
-
-
1
-
-
13
1
3
-
-
-
-
1
3
-
-
15
-
-
-
1
-
3
-
-
15
5
-
-
-
-
-
-
-
-
-
5
5
-
-
-
704425
Schumann
The mechanism of assembly and ...
Rhodobacter capsulatus
J. Biol. Chem.
283
16602-16611
2008
-
-
1
-
5
-
-
8
-
2
-
1
-
3
-
1
1
-
-
-
-
-
2
1
1
-
-
6
1
-
-
3
-
-
-
-
-
1
3
-
5
-
-
-
-
8
-
2
-
1
-
-
1
1
-
-
-
-
2
1
1
-
-
6
1
-
-
-
-
-
-
-
-
-
704842
Taibi
Xanthine dehydrogenase process ...
Homo sapiens
J. Enzyme Inhib. Med. Chem.
23
317-327
2008
1
-
-
-
-
-
1
1
1
-
-
2
-
2
-
-
1
1
-
3
-
-
2
-
1
-
-
-
1
-
-
1
-
-
-
1
-
-
1
-
-
-
-
1
-
1
1
-
-
2
-
-
-
1
-
3
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
706057
Haidari
Effects of onion on serum uric ...
Rattus norvegicus
Pak. J. Biol. Sci.
11
1779-1784
2008
-
-
-
-
-
-
2
-
-
-
-
1
-
5
-
-
-
-
-
1
1
-
1
-
1
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
672979
Cheung
Xanthine oxidoreductase is a r ...
Mus musculus
Cell Metab.
5
115-128
2007
-
1
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
674374
Yamaguchi
Human Xanthine oxidase changes ...
Homo sapiens
J. Biochem.
141
513-524
2007
-
-
-
1
2
-
-
4
-
-
-
-
-
1
-
-
1
-
-
1
-
-
2
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
1
2
-
-
-
-
4
-
-
-
-
-
-
-
1
-
1
-
-
2
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
674375
Asai
Two mutations convert mammalia ...
Rattus norvegicus
J. Biochem.
141
525-534
2007
-
-
-
1
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
674793
Pauff
The role of arginine 310 in ca ...
Rhodobacter capsulatus
J. Biol. Chem.
282
12785-12790
2007
-
-
-
-
2
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
675020
Roberts
PD98059 enhanced insulin, cyto ...
Rattus norvegicus
J. Cell. Biochem.
101
1567-1587
2007
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
686354
Omura
Characterization of N-glucuron ...
Homo sapiens
Drug Metab. Dispos.
35
2143-2148
2007
-
1
-
-
-
-
1
-
1
-
-
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
687105
Silanikove
-
Distribution of xanthine oxida ...
Bos taurus
Int. Dairy J.
17
1188-1194
2007
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
687214
Hagopian
Rat liver xanthine oxidoreduct ...
Rattus norvegicus
Ital. J. Biochem.
56
6-17
2007
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
1
-
-
1
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
1
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
687817
Maia
NADH oxidase activity of rat a ...
Rattus norvegicus
J. Biol. Inorg. Chem.
12
777-787
2007
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
3
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
688448
Isabelle
NADPH oxidase inhibition preve ...
Rattus norvegicus
J. Mol. Cell. Cardiol.
42
326-332
2007
-
1
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
671254
Abdulnour
Mechanical stress activates xa ...
Mus musculus
Am. J. Physiol. Lung Cell Mol. Physiol.
291
L345-L353
2006
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
674566
Neumann
Rhodobacter capsulatus XdhC is ...
Rhodobacter capsulatus
J. Biol. Chem.
281
15701-15708
2006
-
-
-
-
-
-
-
-
1
1
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
675113
Zhao
Effects of cassia oil on serum ...
Mus musculus
J. Ethnopharmacol.
103
357-365
2006
-
1
-
-
-
-
1
-
-
-
-
-
-
7
-
-
-
-
-
12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
659481
Nishino
Mechanism of the conversion of ...
Rattus norvegicus
J. Biol. Chem.
280
24888-24894
2005
-
-
-
1
5
-
-
-
-
-
-
-
-
2
-
1
-
1
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
5
-
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
660183
Yesbergenova
The plant Mo-hydroxylases alde ...
Arabidopsis thaliana, Solanum lycopersicum
Plant J.
42
862-876
2005
-
-
-
-
1
-
2
-
-
2
-
-
-
7
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
2
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
671830
Godber
Molecular characterization of ...
Bos taurus, Homo sapiens
Biochem. J.
388
501-508
2005
-
-
-
-
-
-
-
-
-
3
2
2
-
2
-
-
-
-
-
2
-
-
2
2
-
-
-
-
-
-
-
4
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
3
2
2
-
-
-
-
-
2
-
-
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
673806
Maia
NADH oxidase activity of rat l ...
Rattus norvegicus
Free Radic. Res.
39
979-986
2005
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
674020
Atmani
-
NADH oxidation and superoxide ...
Capra hircus
Int. Dairy J.
15
1113-1121
2005
-
-
-
-
-
-
4
-
-
1
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
656630
Taylor
Xanthine dehydrogenase and ald ...
Persea americana
J. Plant Res.
117
121-130
2004
-
1
-
-
-
-
2
-
-
-
-
-
-
3
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
659314
Hesberg
Tandem orientation of duplicat ...
Arabidopsis thaliana
J. Biol. Chem.
279
13547-13554
2004
-
-
1
-
-
-
3
-
-
-
2
-
-
4
-
-
-
-
-
1
-
-
7
1
-
-
-
-
-
1
-
1
-
-
-
-
-
1
1
-
-
-
-
3
-
-
-
-
2
-
-
-
-
-
-
1
-
-
7
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
659390
Leimkuhler
The role of active site glutam ...
Rhodobacter capsulatus
J. Biol. Chem.
279
40437-40444
2004
-
-
-
-
5
-
1
3
-
-
-
-
-
5
-
-
1
-
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
1
-
3
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
659580
Benboubetra
Physicochemical and kinetic pr ...
Bos taurus, Capra hircus, Homo sapiens, Ovis aries
J. Dairy Sci.
87
1580-1584
2004
-
-
-
-
-
-
-
8
-
1
1
-
-
4
-
-
1
-
-
4
7
-
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8
-
1
1
-
-
-
-
1
-
4
7
-
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
660378
Okamoto
The crystal structure of xanth ...
Bos taurus
Proc. Natl. Acad. Sci. USA
101
7931-7936
2004
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
660439
Ivanov
High-level expression and char ...
Delftia acidovorans
Protein Expr. Purif.
37
72-82
2004
-
1
-
-
-
-
-
-
-
2
-
-
-
5
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
657699
Baghiani
Purification and partial chara ...
Camelus dromedarius
Arch. Physiol. Biochem.
111
407-414
2003
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
1
-
-
-
3
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
3
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
658630
Ivanov
Factors involved in the assemb ...
Delftia acidovorans
Eur. J. Biochem.
270
4744-4754
2003
-
1
-
-
-
-
-
8
-
-
-
-
-
7
-
-
-
-
-
3
-
-
2
-
-
-
-
4
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
16
-
-
-
-
-
-
-
-
-
3
-
-
2
-
-
-
-
8
-
-
-
-
-
-
-
-
-
-
659205
Okamoto
An extremely potent inhibitor ...
Bos taurus
J. Biol. Chem.
278
1848-1855
2003
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
659210
Leimkuhler
Recombinant Rhodobacter capsul ...
Bos taurus, Rhodobacter capsulatus
J. Biol. Chem.
278
20802-20811
2003
-
-
-
-
1
-
-
-
-
2
-
-
-
6
-
-
-
-
-
1
-
-
12
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
2
-
-
-
-
-
-
-
1
-
-
12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644560
Adams
Expression of Drosophila melan ...
Drosophila melanogaster
Biochem. J.
362
223-229
2002
-
-
1
-
-
-
-
1
-
2
-
1
-
6
-
-
1
-
-
-
-
-
3
-
-
-
-
1
-
-
1
3
-
-
-
-
-
1
3
-
-
-
-
-
-
1
-
2
-
1
-
-
-
1
-
-
-
-
3
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
644603
Truglio
Crystal structures of the acti ...
Rhodobacter capsulatus
Structure
10
115-125
2002
-
-
-
1
-
-
1
-
-
-
-
3
-
3
-
-
-
-
-
1
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
1
-
-
-
-
-
3
-
-
-
-
-
1
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
657487
Frederiks
Ultrastructural localization o ...
Rattus norvegicus
Acta Histochem.
104
29-37
2002
-
-
-
-
-
-
-
-
2
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
659012
Self
Regulation of purine hydroxyla ...
Gottschalkia purinilytica
J. Bacteriol.
184
2039-2044
2002
-
-
-
-
-
-
-
-
-
3
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
659079
Nishino
Purification and characterizat ...
Rattus norvegicus
J. Biochem.
132
597-606
2002
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
660263
Sauer
-
Xanthine dehydrogenase of pea ...
Pisum sativum
Plant Physiol. Biochem.
40
393-400
2002
-
-
-
-
-
-
3
3
-
-
2
-
-
1
-
-
1
-
-
1
1
-
3
1
-
-
-
-
1
-
-
2
-
1
-
-
-
-
2
-
-
-
-
3
-
3
-
-
2
-
-
-
-
1
-
1
1
-
3
1
-
-
-
-
1
-
-
1
-
-
-
-
-
-
644562
Parschat
Xanthine dehydrogenase from Ps ...
Pseudomonas putida, Pseudomonas putida 86
Biochim. Biophys. Acta
1544
151-165
2001
-
-
-
-
-
-
-
-
-
4
5
3
-
17
-
-
1
-
-
1
3
-
20
1
-
-
-
-
-
-
-
4
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
4
5
3
-
-
-
1
-
1
3
-
20
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644563
Morita
Identification of xanthine deh ...
Rattus sp.
Biochim. Biophys. Acta
1540
43-49
2001
-
-
-
-
-
-
-
-
-
-
-
2
-
3
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644555
Eger
-
Purification, crystallization ...
Bos taurus
Acta Crystallogr. Sect. D
56
1656-1658
2000
-
-
-
1
-
-
-
-
-
2
2
2
-
1
-
-
1
-
-
1
-
-
2
1
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
1
-
-
-
-
-
-
-
2
2
2
-
-
-
1
-
1
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644564
Enroth
Crystal structures of bovine m ...
Bos taurus
Proc. Natl. Acad. Sci. USA
97
10723-10728
2000
1
-
-
1
-
-
-
-
-
2
2
2
-
2
-
-
1
-
-
1
-
-
2
1
-
-
-
-
-
-
-
3
-
-
-
1
-
-
3
1
-
-
-
-
-
-
-
2
2
2
-
-
-
1
-
1
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644577
Self
Selenium-dependent metabolism ...
Gottschalkia purinilytica
Proc. Natl. Acad. Sci. USA
97
7208-7213
2000
-
-
-
-
-
-
1
3
-
1
4
-
-
4
-
-
1
-
-
1
1
1
6
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
1
-
3
-
1
4
-
-
-
-
1
-
1
1
1
6
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644565
McManaman
Mouse mammary gland xanthine o ...
Mus musculus
Arch. Biochem. Biophys.
371
308-316
1999
1
-
-
-
-
-
-
-
-
-
1
1
-
1
-
-
1
-
-
2
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
1
-
2
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644566
Schräder
Selenium-containing xanthine d ...
Eubacterium barkeri
Eur. J. Biochem.
264
862-871
1999
-
-
-
-
-
-
6
3
-
4
4
4
-
2
-
-
1
-
-
1
1
-
7
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
6
-
3
-
4
4
4
-
-
-
1
-
1
1
-
7
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644567
Ichimori
Inhibition of xanthine oxidase ...
Bos taurus
J. Biol. Chem.
274
7763-7768
1999
-
-
-
-
-
-
1
-
-
2
-
2
-
2
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
1
-
-
-
2
-
2
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644568
Montalbini
-
Purification and some properti ...
Triticum aestivum
Plant Sci.
134
89-102
1998
1
-
-
-
-
-
6
8
-
-
1
4
-
1
-
-
1
-
-
1
1
1
22
-
-
-
-
-
2
-
-
3
-
-
-
1
-
-
3
-
-
-
-
6
-
8
-
-
1
4
-
-
-
1
-
1
1
1
22
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
644569
Christiansen
Xanthine metabolism in Bacillu ...
Bacillus subtilis
J. Bacteriol.
179
2540-2550
1997
-
-
-
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644570
Gremer
Characterization of xanthine d ...
Veillonella atypica
Eur. J. Biochem.
238
862-866
1996
-
-
-
-
-
-
-
1
-
3
4
1
-
4
-
-
1
-
-
1
1
-
19
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
1
-
3
4
1
-
-
-
1
-
1
1
-
19
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644583
Xiang
Purification and characterizat ...
Delftia acidovorans
Biochemistry
35
5441-5450
1996
-
-
-
-
-
-
4
2
-
2
3
1
-
6
-
1
1
-
-
2
1
1
5
1
-
-
-
1
-
-
-
3
-
-
-
-
-
-
3
-
-
-
-
4
-
2
-
2
3
1
-
-
1
1
-
2
1
1
5
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
644584
Doyle
Properties of xanthine dehydro ...
Drosophila melanogaster
Eur. J. Biochem.
239
782-795
1996
-
-
-
-
4
-
-
5
-
-
-
3
-
4
-
-
1
-
-
3
-
-
9
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
5
-
-
-
3
-
-
-
1
-
3
-
-
9
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
644586
Leydecker
Molybdenum cofactor mutants, s ...
Nicotiana plumbaginifolia
Plant Physiol.
107
1427-1431
1995
-
-
-
-
-
-
-
-
-
1
-
2
-
4
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
660785
Joshi
Specific incorporation of moly ...
Pseudomonas aeruginosa
Arch. Biochem. Biophys.
308
331-334
1994
-
-
-
-
-
-
-
-
-
1
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644585
Wright
cDNA cloning, characterization ...
Homo sapiens
Proc. Natl. Acad. Sci. USA
90
10690-10694
1993
-
-
-
-
-
-
-
-
-
-
1
-
-
4
-
-
-
-
-
5
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
5
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644578
Hughes
-
Use of rosy mutant strains of ...
Drosophila melanogaster
Biochem. J.
285
507-513
1992
-
1
-
-
-
-
-
-
-
4
-
3
-
1
-
-
-
-
-
1
-
-
8
-
-
-
-
-
-
-
-
3
-
-
-
-
1
-
3
-
-
-
-
-
-
-
-
4
-
3
-
-
-
-
-
1
-
-
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644588
Hunt
Purification and properties of ...
Bos taurus
J. Biol. Chem.
267
21479-21485
1992
2
-
-
-
-
-
3
3
-
1
-
2
-
1
-
-
1
-
-
1
2
1
3
-
-
-
-
2
-
-
2
3
-
-
-
2
-
-
3
-
-
-
-
3
-
3
-
1
-
2
-
-
-
1
-
1
2
1
3
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
644590
Perez-Vicente
Purification and substrate ina ...
Chlamydomonas reinhardtii
Biochim. Biophys. Acta
1117
159-166
1992
-
-
-
-
-
-
8
-
-
-
-
3
-
4
-
-
1
-
-
1
1
-
8
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
8
-
-
-
-
-
3
-
-
-
1
-
1
1
-
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644598
Hughes
Xanthine dehydrogenase from Dr ...
Drosophila melanogaster
Biochemistry
31
3073-3083
1992
-
-
-
-
1
-
-
-
-
2
-
3
-
4
-
-
1
-
-
3
1
-
8
-
-
-
-
1
-
-
-
3
-
-
-
-
-
-
3
-
1
-
-
-
-
-
-
2
-
3
-
-
-
1
-
3
1
-
8
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
644591
Panus
Characterization of cultured a ...
Rattus sp.
Biochim. Biophys. Acta
1091
303-309
1991
-
-
-
-
-
-
-
-
-
-
-
3
-
2
-
-
-
-
-
1
-
-
7
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
661289
Johnson
Identification of a molybdopte ...
Pseudomonas aeruginosa
BioFactors
3
103-107
1991
-
-
-
-
-
-
-
-
-
1
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644558
Wajner
Distribution of xanthine dehyd ...
Homo sapiens, Oryctolagus cuniculus
Biochim. Biophys. Acta
991
79-84
1989
-
-
-
-
-
-
-
-
1
-
-
2
-
4
-
-
-
-
-
18
-
-
2
-
-
-
2
-
-
1
-
4
-
-
-
-
-
-
4
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
18
-
-
2
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
644559
Stark
Proteolytic conversion of xant ...
Rattus sp.
Biochem. Biophys. Res. Commun.
165
858-864
1989
-
-
-
-
-
-
-
-
-
-
2
1
-
2
-
-
1
-
-
1
-
-
1
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
2
1
-
-
-
1
-
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644561
Kim
-
Purification and characterizat ...
Pseudomonas putida
GBF Monogr. , Biosens. Appl. Med. , Environ. Prot. Process Control
13
421-424
1989
-
-
-
-
-
-
-
3
-
-
3
3
-
1
-
-
1
-
-
1
1
-
3
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
3
-
-
3
3
-
-
-
1
-
1
1
-
3
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644556
Bruguera
Kinetic mechanism of chicken l ...
Gallus gallus
Biochem. J.
249
171-178
1988
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
1
-
-
1
-
-
1
1
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644557
Wajner
-
Distribution of xanthine dehyd ...
Homo sapiens, Oryctolagus cuniculus
Biochem. Soc. Trans.
16
358-359
1988
-
-
-
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
15
-
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
15
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644576
Schopfer
Rapid reaction studies on the ...
Gallus gallus
J. Biol. Chem.
263
13528-13538
1988
-
-
-
-
-
-
-
-
-
2
-
1
-
2
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644571
Suleiman
Purification of xanthine dehyd ...
Rattus sp.
Arch. Biochem. Biophys.
258
219-225
1987
-
-
-
-
-
-
-
-
-
-
1
1
-
2
-
-
1
-
-
2
1
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
1
1
-
-
-
1
-
2
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644573
Prez-Vicente
-
Occurrence of an NADH diaphora ...
Chlamydomonas reinhardtii
FEMS Microbiol. Lett.
43
321-325
1987
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
1
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644575
Rocher-Chambonnet
Cloning and partial characteri ...
Calliphora vicina
Gene
59
201-212
1987
-
-
-
-
-
-
-
-
1
-
-
3
-
5
-
-
-
-
-
2
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
3
-
-
-
-
-
2
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644593
Woolfolk
Purification and properties of ...
Pseudomonas putida
J. Bacteriol.
163
600-609
1985
-
-
-
-
-
1
3
-
-
2
2
2
1
3
-
-
1
-
-
1
1
1
4
1
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
-
1
-
3
-
-
-
2
2
2
1
-
-
1
-
1
1
1
4
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644572
Irie
Subunit constitution of electr ...
Gallus gallus
J. Biochem.
95
405-412
1984
-
-
-
-
-
1
-
-
-
-
3
1
-
1
-
-
1
-
-
1
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
3
1
-
-
-
1
-
1
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644592
Wagner
-
Purification and characterizat ...
Gottschalkia acidurici
Biochim. Biophys. Acta
791
63-74
1984
-
-
-
-
-
1
-
2
-
6
6
1
-
1
-
-
1
-
-
1
1
-
13
1
1
-
-
-
2
-
-
2
-
-
-
-
-
-
2
-
-
1
-
-
-
2
-
6
6
1
-
-
-
1
-
1
1
-
13
1
1
-
-
-
2
-
-
-
-
-
-
-
-
-
644609
Boland
Soybean nodule xanthine dehydr ...
Glycine max
Arch. Biochem. Biophys.
222
435-441
1983
-
-
-
-
-
-
4
8
-
-
1
2
-
3
-
-
1
-
-
2
-
-
3
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
4
-
8
-
-
1
2
-
-
-
1
-
2
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
394699
Battelli
Purification and properties of ...
Rattus sp.
Biochem. J.
207
133-138
1982
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644600
Kaminsky
Involvement of a single thiol ...
Rattus sp.
Biochem. J.
207
341-346
1982
1
1
-
-
-
-
5
-
-
-
-
2
-
1
-
-
1
-
-
1
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
1
1
-
1
-
-
-
-
5
-
-
-
-
-
2
-
-
-
1
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644601
Topham
Liver xanthine dehydrogenase a ...
Rattus sp.
Biochem. Biophys. Res. Commun.
109
1240-1246
1982
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644602
Triplett
Purification and properties of ...
Glycine max
Arch. Biochem. Biophys.
219
39-46
1982
-
-
-
-
-
-
-
-
-
2
2
1
-
2
-
-
1
-
-
2
1
-
1
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
2
1
-
-
-
1
-
2
1
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644618
Nakamura
Preparation of bovine milk xan ...
Bos taurus
J. Biochem.
92
1279-1286
1982
1
-
-
-
-
-
-
-
1
-
-
1
-
1
1
-
1
-
-
1
-
-
3
-
-
-
2
-
-
-
-
2
-
-
-
1
-
-
2
-
-
-
-
-
-
-
1
-
-
1
-
1
-
1
-
1
-
-
3
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
644599
Kaminski
Effect of NADH on hypoxanthine ...
Rattus sp.
Biochem. J.
200
597-603
1981
-
-
-
-
-
-
1
-
-
-
-
2
-
1
-
-
1
-
-
1
-
1
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
2
-
-
-
1
-
1
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644606
Coolbear
-
Xanthine dehydrogenase in chic ...
Gallus gallus
Biochem. Soc. Trans.
9
394-395
1981
-
-
-
-
-
-
-
-
1
-
-
2
-
1
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644608
Aretz
-
Molecular and kinetic characte ...
Rhodobacter capsulatus
Z. Naturforsch. C
36
933-941
1981
-
-
-
-
-
-
7
3
-
2
2
2
-
1
-
-
1
-
-
1
1
-
8
1
1
-
1
-
1
-
-
3
-
-
-
-
-
-
3
-
-
-
-
7
-
3
-
2
2
2
-
-
-
1
-
1
1
-
8
1
1
-
1
-
1
-
-
-
-
-
-
-
-
-
644611
Fernandez
Occurrence of xanthine dehydro ...
Chlamydomonas reinhardtii
Planta
153
254-257
1981
-
-
-
-
-
-
-
-
-
1
-
1
-
4
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644613
Tramper
Kinetics and stability of immo ...
Gallus gallus
Biotechnol. Bioeng.
21
1767-1786
1979
-
1
-
-
-
-
-
4
-
-
-
1
-
2
-
-
1
-
-
2
-
-
1
-
1
-
1
-
-
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
-
4
-
-
-
1
-
-
-
1
-
2
-
-
1
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
644614
Wagner
Selenium requirement for activ ...
Clostridium cylindrosporum, Gottschalkia acidurici
Arch. Microbiol.
121
255-260
1979
-
-
-
-
-
-
-
-
-
-
-
4
-
4
-
-
-
-
-
2
2
-
8
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
2
2
-
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644615
Coughlan
The inactivation of xanthine-o ...
Meleagris gallopavo
Biochem. Soc. Trans.
7
18-21
1979
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
1
-
-
1
-
-
2
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
1
-
-
2
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
644616
Ohe
Purification and properties of ...
Streptomyces cyanogenus
J. Biochem.
86
45-53
1979
3
-
-
-
-
1
10
4
-
1
2
8
-
4
-
-
1
-
-
1
1
-
18
1
1
-
3
-
1
-
1
3
-
-
-
3
-
-
3
-
-
1
-
10
-
4
-
1
2
8
-
-
-
1
-
1
1
-
18
1
1
-
3
-
1
-
1
-
-
-
-
-
-
-
644617
Sakai
-
Purification, crystallization, ...
Pseudomonas synxantha
Agric. Biol. Chem.
43
753-760
1979
-
-
-
-
-
-
5
-
-
-
3
3
-
1
-
-
1
-
-
1
1
-
11
1
1
-
1
-
1
-
-
2
-
-
-
-
-
-
2
-
-
-
-
5
-
-
-
-
3
3
-
-
-
1
-
1
1
-
11
1
1
-
1
-
1
-
-
-
-
-
-
-
-
-
644589
Nguyen
-
Some properties and subcellula ...
Pisum sativum
Plant Sci. Lett.
13
125-132
1978
-
-
-
-
-
-
3
-
1
-
-
4
-
1
-
-
-
-
-
1
-
-
6
-
-
-
2
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
3
-
-
1
-
-
4
-
-
-
-
-
1
-
-
6
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
644604
Lyon
Regulation, purification, and ...
Neurospora crassa
J. Biol. Chem.
253
2604-2614
1978
-
-
-
-
-
-
13
7
-
2
2
3
-
5
-
-
1
-
-
1
1
-
5
1
-
-
-
-
-
-
-
4
-
-
-
-
-
-
4
-
-
-
-
13
-
7
-
2
2
3
-
-
-
1
-
1
1
-
5
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644574
Fhaolain
Effects of limited proteolysis ...
Meleagris gallopavo
Biochem. Soc. Trans.
5
1705-1707
1977
-
-
-
-
-
-
-
-
-
2
-
3
-
2
-
-
-
-
-
2
-
-
8
-
-
-
-
-
-
-
1
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
3
-
-
-
-
-
2
-
-
8
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
644594
Woolfolk
Distribution of xanthine oxida ...
Alcaligenes sp., Arthrobacter sp., Bacillus sp. (in: Bacteria), Clostridium sp., Escherichia sp., Lactobacillus sp., no activity in Klebsiella sp., Nocardia sp., Penicillium sp., Peptococcus sp., Pseudomonas putida 40, Pseudomonas putida, Pseudomonas sp., Serratia sp., Streptomyces sp., Veillonella sp.
J. Bacteriol.
130
1175-1191
1977
-
-
-
-
-
-
-
-
-
-
-
13
-
21
-
-
-
-
-
14
-
-
50
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
6
-
-
-
-
-
-
-
-
-
-
13
-
-
-
-
-
14
-
-
50
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644610
Edwards
Xanthine dehydrogenase from Dr ...
Drosophila melanogaster
Mol. Gen. Genet.
154
1-6
1977
-
-
-
-
-
-
-
2
-
1
1
2
-
3
-
-
1
-
-
-
-
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
2
-
1
1
2
-
-
-
1
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644580
Waud
Purification and properties of ...
Rattus sp.
Arch. Biochem. Biophys.
172
354-364
1976
2
-
-
-
-
1
1
3
-
3
1
3
-
2
-
-
1
-
-
2
-
-
7
1
-
-
1
-
-
-
-
3
-
-
-
2
-
-
3
-
-
1
-
1
-
3
-
3
1
3
-
-
-
1
-
2
-
-
7
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
644587
Waud
The mechanism of conversion of ...
Bos taurus, Rattus sp.
Arch. Biochem. Biophys.
172
365-379
1976
2
-
-
-
-
-
1
-
-
1
1
5
-
3
-
-
1
-
-
3
-
-
11
1
-
-
1
-
-
-
-
4
-
-
-
2
-
-
4
-
-
-
-
1
-
-
-
1
1
5
-
-
-
1
-
3
-
-
11
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
644581
Sin
Purification and properties of ...
Delftia acidovorans
Biochim. Biophys. Acta
410
12-20
1975
-
-
-
-
-
1
3
4
-
-
3
5
-
3
-
-
1
-
-
1
-
-
6
1
-
-
-
-
1
-
-
2
-
-
-
-
-
-
2
-
-
1
-
3
-
4
-
-
3
5
-
-
-
1
-
1
-
-
6
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
644596
Seybold
-
Purification and partial chara ...
Drosophila melanogaster
Biochim. Biophys. Acta
334
266-271
1974
-
-
-
-
-
-
-
-
-
-
3
1
-
1
-
-
1
-
-
1
1
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
3
1
-
-
-
1
-
1
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644582
Della Corte
The regulation of rat liver xa ...
Gallus gallus, no activity in Columba livia, Rattus sp.
Biochem. J.
126
739-745
1972
1
-
-
-
-
-
4
-
-
-
-
5
-
3
-
-
1
-
-
8
-
-
5
-
-
-
1
-
-
-
-
2
-
-
-
1
-
-
2
-
-
-
-
4
-
-
-
-
-
5
-
-
-
1
-
8
-
-
5
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
644607
Watt
Xanthine dehydrogenase and pte ...
Colias eurytheme
J. Biol. Chem.
247
1445-1451
1972
-
-
-
-
-
-
3
11
-
-
1
5
-
3
-
-
1
-
-
1
-
1
10
-
-
-
-
-
1
-
1
1
-
-
-
-
-
-
1
-
-
-
-
3
-
11
-
-
1
5
-
-
-
1
-
1
-
1
10
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
644579
Rajagopalan
Purification and properties of ...
Gallus gallus
J. Biol. Chem.
242
4097-4107
1967
-
-
-
-
-
-
6
-
-
2
1
2
-
2
-
-
1
-
-
2
-
-
12
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
4
-
-
-
-
6
-
-
-
2
1
2
-
-
-
1
-
2
-
-
12
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644595
Yen
Electrophoretic variants of xa ...
Bos taurus, Drosophila melanogaster
Biochim. Biophys. Acta
146
35-44
1967
-
-
-
-
-
-
8
11
-
-
-
4
-
3
-
-
-
-
-
2
-
-
7
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
8
-
11
-
-
-
4
-
-
-
-
-
2
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
644597
Smith
Purification and properties of ...
Veillonella atypica
J. Biol. Chem.
242
4108-4117
1967
1
-
-
-
-
-
4
-
-
2
1
6
-
1
-
-
1
-
-
1
1
-
17
-
-
-
-
10
2
-
1
2
-
-
-
1
-
-
2
-
-
-
-
4
-
-
-
2
1
6
-
-
-
1
-
1
1
-
17
-
-
-
-
10
2
-
1
-
-
-
-
-
-
-
644605
Parzen
Purification of xanthine dehyd ...
Drosophila melanogaster
Biochim. Biophys. Acta
92
465-471
1964
-
-
-
-
-
1
-
4
-
-
-
2
-
2
-
-
1
-
-
1
1
-
4
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
1
-
-
-
4
-
-
-
2
-
-
-
1
-
1
1
-
4
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-