BRENDA - Enzyme Database show
show all sequences of 1.14.15.17

Involvement of a putative bipartite transit peptide in targeting rice pheophorbide a oxygenase into chloroplasts for chlorophyll degradation during leaf senescence

Xie, Q.; Liang, Y.; Zhang, J.; Zheng, H.; Dong, G.; Qian, Q.; Zuo, J.; J. Genet. Genomics 43, 145-154 (2016)

Data extracted from this reference:

Cloned(Commentary)
Commentary
Organism
gene EAS1, DNA and amino acid sequence determination and analysis, phylogenetic analysis, quantitative RT-PCR analysis of EAS1 gene expression in different tissues of rice. Only a short version of EAS1 lacking the first putative transit peptide, but not the full-length EAS1, is capable of rescuing the Arabidopsis acd1 mutant phenotype
Oryza sativa Japonica Group
Engineering
Amino acid exchange
Commentary
Organism
additional information
screening and genotyping for gene eas1 mutants showing an early senescence phenotype, overview. The eas1 mutant is defective in Chl breakdown, which may cause the accumulation of Chl intermediates, leading to the cell death phenotype in light conditions
Oryza sativa Japonica Group
Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
chloroplast membrane
integral enzyme, the enzyme contains two putative transit peptides at its N-terminus, which are essential for its functionality, suggesting that targeting of the enzyme to the chloroplast is likely mediated by a putative bipartite transit peptide. Once the precursors of luminal proteins reach the stroma, the first transit peptide for the chloroplast envelop is cleaved off by the stroma processing proteases, and then the intermediate precursor lacking the first transit peptide is translocated into the thylakoid lumen through the second transit peptide
Oryza sativa Japonica Group
31969
-
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
[2Fe-2S] cluster
Rieske domain with a [2Fe-2S] cluster at its N-terminal region that accepts electrons from a reductase, and a functional PaO domain at the carboxyl-terminal region
Oryza sativa Japonica Group
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
additional information
Oryza sativa Japonica Group
PaO is a Fe-dependent monooxygenase that oxygenolytically opens the porphyrin macrocycle of pheophorbide a and converts pheophorbide a to red chlorophyll catabolite (RCC)
?
-
-
-
additional information
Oryza sativa Japonica Group Nipponbare
PaO is a Fe-dependent monooxygenase that oxygenolytically opens the porphyrin macrocycle of pheophorbide a and converts pheophorbide a to red chlorophyll catabolite (RCC)
?
-
-
-
pheophorbide a + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2
Oryza sativa Japonica Group
-
red chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
pheophorbide a + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2
Oryza sativa Japonica Group Nipponbare
-
red chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Oryza sativa Japonica Group
Q10RT5
nuclear gene EAS1, i.e. early senescence 1
-
Oryza sativa Japonica Group Nipponbare
Q10RT5
nuclear gene EAS1, i.e. early senescence 1
-
Source Tissue
Source Tissue
Commentary
Organism
Textmining
leaf
-
Oryza sativa Japonica Group
-
additional information
enzyme expression analysis in different tissues of rice
Oryza sativa Japonica Group
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
additional information
PaO is a Fe-dependent monooxygenase that oxygenolytically opens the porphyrin macrocycle of pheophorbide a and converts pheophorbide a to red chlorophyll catabolite (RCC)
736578
Oryza sativa Japonica Group
?
-
-
-
-
additional information
PaO is a Fe-dependent monooxygenase that oxygenolytically opens the porphyrin macrocycle of pheophorbide a and converts pheophorbide a to red chlorophyll catabolite (RCC)
736578
Oryza sativa Japonica Group Nipponbare
?
-
-
-
-
pheophorbide a + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2
-
736578
Oryza sativa Japonica Group
red chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
pheophorbide a + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2
-
736578
Oryza sativa Japonica Group Nipponbare
red chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
Cofactor
Cofactor
Commentary
Organism
Structure
Ferredoxin
-
Oryza sativa Japonica Group
Cloned(Commentary) (protein specific)
Commentary
Organism
gene EAS1, DNA and amino acid sequence determination and analysis, phylogenetic analysis, quantitative RT-PCR analysis of EAS1 gene expression in different tissues of rice. Only a short version of EAS1 lacking the first putative transit peptide, but not the full-length EAS1, is capable of rescuing the Arabidopsis acd1 mutant phenotype
Oryza sativa Japonica Group
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
Ferredoxin
-
Oryza sativa Japonica Group
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
additional information
screening and genotyping for gene eas1 mutants showing an early senescence phenotype, overview. The eas1 mutant is defective in Chl breakdown, which may cause the accumulation of Chl intermediates, leading to the cell death phenotype in light conditions
Oryza sativa Japonica Group
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
chloroplast membrane
integral enzyme, the enzyme contains two putative transit peptides at its N-terminus, which are essential for its functionality, suggesting that targeting of the enzyme to the chloroplast is likely mediated by a putative bipartite transit peptide. Once the precursors of luminal proteins reach the stroma, the first transit peptide for the chloroplast envelop is cleaved off by the stroma processing proteases, and then the intermediate precursor lacking the first transit peptide is translocated into the thylakoid lumen through the second transit peptide
Oryza sativa Japonica Group
31969
-
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
[2Fe-2S] cluster
Rieske domain with a [2Fe-2S] cluster at its N-terminal region that accepts electrons from a reductase, and a functional PaO domain at the carboxyl-terminal region
Oryza sativa Japonica Group
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
additional information
Oryza sativa Japonica Group
PaO is a Fe-dependent monooxygenase that oxygenolytically opens the porphyrin macrocycle of pheophorbide a and converts pheophorbide a to red chlorophyll catabolite (RCC)
?
-
-
-
additional information
Oryza sativa Japonica Group Nipponbare
PaO is a Fe-dependent monooxygenase that oxygenolytically opens the porphyrin macrocycle of pheophorbide a and converts pheophorbide a to red chlorophyll catabolite (RCC)
?
-
-
-
pheophorbide a + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2
Oryza sativa Japonica Group
-
red chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
pheophorbide a + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2
Oryza sativa Japonica Group Nipponbare
-
red chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
?
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
leaf
-
Oryza sativa Japonica Group
-
additional information
enzyme expression analysis in different tissues of rice
Oryza sativa Japonica Group
-
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
additional information
PaO is a Fe-dependent monooxygenase that oxygenolytically opens the porphyrin macrocycle of pheophorbide a and converts pheophorbide a to red chlorophyll catabolite (RCC)
736578
Oryza sativa Japonica Group
?
-
-
-
-
additional information
PaO is a Fe-dependent monooxygenase that oxygenolytically opens the porphyrin macrocycle of pheophorbide a and converts pheophorbide a to red chlorophyll catabolite (RCC)
736578
Oryza sativa Japonica Group Nipponbare
?
-
-
-
-
pheophorbide a + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2
-
736578
Oryza sativa Japonica Group
red chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
pheophorbide a + 2 reduced ferredoxin [iron-sulfur] cluster + 2 H+ + O2
-
736578
Oryza sativa Japonica Group Nipponbare
red chlorophyll catabolite + 2 oxidized ferredoxin [iron-sulfur] cluster
-
-
-
?
General Information
General Information
Commentary
Organism
evolution
PaO is an evolutionarily conserved protein, and EAS1 is 68% identical to the Arabidopsis ACCERLERATED CELL DEATH (ACD1) protein
Oryza sativa Japonica Group
malfunction
during the early growth stage (at the 3th leaf stage), eas1 mutants do not show detectable differences compared to wild-type plants. At the heading stage, old leaves of eas1 mutants turn yellowish or brownish, when wild-type plants are still healthy and green. Small chlorotic lesions are first observed near the tip, and then spread down to the entire leaves of eas1 mutants. At the grain filling stage, the leaf senescence phenotype of eas1 is more apparent compared to wild-type, as most eas1 mutant leaves, culms and sheaths turned to dark brown. In addition to the leaf senescence phenotype, the mature eas1 mutant plants also exhibit apparent developmental defects, such as semi-dwarfism, reduced tiller number and partial-filling
Oryza sativa Japonica Group
physiological function
gene EAS1 encodes a PaO enzyme containing a putative bipartite chloroplast-targeting peptide, both of which are genetically important for the function of EAS1 during plant growth and development. Pheophorbide a oxygenase (PaO) is a key enzyme for chlorophyll breakdown and involved in chlorophyll degradation during leaf senescence
Oryza sativa Japonica Group
General Information (protein specific)
General Information
Commentary
Organism
evolution
PaO is an evolutionarily conserved protein, and EAS1 is 68% identical to the Arabidopsis ACCERLERATED CELL DEATH (ACD1) protein
Oryza sativa Japonica Group
malfunction
during the early growth stage (at the 3th leaf stage), eas1 mutants do not show detectable differences compared to wild-type plants. At the heading stage, old leaves of eas1 mutants turn yellowish or brownish, when wild-type plants are still healthy and green. Small chlorotic lesions are first observed near the tip, and then spread down to the entire leaves of eas1 mutants. At the grain filling stage, the leaf senescence phenotype of eas1 is more apparent compared to wild-type, as most eas1 mutant leaves, culms and sheaths turned to dark brown. In addition to the leaf senescence phenotype, the mature eas1 mutant plants also exhibit apparent developmental defects, such as semi-dwarfism, reduced tiller number and partial-filling
Oryza sativa Japonica Group
physiological function
gene EAS1 encodes a PaO enzyme containing a putative bipartite chloroplast-targeting peptide, both of which are genetically important for the function of EAS1 during plant growth and development. Pheophorbide a oxygenase (PaO) is a key enzyme for chlorophyll breakdown and involved in chlorophyll degradation during leaf senescence
Oryza sativa Japonica Group
Other publictions for EC 1.14.15.17
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
736578
Xie
Involvement of a putative bipa ...
Oryza sativa Japonica Group, Oryza sativa Japonica Group Nipponbare
J. Genet. Genomics
43
145-154
2016
-
-
1
-
1
-
-
-
1
1
-
4
-
4
-
-
-
-
-
3
-
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
1
1
-
4
-
-
-
-
-
3
-
-
4
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
737013
Hoertensteiner
Update on the biochemistry of ...
Arabidopsis thaliana, Cercidiphyllum japonicum, Musa cavendishii, Oryza sativa, Zea mays
Plant Mol. Biol.
82
505-517
2013
-
-
-
-
-
-
-
-
16
10
-
5
-
6
-
-
-
-
-
11
-
-
15
-
-
-
-
-
-
-
-
10
-
-
-
-
-
-
10
-
-
-
-
-
-
-
16
10
-
5
-
-
-
-
-
11
-
-
15
-
-
-
-
-
-
-
-
-
-
16
16
-
-
-
737240
Peng
-
Chlorophyll a/b binding protei ...
Citrus reticulata, Citrus reticulata Blanco
Sci. Hortic.
160
37-43
2013
-
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
-
-
725808
Gomez-Lobato
Effects of ethylene, cytokinin ...
Brassica oleracea
J. Sci. Food Agric.
92
151-158
2012
-
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
726179
Ma
-
Cloning and expression analysi ...
Triticum aestivum
Plant Mol. Biol. Rep.
30
1237-1245
2012
-
-
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
3
-
-
-
1
-
-
-
-
-
-
-
1
-
1
-
-
-
1
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
3
-
-
-
1
-
-
-
-
-
-
-
1
2
-
-
2
-
-
699270
Yang
Accumulation of soluble sugars ...
Musa acuminata
J. Exp. Bot.
60
4051-4062
2009
1
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
1
-
1
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
1
1
-
-
-
-
-
-
1
1
1
1
-
-
700721
Hirashima
Light-independent cell death i ...
Arabidopsis thaliana
Plant Cell Physiol.
50
719-729
2009
-
-
-
-
1
-
-
-
-
-
-
1
-
4
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
1
1
1
1
-
-
689566
Aubry
Stay-green protein, defective ...
Pisum sativum, Pisum sativum JI2775
Plant Mol. Biol.
67
243-256
2008
-
-
-
-
-
-
-
-
-
-
-
2
-
5
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689804
Bartsch
Three thioredoxin targets in t ...
Hordeum vulgare
Proc. Natl. Acad. Sci. USA
105
4933-4938
2008
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676436
Pruzinska
In vivo participation of red c ...
Arabidopsis thaliana
Plant Cell
19
369-387
2007
-
-
-
-
-
-
-
-
-
-
-
1
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689536
Jiang
Molecular cloning and function ...
Oryza sativa
Plant J.
52
197-209
2007
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689576
Ren
Identification of a novel chlo ...
Arabidopsis thaliana
Plant Physiol.
144
1429-1441
2007
-
-
-
-
-
-
-
-
-
-
-
1
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
671354
Hörtensteiner
Chlorophyll degradation during ...
Arabidopsis thaliana
Annu. Rev. Plant Biol.
57
55-77
2006
-
-
1
-
-
-
-
-
2
1
-
-
-
2
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676622
Chung
The role of pheophorbide a oxy ...
Brassica napus
Plant Physiol.
142
88-97
2006
-
-
1
-
-
-
-
-
-
-
-
-
-
3
-
1
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676450
Tanaka
The Arabidopsis-accelerated ce ...
Arabidopsis thaliana
Plant Cell Physiol.
44
1266-1274
2003
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676765
Pruzinska
Chlorophyll breakdown: pheopho ...
Arabidopsis thaliana
Proc. Natl. Acad. Sci. USA
100
15259-15264
2003
-
-
1
-
-
-
-
2
2
2
-
2
-
6
-
-
-
-
-
2
-
-
2
-
1
-
-
-
1
-
-
2
-
-
-
-
-
2
2
-
-
-
-
-
-
2
2
2
-
2
-
-
-
-
-
2
-
-
2
-
1
-
-
-
1
-
-
-
-
3
3
-
-
-
674404
Hörtensteiner
The key step in chlorophyll br ...
Brassica napus
J. Biol. Chem.
273
15335-15339
1998
-
-
-
-
-
-
-
-
-
-
-
1
-
5
-
-
1
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
676564
Rodoni
Chlorophyll breakdown in senes ...
Brassica napus
Plant Physiol.
115
669-676
1997
-
-
-
-
-
-
-
-
1
-
-
-
-
4
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-