BRENDA - Enzyme Database show
show all sequences of 1.14.13.20

Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation

Ledger, T.; Pieper, D.H.; Gonzalez, B.; Appl. Environ. Microbiol. 72, 2783-2792 (2006)

Data extracted from this reference:

Engineering
Amino acid exchange
Commentary
Organism
additional information
construction of tfdBI and tfdBII inactivation mutants on pJP4 plasmid, constructed in Escherichia coli strain BW25113 by allelic replacement of each of the genes tfdBI or tfdBII with a kanamycin resistance cassette, tfdBI and tfdBII are required for growth on 2,4-dichlorophenoxyacetate and 4-chloro-2-methylphenoxyacetate, with tfdBI contributing to a higher extent than tfdBII, phenotype, overview, accumulation of chlorophenol inhibits chlorophenoxyacetate degradation, and inactivation of the tfdB genes enhances the toxic effect of 2,4-dichlorophenoxyacetate on Cupriavidus necator cells
Cupriavidus necator
additional information
overexpression of tdfA inhibits chlorophenoxyacetate degradation in Burkholderia xenovorans/pJP4 cells
Paraburkholderia xenovorans
KM Value [mM]
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
kinetics
Cupriavidus necator
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
2,4-dichlorophenol + NADPH + O2
Cupriavidus necator
-
3,5-dichlorocatechol + NADP+ + H2O
-
-
?
2,4-dichlorophenol + NADPH + O2
Paraburkholderia xenovorans
-
3,5-dichlorocatechol + NADP+ + H2O
-
-
?
4-chloro-2-methylphenol + NADPH + O2
Cupriavidus necator
-
?
-
-
?
4-chloro-2-methylphenol + NADPH + O2
Paraburkholderia xenovorans
-
?
-
-
?
4-chlorophenol + NADPH + O2
Cupriavidus necator
-
5-chlorocatechol + NADP+ + H2O
-
-
?
4-chlorophenol + NADPH + O2
Paraburkholderia xenovorans
-
5-chlorocatechol + NADP+ + H2O
-
-
?
additional information
Cupriavidus necator
the enzyme catabolizes 2,4-dichlorophenoxyacetate and 4-chloro-2-methylphenoxyacetate, using tfd functions carried on plasmid pJP4, tfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, these intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdBI and tfdBII genes to produce the respective chlorocatechols, degradation pathway, a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds, overview
?
-
-
-
additional information
Paraburkholderia xenovorans
the enzyme catabolizes 2,4-dichlorophenoxyacetate and 4-chloro-2-methylphenoxyacetate, using tfd functions carried on plasmid pJP4, tfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, these intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdBI and tfdBII genes to produce the respective chlorocatechols, degradation pathway, a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds, overview
?
-
-
-
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Cupriavidus necator
-
strains JMP222 and JMP134 containing the enzyme-encoding plasmid pJP4, genes tfdBI and tfdBII
-
Paraburkholderia xenovorans
-
containing the enzyme-encoding plasmid pJP4, genes tfdBI and tfdBII
-
Specific Activity [micromol/min/mg]
Specific Activity Minimum [µmol/min/mg]
Specific Activity Maximum [µmol/min/mg]
Commentary
Organism
additional information
-
in vivo degradation activities, overview
Cupriavidus necator
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
2,4-dichlorophenol + NADPH + O2
-
671456
Cupriavidus necator
3,5-dichlorocatechol + NADP+ + H2O
-
-
-
?
2,4-dichlorophenol + NADPH + O2
-
671456
Paraburkholderia xenovorans
3,5-dichlorocatechol + NADP+ + H2O
-
-
-
?
4-chloro-2-methylphenol + NADPH + O2
-
671456
Cupriavidus necator
?
-
-
-
?
4-chloro-2-methylphenol + NADPH + O2
-
671456
Paraburkholderia xenovorans
?
-
-
-
?
4-chlorophenol + NADPH + O2
-
671456
Cupriavidus necator
5-chlorocatechol + NADP+ + H2O
-
-
-
?
4-chlorophenol + NADPH + O2
-
671456
Paraburkholderia xenovorans
5-chlorocatechol + NADP+ + H2O
-
-
-
?
additional information
the enzyme catabolizes 2,4-dichlorophenoxyacetate and 4-chloro-2-methylphenoxyacetate, using tfd functions carried on plasmid pJP4, tfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, these intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdBI and tfdBII genes to produce the respective chlorocatechols, degradation pathway, a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds, overview
671456
Cupriavidus necator
?
-
-
-
-
additional information
the enzyme catabolizes 2,4-dichlorophenoxyacetate and 4-chloro-2-methylphenoxyacetate, using tfd functions carried on plasmid pJP4, tfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, these intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdBI and tfdBII genes to produce the respective chlorocatechols, degradation pathway, a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds, overview
671456
Paraburkholderia xenovorans
?
-
-
-
-
Temperature Optimum [°C]
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
30
-
assay at
Cupriavidus necator
30
-
assay at
Paraburkholderia xenovorans
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7.6
-
assay at
Cupriavidus necator
7.6
-
assay at
Paraburkholderia xenovorans
Cofactor
Cofactor
Commentary
Organism
Structure
NADPH
-
Cupriavidus necator
NADPH
-
Paraburkholderia xenovorans
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
NADPH
-
Cupriavidus necator
NADPH
-
Paraburkholderia xenovorans
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
additional information
construction of tfdBI and tfdBII inactivation mutants on pJP4 plasmid, constructed in Escherichia coli strain BW25113 by allelic replacement of each of the genes tfdBI or tfdBII with a kanamycin resistance cassette, tfdBI and tfdBII are required for growth on 2,4-dichlorophenoxyacetate and 4-chloro-2-methylphenoxyacetate, with tfdBI contributing to a higher extent than tfdBII, phenotype, overview, accumulation of chlorophenol inhibits chlorophenoxyacetate degradation, and inactivation of the tfdB genes enhances the toxic effect of 2,4-dichlorophenoxyacetate on Cupriavidus necator cells
Cupriavidus necator
additional information
overexpression of tdfA inhibits chlorophenoxyacetate degradation in Burkholderia xenovorans/pJP4 cells
Paraburkholderia xenovorans
KM Value [mM] (protein specific)
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
additional information
-
additional information
kinetics
Cupriavidus necator
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
2,4-dichlorophenol + NADPH + O2
Cupriavidus necator
-
3,5-dichlorocatechol + NADP+ + H2O
-
-
?
2,4-dichlorophenol + NADPH + O2
Paraburkholderia xenovorans
-
3,5-dichlorocatechol + NADP+ + H2O
-
-
?
4-chloro-2-methylphenol + NADPH + O2
Cupriavidus necator
-
?
-
-
?
4-chloro-2-methylphenol + NADPH + O2
Paraburkholderia xenovorans
-
?
-
-
?
4-chlorophenol + NADPH + O2
Cupriavidus necator
-
5-chlorocatechol + NADP+ + H2O
-
-
?
4-chlorophenol + NADPH + O2
Paraburkholderia xenovorans
-
5-chlorocatechol + NADP+ + H2O
-
-
?
additional information
Cupriavidus necator
the enzyme catabolizes 2,4-dichlorophenoxyacetate and 4-chloro-2-methylphenoxyacetate, using tfd functions carried on plasmid pJP4, tfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, these intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdBI and tfdBII genes to produce the respective chlorocatechols, degradation pathway, a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds, overview
?
-
-
-
additional information
Paraburkholderia xenovorans
the enzyme catabolizes 2,4-dichlorophenoxyacetate and 4-chloro-2-methylphenoxyacetate, using tfd functions carried on plasmid pJP4, tfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, these intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdBI and tfdBII genes to produce the respective chlorocatechols, degradation pathway, a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds, overview
?
-
-
-
Specific Activity [micromol/min/mg] (protein specific)
Specific Activity Minimum [µmol/min/mg]
Specific Activity Maximum [µmol/min/mg]
Commentary
Organism
additional information
-
in vivo degradation activities, overview
Cupriavidus necator
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
2,4-dichlorophenol + NADPH + O2
-
671456
Cupriavidus necator
3,5-dichlorocatechol + NADP+ + H2O
-
-
-
?
2,4-dichlorophenol + NADPH + O2
-
671456
Paraburkholderia xenovorans
3,5-dichlorocatechol + NADP+ + H2O
-
-
-
?
4-chloro-2-methylphenol + NADPH + O2
-
671456
Cupriavidus necator
?
-
-
-
?
4-chloro-2-methylphenol + NADPH + O2
-
671456
Paraburkholderia xenovorans
?
-
-
-
?
4-chlorophenol + NADPH + O2
-
671456
Cupriavidus necator
5-chlorocatechol + NADP+ + H2O
-
-
-
?
4-chlorophenol + NADPH + O2
-
671456
Paraburkholderia xenovorans
5-chlorocatechol + NADP+ + H2O
-
-
-
?
additional information
the enzyme catabolizes 2,4-dichlorophenoxyacetate and 4-chloro-2-methylphenoxyacetate, using tfd functions carried on plasmid pJP4, tfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, these intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdBI and tfdBII genes to produce the respective chlorocatechols, degradation pathway, a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds, overview
671456
Cupriavidus necator
?
-
-
-
-
additional information
the enzyme catabolizes 2,4-dichlorophenoxyacetate and 4-chloro-2-methylphenoxyacetate, using tfd functions carried on plasmid pJP4, tfdA cleaves the ether bonds of these herbicides to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, these intermediates can be degraded by two chlorophenol hydroxylases encoded by the tfdBI and tfdBII genes to produce the respective chlorocatechols, degradation pathway, a balance between chlorophenol-producing and chlorophenol-consuming reactions is necessary for growth on these compounds, overview
671456
Paraburkholderia xenovorans
?
-
-
-
-
Temperature Optimum [°C] (protein specific)
Temperature Optimum [°C]
Temperature Optimum Maximum [°C]
Commentary
Organism
30
-
assay at
Cupriavidus necator
30
-
assay at
Paraburkholderia xenovorans
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7.6
-
assay at
Cupriavidus necator
7.6
-
assay at
Paraburkholderia xenovorans
Other publictions for EC 1.14.13.20
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
742330
Xia
Biodegradation of the Herbici ...
Achromobacter sp. LZ35
Curr. Microbiol.
74
193-202
2017
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
724636
Lu
Cloning and characterisation o ...
Soil bacterium
Biotechnol. Lett.
33
1159-1167
2011
-
-
1
-
-
-
3
2
-
3
-
-
-
3
-
-
-
-
-
-
-
-
9
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
3
-
2
-
3
-
-
-
-
-
-
-
-
-
-
9
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
685661
Huong
Chlorophenol hydroxylase activ ...
Bradyrhizobium sp., Bradyrhizobium sp. RD5-C2
Biosci. Biotechnol. Biochem.
71
1691-1696
2007
-
-
1
-
-
-
-
-
-
-
-
2
-
5
-
-
-
-
-
-
-
-
10
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
10
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
671456
Ledger
Chlorophenol hydroxylases enco ...
Cupriavidus necator, Paraburkholderia xenovorans
Appl. Environ. Microbiol.
72
2783-2792
2006
-
-
-
-
2
-
-
1
-
-
-
8
-
7
-
-
-
-
-
-
1
-
8
-
2
-
-
-
2
-
-
2
-
-
-
-
-
-
2
-
2
-
-
-
-
1
-
-
-
8
-
-
-
-
-
-
1
-
8
-
2
-
-
-
2
-
-
-
-
-
-
-
-
-
439014
Farhana
Monoclonal antibodies to 2,4-d ...
Burkholderia cepacia, Burkholderia cepacia DBO131, Burkholderia mallei, Burkholderia mallei TFD6, Burkholderia sp., Burkholderia sp. RASC, Burkholderia sp. TFD2, Cupriavidus necator, Cupriavidus necator JMP 134-1, Cupriavidus necator TFD41, Pseudomonas putida, Pseudomonas putida PaW85, Rhodoferax fermentans, Rhodoferax fermentans B6-9, Rhodoferax fermentans TFD23, Rhodopseudomonas palustris, Rhodopseudomonas palustris M1, Sphingomonas paucimobilis 1443, Sphingomonas paucimobilis, Sphingomonas sp., Sphingomonas sp. B6-10, Sphingomonas sp. B6-5, Sphingomonas sp. EML146, Sphingomonas sp. TFD44, Variovorax paradoxus 2811P, Variovorax paradoxus
Can. J. Microbiol.
44
920-928
1998
-
-
-
-
-
-
-
-
-
-
-
26
-
54
-
-
1
-
-
-
-
-
26
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
26
-
-
-
1
-
-
-
-
26
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
439015
Farhana
The 2,4-dichlorophenol hydroxy ...
Cupriavidus necator, Cupriavidus necator JMP 134-1
Can. J. Microbiol.
43
202-205
1997
-
-
-
-
-
-
-
-
-
-
2
2
-
28
-
-
1
-
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
1
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
439016
Makdessi
Purification and characterizat ...
Proteobacteria, Proteobacteria S1
FEMS Microbiol. Lett.
157
95-101
1997
-
-
-
-
-
-
-
3
-
-
2
2
-
5
-
-
1
-
-
-
2
-
20
1
-
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
-
-
-
-
-
3
-
-
2
2
-
-
-
1
-
-
2
-
20
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
439013
Radjendirane
Affinity purification and char ...
Burkholderia cepacia
Arch. Biochem. Biophys.
288
169-176
1991
-
-
-
-
-
-
8
2
-
-
2
1
-
3
-
-
1
-
-
-
1
-
1
1
1
-
-
-
1
-
-
3
-
-
-
-
-
-
3
-
-
-
-
8
-
2
-
-
2
1
-
-
-
1
-
-
1
-
1
1
1
-
-
-
1
-
-
-
-
-
-
-
-
-
439012
Liu
Purification and properties of ...
Cupriavidus necator, Cupriavidus necator JMP 134-1
FEBS Lett.
173
314-318
1984
-
-
1
-
-
-
11
4
-
-
3
2
-
27
-
-
1
-
-
-
1
-
13
1
-
-
-
-
2
-
-
3
-
-
-
-
-
1
3
-
-
-
-
11
-
4
-
-
3
2
-
-
-
1
-
-
1
-
13
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
439011
Beadle
The purification and propertie ...
Acinetobacter sp.
Eur. J. Biochem.
123
323-332
1982
-
-
-
-
-
4
10
3
-
-
2
1
-
3
-
-
1
-
-
-
1
1
7
1
1
-
-
1
1
-
-
3
-
-
-
-
-
-
3
-
-
4
-
10
-
3
-
-
2
1
-
-
-
1
-
-
1
1
7
1
1
-
-
1
1
-
-
-
-
-
-
-
-
-