BRENDA - Enzyme Database
show all sequences of 1.1.1.307

Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing

Liang, L.; Zhang, J.; Lin, Z.; Microb. Cell Fact. 6, 0000 (2007)

Data extracted from this reference:

Application
Application
Commentary
Organism
synthesis
D-xylose is the second most abundant renewable sugar in nature, and its fermentation to ethanol has great economical potential. Unfortunately, Saccharomyces cerevisiae, which has been optimized for ethanol production, cannot utilize xylose efficiently, while D-xylulose, an isomerization product of D-xylose, can be assimilated. A major strategy for constructing xylose-fermenting Saccharomyces cerevisiae is to introduce genes involved in xylose metabolism from other organisms. Xylose reductase and xylitol dehydrogenase (EC 1.1.1.9) from the xylose-fermenting yeast Pichia stipitis are cloned into Saccharomyces cerevisiae to allow xylose fermentation to ethanol. In this case, xylose is converted into xylulose by the sequential actions of two oxidoreductases. First, Pichia stipitis xylose reductase catalyses the reduction of xylose into xylitol with NAD(P)H as co-substrate. Xylitol is then oxidized by PsXDH (Pichia stipitis xylitol dehydrogenase) which uses NAD+ exclusively as co-substrate to yield xylulose. The different coenzyme specificity of the two enzymes xylose reductase and xylitol dehydrogenase, however, creates an intracellular redox imbalance, which results in low ethanol yields and considerable xylitol by-product formation. A mutant is constructed that shows an altered active site that is more unfavorable for NADPH than NADH in terms of both Km and kcat. There are potentials for application of the mutant (K270S/N272P/S271G/R276F) in constructing a more balanced xylose reductase/xylitol dehydrogenase pathway in recombinant xylose-fermenting Saccharomyces cerevisiae strains
Scheffersomyces stipitis
Cloned(Commentary)
Cloned (Commentary)
Organism
expression of His-tagged enzyme in Escherichia coli
Scheffersomyces stipitis
Engineering
Protein Variants
Commentary
Organism
K270S/N272P/S271G/R276F
the mutant shows a 25fold preference toward NADH over NADPH by a factor of about 13fold, or an improvement of about 42fold, as measured by the ratio of the specificity constant kcat/Km coenzyme. Compared with the wild-type, the kcat(NADH) is slightly lower, while the kcat(NADPH) decreases by a factor of about 10
Scheffersomyces stipitis
KM Value [mM]
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
0.0062
-
NADPH
pH 6.0, wild-type enzyme, wild-type enzyme
Scheffersomyces stipitis
0.0106
-
NADH
pH 6.0, wild-type enzyme, wild-type enzyme
Scheffersomyces stipitis
0.147
-
NADH
pH 6.0, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
0.427
-
NADPH
pH 6.0, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
82
-
D-xylose
pH 6.0, cofactor: NADPH, wild-type enzyme
Scheffersomyces stipitis
90
-
D-xylose
pH 6.0, cofactor: NADH, wild-type enzyme
Scheffersomyces stipitis
168
-
D-xylose
pH 6.0, cofactor: NADPH, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
291
-
D-xylose
pH 6.0, cofactor: NADH, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ID
D-xylose + NADPH + H+
Scheffersomyces stipitis
xylose reductase is one of the key enzymes for xylose fermentation
xylitol + NADP+
-
-
?
Organism
Organism
UniProt
Commentary
Textmining
Scheffersomyces stipitis
-
-
-
Purification (Commentary)
Purification (Commentary)
Organism
-
Scheffersomyces stipitis
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
Substrate Product ID
D-xylose + NADH + H+
wild-type enzyme prefers NADPH over NADH
700009
Scheffersomyces stipitis
xylitol + NAD+
-
-
-
?
D-xylose + NADPH + H+
xylose reductase is one of the key enzymes for xylose fermentation
700009
Scheffersomyces stipitis
xylitol + NADP+
-
-
-
?
D-xylose + NADPH + H+
wild-type enzyme prefers NADPH over NADH
700009
Scheffersomyces stipitis
xylitol + NADP+
-
-
-
?
Synonyms
Synonyms
Commentary
Organism
PsXR
-
Scheffersomyces stipitis
Turnover Number [1/s]
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
2.6
-
D-xylose
pH 6.0, cofactor: NADPH, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
2.6
-
NADPH
pH 6.0, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
12
-
D-xylose
pH 6.0, cofactor: NADH, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
12
-
NADH
pH 6.0, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
15.4
-
D-xylose
pH 6.0, cofactor: NADH, wild-type enzyme
Scheffersomyces stipitis
15.4
-
NADH
pH 6.0, wild-type enzyme, wild-type enzyme
Scheffersomyces stipitis
27.5
-
D-xylose
pH 6.0, cofactor: NADPH, wild-type enzyme
Scheffersomyces stipitis
27.5
-
NADPH
pH 6.0, wild-type enzyme, wild-type enzyme
Scheffersomyces stipitis
Cofactor
Cofactor
Commentary
Organism
Structure
NADH
wild-type enzyme prefers NADPH over NADH. Mutant enzyme K270S/N272P/S271G/R276F shows a 25fold preference toward NADH over NADPH by a factor of about 13fold, or an improvement of about 42fold, as measured by the ratio of the specificity constant kcat/Km coenzyme
Scheffersomyces stipitis
NADPH
wild-type enzyme prefers NADPH over NADH. Mutant enzyme K270S/N272P/S271G/R276F shows a 25fold preference toward NADH over NADPH by a factor of about 13fold, or an improvement of about 42fold, as measured by the ratio of the specificity constant kcat/Km coenzyme
Scheffersomyces stipitis
Application (protein specific)
Application
Commentary
Organism
synthesis
D-xylose is the second most abundant renewable sugar in nature, and its fermentation to ethanol has great economical potential. Unfortunately, Saccharomyces cerevisiae, which has been optimized for ethanol production, cannot utilize xylose efficiently, while D-xylulose, an isomerization product of D-xylose, can be assimilated. A major strategy for constructing xylose-fermenting Saccharomyces cerevisiae is to introduce genes involved in xylose metabolism from other organisms. Xylose reductase and xylitol dehydrogenase (EC 1.1.1.9) from the xylose-fermenting yeast Pichia stipitis are cloned into Saccharomyces cerevisiae to allow xylose fermentation to ethanol. In this case, xylose is converted into xylulose by the sequential actions of two oxidoreductases. First, Pichia stipitis xylose reductase catalyses the reduction of xylose into xylitol with NAD(P)H as co-substrate. Xylitol is then oxidized by PsXDH (Pichia stipitis xylitol dehydrogenase) which uses NAD+ exclusively as co-substrate to yield xylulose. The different coenzyme specificity of the two enzymes xylose reductase and xylitol dehydrogenase, however, creates an intracellular redox imbalance, which results in low ethanol yields and considerable xylitol by-product formation. A mutant is constructed that shows an altered active site that is more unfavorable for NADPH than NADH in terms of both Km and kcat. There are potentials for application of the mutant (K270S/N272P/S271G/R276F) in constructing a more balanced xylose reductase/xylitol dehydrogenase pathway in recombinant xylose-fermenting Saccharomyces cerevisiae strains
Scheffersomyces stipitis
Cloned(Commentary) (protein specific)
Commentary
Organism
expression of His-tagged enzyme in Escherichia coli
Scheffersomyces stipitis
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
NADH
wild-type enzyme prefers NADPH over NADH. Mutant enzyme K270S/N272P/S271G/R276F shows a 25fold preference toward NADH over NADPH by a factor of about 13fold, or an improvement of about 42fold, as measured by the ratio of the specificity constant kcat/Km coenzyme
Scheffersomyces stipitis
NADPH
wild-type enzyme prefers NADPH over NADH. Mutant enzyme K270S/N272P/S271G/R276F shows a 25fold preference toward NADH over NADPH by a factor of about 13fold, or an improvement of about 42fold, as measured by the ratio of the specificity constant kcat/Km coenzyme
Scheffersomyces stipitis
Engineering (protein specific)
Protein Variants
Commentary
Organism
K270S/N272P/S271G/R276F
the mutant shows a 25fold preference toward NADH over NADPH by a factor of about 13fold, or an improvement of about 42fold, as measured by the ratio of the specificity constant kcat/Km coenzyme. Compared with the wild-type, the kcat(NADH) is slightly lower, while the kcat(NADPH) decreases by a factor of about 10
Scheffersomyces stipitis
KM Value [mM] (protein specific)
KM Value [mM]
KM Value Maximum [mM]
Substrate
Commentary
Organism
Structure
0.0062
-
NADPH
pH 6.0, wild-type enzyme, wild-type enzyme
Scheffersomyces stipitis
0.0106
-
NADH
pH 6.0, wild-type enzyme, wild-type enzyme
Scheffersomyces stipitis
0.147
-
NADH
pH 6.0, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
0.427
-
NADPH
pH 6.0, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
82
-
D-xylose
pH 6.0, cofactor: NADPH, wild-type enzyme
Scheffersomyces stipitis
90
-
D-xylose
pH 6.0, cofactor: NADH, wild-type enzyme
Scheffersomyces stipitis
168
-
D-xylose
pH 6.0, cofactor: NADPH, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
291
-
D-xylose
pH 6.0, cofactor: NADH, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
ID
D-xylose + NADPH + H+
Scheffersomyces stipitis
xylose reductase is one of the key enzymes for xylose fermentation
xylitol + NADP+
-
-
?
Purification (Commentary) (protein specific)
Commentary
Organism
-
Scheffersomyces stipitis
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
ID
D-xylose + NADH + H+
wild-type enzyme prefers NADPH over NADH
700009
Scheffersomyces stipitis
xylitol + NAD+
-
-
-
?
D-xylose + NADPH + H+
xylose reductase is one of the key enzymes for xylose fermentation
700009
Scheffersomyces stipitis
xylitol + NADP+
-
-
-
?
D-xylose + NADPH + H+
wild-type enzyme prefers NADPH over NADH
700009
Scheffersomyces stipitis
xylitol + NADP+
-
-
-
?
Turnover Number [1/s] (protein specific)
Turnover Number Minimum [1/s]
Turnover Number Maximum [1/s]
Substrate
Commentary
Organism
Structure
2.6
-
D-xylose
pH 6.0, cofactor: NADPH, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
2.6
-
NADPH
pH 6.0, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
12
-
D-xylose
pH 6.0, cofactor: NADH, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
12
-
NADH
pH 6.0, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
15.4
-
D-xylose
pH 6.0, cofactor: NADH, wild-type enzyme
Scheffersomyces stipitis
15.4
-
NADH
pH 6.0, wild-type enzyme, wild-type enzyme
Scheffersomyces stipitis
27.5
-
D-xylose
pH 6.0, cofactor: NADPH, wild-type enzyme
Scheffersomyces stipitis
27.5
-
NADPH
pH 6.0, wild-type enzyme, wild-type enzyme
Scheffersomyces stipitis
KCat/KM [mM/s]
kcat/KM Value [1/mMs-1]
kcat/KM Value Maximum [1/mMs-1]
Substrate
Commentary
Organism
Structure
6.2
-
D-xylose
pH 6.0, cofactor: NADPH, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
6.2
-
NADPH
pH 6.0, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
81.7
-
D-xylose
pH 6.0, cofactor: NADH, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
81.7
-
NADH
pH 6.0, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
1460
-
D-xylose
pH 6.0, cofactor: NADH, wild-type enzyme
Scheffersomyces stipitis
1460
-
NADH
pH 6.0, wild-type enzyme, wild-type enzyme
Scheffersomyces stipitis
4648
-
D-xylose
pH 6.0, cofactor: NADPH, wild-type enzyme
Scheffersomyces stipitis
4648
-
NADPH
pH 6.0, wild-type enzyme, wild-type enzyme
Scheffersomyces stipitis
KCat/KM [mM/s] (protein specific)
KCat/KM Value [1/mMs-1]
KCat/KM Value Maximum [1/mMs-1]
Substrate
Commentary
Organism
Structure
6.2
-
D-xylose
pH 6.0, cofactor: NADPH, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
6.2
-
NADPH
pH 6.0, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
81.7
-
D-xylose
pH 6.0, cofactor: NADH, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
81.7
-
NADH
pH 6.0, mutant enzyme K270S/N272P/S271G/R276F
Scheffersomyces stipitis
1460
-
D-xylose
pH 6.0, cofactor: NADH, wild-type enzyme
Scheffersomyces stipitis
1460
-
NADH
pH 6.0, wild-type enzyme, wild-type enzyme
Scheffersomyces stipitis
4648
-
D-xylose
pH 6.0, cofactor: NADPH, wild-type enzyme
Scheffersomyces stipitis
4648
-
NADPH
pH 6.0, wild-type enzyme, wild-type enzyme
Scheffersomyces stipitis
Other publictions for EC 1.1.1.307
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Synonyms
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
740007
Paidimuddala
-
Inhibition of Debaryomyces nep ...
Debaryomyces nepalensis
Biochem. Eng. J.
121
73-82
2017
-
-
-
1
-
-
6
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
6
-
-
-
-
-
-
1
-
-
-
6
6
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
739023
Bolotnikova
-
Metabolic properties of Pachys ...
Pachysolen tannophilus, Pachysolen tannophilus 22-Y-1532
Microbiology
84
485-490
2015
-
-
-
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
739881
Rafiqul
Biochemical properties of xylo ...
Candida tropicalis
Appl. Biochem. Biotechnol.
175
387-399
2015
-
-
-
-
-
1
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
1
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
739882
Zhang
Production of xylitol from D-x ...
Scheffersomyces stipitis
Appl. Biochem. Biotechnol.
176
1511-1527
2015
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
739885
Kim
Enhanced xylitol production by ...
Kluyveromyces marxianus, Kluyveromyces marxianus ATCC 36907
Appl. Biochem. Biotechnol.
176
1975-1984
2015
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
4
-
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740171
Pratter
Systematic strain construction ...
Candida tenuis
Biores. Technol.
198
732-738
2015
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
2
-
-
-
-
1
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740226
Rafiqul
Inhibition by toxic compounds ...
Candida tropicalis, Candida tropicalis IFO 0618
Biotechnol. Lett.
37
191-196
2015
-
-
-
-
-
-
4
-
-
-
-
-
-
2
-
-
-
-
-
-
1
-
2
-
-
1
1
-
-
-
-
-
1
-
-
4
-
-
-
1
-
-
-
4
4
-
-
-
-
-
-
-
-
-
-
-
-
1
-
2
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
740777
Komeda
Identification and characteriz ...
Rhizomucor pusillus, Rhizomucor pusillus NBRC 4578
J. Biosci. Bioeng.
119
57-64
2015
-
-
-
-
-
-
-
7
-
-
2
-
-
5
-
-
1
-
-
1
-
-
10
1
-
-
-
-
1
1
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
7
-
-
2
-
-
-
-
1
-
1
-
-
10
1
-
-
-
1
1
-
-
-
1
-
-
1
-
-
740779
Hirabayashi
Improving xylitol production t ...
Phanerochaete chrysosporium
J. Biosci. Bioeng.
120
6-8
2015
-
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
737806
Hong
Overexpression of D-xylose red ...
Trichoderma reesei
BioMed Res. Int.
2014
169705
2014
-
1
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
738796
Weyda
Point mutation of the xylose r ...
Aspergillus carbonarius, Aspergillus carbonarius ITEM 5010
J. Ind. Microbiol. Biotechnol.
41
733-739
2014
-
1
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
740206
Zheng
Induction of D-xylose uptake a ...
Chlorella sorokiniana, Chlorella sorokiniana UTEX 1602
Biotechnol. Biofuels
7
125
2014
-
1
-
-
-
-
-
-
-
-
-
2
-
4
-
-
-
-
-
2
2
-
6
-
1
1
-
-
-
1
1
-
5
-
-
-
-
1
-
5
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
2
-
6
-
1
-
-
-
1
1
-
-
1
2
2
1
-
-
740324
Boontham
-
Xylitol production by thermoto ...
Ogataea siamensis, Ogataea siamensis N22
Chiang Mai J. Sci.
41
491-502
2014
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
2
1
1
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
722891
Zhang
Improving ethanol and xylitol ...
Kluyveromyces marxianus, Kluyveromyces marxianus YHJ010
J. Ind. Microbiol. Biotechnol.
40
305-316
2013
-
-
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
2
1
-
-
-
1
-
-
5
-
-
-
-
-
1
5
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
740782
Khattab
Boost in bioethanol production ...
Scheffersomyces stipitis
J. Biotechnol.
165
153-156
2013
-
-
1
-
1
-
-
-
-
-
-
2
-
3
-
-
-
-
-
-
1
-
2
-
3
-
-
-
-
-
-
-
4
-
-
-
-
-
1
4
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
1
-
2
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
740852
Sim
Cloning of the xylose reductas ...
Kazachstania humilis
J. Microbiol. Biotechnol.
23
984-992
2013
-
-
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
1
1
-
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
740942
Xia
Molecular simulation to invest ...
Scheffersomyces stipitis
Med. Chem.
9
985-992
2013
-
-
-
1
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
741399
Vogl
-
Substrate binding to Candida t ...
Candida tenuis
RSC Adv.
3
25997-26004
2013
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
721848
Jeon
Xylitol production is increase ...
Candida tropicalis, Candida tropicalis ATCC 20336
Bioprocess Biosyst. Eng.
35
191-198
2012
-
-
-
-
1
-
-
-
-
-
-
4
-
2
-
-
-
-
-
-
1
-
4
-
1
1
-
-
-
1
-
-
4
-
-
-
-
-
-
4
-
1
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
1
-
4
-
1
-
-
-
1
-
-
-
1
1
1
1
-
-
722851
Krahulec
Analysis and prediction of the ...
Saccharomyces cerevisiae
J. Biotechnol.
158
192-202
2012
-
-
-
-
4
-
-
17
-
-
-
2
-
1
-
-
-
1
-
-
-
-
2
-
1
1
-
-
8
1
-
-
4
-
-
-
-
-
-
4
-
4
-
-
-
-
17
-
-
-
2
-
-
-
-
-
-
-
-
2
-
1
-
-
8
1
-
-
-
-
-
-
-
-
-
721903
Agrawal
Discovery and characterization ...
Zymomonas mobilis subsp. mobilis
Biotechnol. Lett.
33
2127-2133
2011
-
-
1
-
-
-
-
4
-
-
-
1
-
1
-
-
1
-
-
-
-
-
6
-
1
-
-
-
-
1
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
4
-
-
-
1
-
-
-
1
-
-
-
-
6
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
703500
Kim
-
Production of xylitol from D-x ...
Corynebacterium glutamicum, Corynebacterium glutamicum ATCC 13032
Enzyme Microb. Technol.
46
366-371
2010
-
-
1
-
1
-
-
-
-
-
-
2
-
26
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
1
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
712951
Krahulec
Fermentation of mixed glucose- ...
Candida tenuis
Microb. Cell Fact.
9
16
2010
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
721343
Runquist
Increased ethanol productivity ...
Saccharomyces cerevisiae, Saccharomyces cerevisiae TMB 3420
Appl. Environ. Microbiol.
76
7796-7802
2010
-
-
1
-
3
-
-
-
-
-
-
4
-
2
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
1
4
-
3
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
695381
Chen
Purification, crystallization ...
Candida tropicalis
Acta Crystallogr. Sect. F
65
419-421
2009
-
-
1
1
-
-
-
-
-
-
2
-
-
1
-
-
1
-
-
-
-
-
1
1
2
-
-
-
-
-
-
-
1
-
1
-
-
-
1
1
1
-
-
-
-
-
-
-
-
2
-
-
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
-
-
-
695846
Sasaki
Xylitol production by recombin ...
Candida tenuis
Appl. Microbiol. Biotechnol.
86
1057-1066
2009
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
-
-
2
-
-
-
-
-
1
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696885
Bengtsson
Xylose reductase from Pichia s ...
Scheffersomyces stipitis
Biotechnol. Biofuels
2
904-912
2009
-
1
1
-
2
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
2
-
-
-
-
1
1
2
-
2
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696889
Krahulec
Engineering of a matched pair ...
Candida tenuis
Biotechnol. J.
4
684-694
2009
-
-
1
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
1
-
1
-
2
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
699066
Fernandes
Xylose reductase from the ther ...
Rasamsonia emersonii
J. Biosci.
34
881-890
2009
-
-
1
-
1
-
-
10
-
-
2
1
-
1
-
-
1
-
-
-
-
-
5
1
1
1
1
1
8
1
1
-
2
-
-
-
-
-
1
2
-
1
-
-
-
-
10
-
-
2
1
-
-
-
1
-
-
-
-
5
1
1
1
1
8
1
1
-
-
-
-
-
-
4
4
699148
Branco
-
Profiles of xylose reductase, ...
Meyerozyma guilliermondii, Meyerozyma guilliermondii FTI 20037
J. Chem. Technol. Biotechnol.
84
326-330
2009
-
1
-
-
-
-
-
-
-
-
-
3
-
3
-
-
-
-
-
-
-
-
6
-
1
1
-
-
-
1
-
-
1
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
6
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
699165
de Faria
Use of response surface method ...
Debaryomyces hansenii, Debaryomyces hansenii UFV-170 XR
J. Chromatogr. B
877
3031-3037
2009
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
699368
Gurpilhares
The behavior of key enzymes of ...
Meyerozyma guilliermondii
J. Ind. Microbiol. Biotechnol.
36
87-93
2009
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
1
-
-
2
-
1
1
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
2
-
1
-
-
-
1
-
-
-
-
1
1
-
-
-
699505
Zhang
Cloning, expression, and chara ...
Candida tropicalis, Candida tropicalis SCTCC 300249
J. Microbiol.
47
351-357
2009
2
-
1
-
-
-
-
3
-
1
1
4
-
2
-
-
1
-
-
-
1
-
13
1
-
1
1
1
1
1
1
-
2
-
-
-
2
-
1
2
-
-
-
-
-
-
3
-
1
1
4
-
-
-
1
-
-
1
-
13
1
1
1
1
1
1
1
-
-
-
-
-
-
1
1
701106
Khoury
Computational design of Candid ...
Candida boidinii
Protein Sci.
18
2125-2138
2009
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
-
2
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
711131
Pival
The catalytic mechanism of NAD ...
Candida tenuis
Biochem. J.
421
43-49
2009
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
1
-
-
-
-
2
-
-
-
-
-
7
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
7
-
-
-
-
-
-
-
-
6
6
711539
Zeng
Reversal of coenzyme specifici ...
Scheffersomyces stipitis
Biotechnol. Lett.
31
1025-1029
2009
-
-
1
-
2
-
-
7
-
-
1
-
-
1
-
-
1
-
-
-
4
-
2
1
-
-
-
-
4
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
-
-
7
-
-
1
-
-
-
-
1
-
-
4
-
2
1
-
-
-
4
-
-
-
-
-
-
-
-
4
4
700010
Petschacher
-
Altering the coenzyme preferen ...
Candida tenuis
Microb. Cell Fact.
7
0000
2008
-
-
1
-
1
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
696892
Wang
Heterologous expression, purif ...
Scheffersomyces shehatae
Biotechnol. Lett.
29
1409-1412
2007
5
-
1
-
-
-
1
3
-
4
-
-
-
1
-
-
1
-
-
-
-
1
5
-
-
1
-
-
-
1
-
-
2
-
-
-
5
-
1
2
-
-
-
-
1
-
3
-
4
-
-
-
-
-
1
-
-
-
1
5
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
700009
Liang
Altering coenzyme specificity ...
Scheffersomyces stipitis
Microb. Cell Fact.
6
0000
2007
-
1
1
-
1
-
-
8
-
-
-
1
-
1
-
-
1
-
-
-
-
-
3
-
1
-
-
-
8
-
-
-
2
-
-
-
-
1
1
2
-
1
-
-
-
-
8
-
-
-
1
-
-
-
1
-
-
-
-
3
-
-
-
-
8
-
-
-
-
-
-
-
-
8
8
667284
Mayerhoff
Response surface methodology a ...
Candida mogii
Appl. Microbiol. Biotechnol.
70
761-767
2006
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
1
3
1
-
-
1
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
3
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
696083
Kratzer
Probing the substrate binding ...
Candida tenuis
Biochem. J.
393
51-58
2006
-
-
-
1
5
-
1
6
-
-
-
1
-
1
-
-
1
-
-
-
-
-
8
-
1
1
-
-
-
1
-
-
2
2
-
-
-
-
-
2
1
5
-
-
1
2
6
-
-
-
1
-
-
-
1
-
-
-
-
8
-
1
-
-
-
1
-
-
-
-
-
-
-
19
19
668063
de Groot
Metabolic control analysis of ...
Aspergillus niger
Biotechnol. Prog.
21
1610-1616
2005
-
-
-
-
-
-
-
3
-
-
-
-
-
2
-
-
1
-
-
1
-
-
2
-
1
1
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
3
-
-
-
-
-
-
-
1
-
1
-
-
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
695733
Woodyer
Heterologous expression, purif ...
Neurospora crassa
Appl. Environ. Microbiol.
71
1642-1647
2005
2
1
1
-
-
-
3
8
-
1
2
-
-
1
-
-
1
-
-
-
-
1
6
1
-
1
1
2
8
1
1
-
2
-
-
-
2
1
1
2
-
-
-
-
3
-
8
-
1
2
-
-
-
-
1
-
-
-
1
6
1
1
1
2
8
1
1
-
-
-
-
-
-
6
6
656741
Yablochkova
-
The activity of xylose reducta ...
Candida diddensiae, Candida diddensiae F-3, Candida intermedia, Candida parapsilosis, Candida silvanorum, Candida silvanorum VGI-II, Candida tropicalis, Candida tropicalis Y-456, Kluyveromyces marxianus, Kluyveromyces marxianus Y-488, Meyerozyma guilliermondii, Meyerozyma guilliermondii Y-1017, Pachysolen tannophilus, Scheffersomyces shehatae, Scheffersomyces shehatae Y-1632, Scheffersomyces stipitis, Scheffersomyces stipitis Y-2160, Torulopsis molishiama, Torulopsis molishiama 55
Microbiology
72
414-417
2003
-
-
-
-
-
-
-
-
-
-
-
-
-
19
-
-
-
-
-
11
14
-
19
-
-
-
-
-
-
-
-
-
14
-
-
-
-
-
-
14
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
11
14
-
19
-
-
-
-
-
-
-
-
-
-
11
11
-
-
-
695731
Lee
Cloning and characterization o ...
Candida parapsilosis, Candida parapsilosis KFCC-10875
Appl. Environ. Microbiol.
69
6179-6188
2003
5
-
1
-
-
-
3
8
-
8
3
-
-
2
-
-
1
-
-
-
1
-
10
1
1
1
-
5
-
1
1
-
2
3
1
-
5
-
1
2
-
-
-
-
3
3
8
-
8
3
-
-
-
-
1
-
-
1
-
10
1
1
-
5
-
1
1
-
1
-
-
-
-
8
8
698396
Nidetzky
Multiple forms of xylose reduc ...
Candida intermedia
J. Agric. Food Chem.
51
7930-7935
2003
-
1
-
-
-
-
4
28
-
-
-
-
-
1
-
-
-
-
-
-
-
-
32
-
2
1
-
-
28
1
-
-
2
6
-
-
-
1
-
2
-
-
-
-
4
6
28
-
-
-
-
-
-
-
-
-
-
-
-
32
-
1
-
-
28
1
-
-
-
-
-
-
-
28
28
696196
Nidetzky
Transient-state and steady-sta ...
Candida tenuis
Biochemistry
40
10371-10381
2001
-
-
-
-
-
-
2
4
-
-
-
-
-
1
-
-
-
1
-
-
-
-
1
-
-
1
-
-
4
1
-
-
1
2
-
-
-
-
-
1
-
-
-
-
2
2
4
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
4
1
-
-
-
-
-
-
-
4
4
701424
Jeong
Mutational study of the role o ...
Saccharomyces cerevisiae
Yeast
18
1081-1089
2001
-
-
1
-
1
-
-
2
-
-
1
-
-
1
-
-
1
-
-
-
2
-
2
1
-
1
-
-
1
1
-
-
2
-
-
-
-
-
1
2
-
1
-
-
-
-
2
-
-
1
-
-
-
-
1
-
-
2
-
2
1
1
-
-
1
1
-
-
-
-
-
-
-
1
1
700255
Hasper
The Aspergillus niger transcri ...
Aspergillus niger
Mol. Microbiol.
36
193-200
2000
-
-
1
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
696522
Häcker
Xylose utilisation: cloning an ...
Candida tenuis, Candida tenuis CBS 4435
Biol. Chem.
380
1395-1403
1999
-
1
1
-
-
-
-
1
-
-
-
2
-
2
-
-
1
-
1
-
-
-
6
-
1
-
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
-
-
2
-
-
-
1
1
-
-
-
6
-
-
-
-
1
-
-
-
-
-
-
-
-
1
1
286260
Neuhauser
NAD(P)H-dependent aldose reduc ...
Candida tenuis
Biochem. J.
326
683-692
1997
4
-
-
-
-
1
11
7
-
1
2
1
-
1
1
-
1
-
-
1
1
2
13
1
-
1
1
3
7
2
1
1
2
2
1
-
4
-
-
2
-
-
1
-
11
2
7
-
1
2
1
-
1
-
1
-
1
1
2
13
1
1
1
3
7
2
1
1
1
-
-
-
-
7
7
696376
Rawat
Purification, kinetic characte ...
Neurospora crassa
Biochim. Biophys. Acta
1293
222-230
1996
-
-
-
-
-
-
1
-
-
-
2
-
-
1
-
-
1
1
-
-
1
-
1
1
-
1
-
-
1
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
2
-
-
-
-
1
-
-
1
-
1
1
1
-
-
1
1
-
-
-
-
-
-
-
-
-
699278
Yokoyama
-
Purification, characterization ...
Candida tropicalis, Candida tropicalis IF0 0618
J. Ferment. Bioeng.
79
217-223
1995
-
-
-
-
-
-
-
6
-
-
3
-
-
2
-
-
1
-
-
-
3
-
10
1
6
-
-
1
-
1
-
-
1
-
2
-
-
-
-
1
-
-
-
-
-
-
6
-
-
3
-
-
-
-
1
-
-
3
-
10
1
-
-
1
-
1
-
-
2
-
-
-
-
-
-
696073
Verduyn
Properties of the NAD(P)H-depe ...
Scheffersomyces stipitis
Biochem. J.
226
669-677
1985
-
-
-
-
-
-
6
3
-
1
2
1
-
1
-
-
1
-
-
-
2
-
13
1
1
-
-
-
-
1
1
-
2
5
-
-
-
-
-
2
-
-
-
-
6
5
3
-
1
2
1
-
-
-
1
-
-
2
-
13
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-