Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 1.1.1.14 extracted from

  • Deregowska, A.; Skoneczny, M.; Adamczyk, J.; Kwiatkowska, A.; Rawska, E.; Skoneczna, A.; Lewinska, A.; Wnuk, M.
    Genome-wide array-CGH analysis reveals YRF1 gene copy number variation that modulates genetic stability in distillery yeasts (2015), Oncotarget, 6, 30650-30663.
    View publication on PubMedView publication on EuropePMC

Cloned(Commentary)

Cloned (Comment) Organism
electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH), comparison of four different species derived from the Saccharomyces sensu stricto complex of 22 distillery strains, overview. The genomic diversity is mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX are the most frequently observed. Statistically significant differences in the gene copy number are documented in six functional gene categories: 1. telomere maintenance via recombination, DNA helicase activity or DNA binding, 2. maltose metabolism process, glucose transmembrane transporter activity, 3. asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4. siderophore transport, 5. response to copper ion, cadmium ion binding and 6. L-iditol 2-dehydrogenase activity. Distillery yeasts are diploid. Gene ontology overrepresentation profiles are species-specific Saccharomyces bayanus
electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH), comparison of four different species derived from the Saccharomyces sensu stricto complex of 22 distillery strains, overview. The genomic diversity is mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX are the most frequently observed. Statistically significant differences in the gene copy number are documented in six functional gene categories: 1. telomere maintenance via recombination, DNA helicase activity or DNA binding, 2. maltose metabolism process, glucose transmembrane transporter activity, 3. asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4. siderophore transport, 5. response to copper ion, cadmium ion binding and 6. L-iditol 2-dehydrogenase activity. Distillery yeasts are diploid. Gene ontology overrepresentation profiles are species-specific Saccharomyces paradoxus
electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH), comparison of four different species derived from the Saccharomyces sensu stricto complex of 22 distillery strains, overview. The genomic diversity is mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX are the most frequently observed. Statistically significant differences in the gene copy number are documented in six functional gene categories: 1. telomere maintenance via recombination, DNA helicase activity or DNA binding, 2. maltose metabolism process, glucose transmembrane transporter activity, 3. asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4. siderophore transport, 5. response to copper ion, cadmium ion binding and 6. L-iditol 2-dehydrogenase activity. Distillery yeasts are diploid. Gene ontology overrepresentation profiles are species-specific Saccharomyces kudriavzevii
electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH), comparison of four different species derived from the Saccharomyces sensu stricto complex of 22 distillery strains, overview. The genomic diversity is mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX are the most frequently observed. Statistically significant differences in the gene copy number are documented in six functional gene categories: 1. telomere maintenance via recombination, DNA helicase activity or DNA binding, 2. maltose metabolism process, glucose transmembrane transporter activity, 3. asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4. siderophore transport, 5. response to copper ion, cadmium ion binding and 6. L-iditol 2-dehydrogenase activity. Distillery yeasts are diploid. Gene ontology overrepresentation profiles are species-specific Saccharomyces cerevisiae

Organism

Organism UniProt Comment Textmining
Saccharomyces bayanus
-
-
-
Saccharomyces cerevisiae P35497 gene SOR1
-
Saccharomyces cerevisiae Q07786 gene SOR2
-
Saccharomyces kudriavzevii
-
-
-
Saccharomyces paradoxus
-
-
-

Source Tissue

Source Tissue Comment Organism Textmining
cell culture electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH), comparison of four different species derived from the Saccharomyces sensu stricto complex of 22 distillery strains, overview. The genomic diversity is mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX are the most frequently observed. Statistically significant differences in the gene copy number are documented in six functional gene categories: 1. telomere maintenance via recombination, DNA helicase activity or DNA binding, 2. maltose metabolism process, glucose transmembrane transporter activity, 3. asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4. siderophore transport, 5. response to copper ion, cadmium ion binding and 6. L-iditol 2-dehydrogenase activity. Distillery yeasts are diploid. Gene ontology overrepresentation profiles are species-specific Saccharomyces bayanus
-
cell culture electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH), comparison of four different species derived from the Saccharomyces sensu stricto complex of 22 distillery strains, overview. The genomic diversity is mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX are the most frequently observed. Statistically significant differences in the gene copy number are documented in six functional gene categories: 1. telomere maintenance via recombination, DNA helicase activity or DNA binding, 2. maltose metabolism process, glucose transmembrane transporter activity, 3. asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4. siderophore transport, 5. response to copper ion, cadmium ion binding and 6. L-iditol 2-dehydrogenase activity. Distillery yeasts are diploid. Gene ontology overrepresentation profiles are species-specific Saccharomyces paradoxus
-
cell culture electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH), comparison of four different species derived from the Saccharomyces sensu stricto complex of 22 distillery strains, overview. The genomic diversity is mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX are the most frequently observed. Statistically significant differences in the gene copy number are documented in six functional gene categories: 1. telomere maintenance via recombination, DNA helicase activity or DNA binding, 2. maltose metabolism process, glucose transmembrane transporter activity, 3. asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4. siderophore transport, 5. response to copper ion, cadmium ion binding and 6. L-iditol 2-dehydrogenase activity. Distillery yeasts are diploid. Gene ontology overrepresentation profiles are species-specific Saccharomyces kudriavzevii
-
cell culture electrophoretic karyotyping and array-based comparative genomic hybridization (array-CGH), comparison of four different species derived from the Saccharomyces sensu stricto complex of 22 distillery strains, overview. The genomic diversity is mainly revealed within subtelomeric regions and the losses and/or gains of fragments of chromosomes I, III, VI and IX are the most frequently observed. Statistically significant differences in the gene copy number are documented in six functional gene categories: 1. telomere maintenance via recombination, DNA helicase activity or DNA binding, 2. maltose metabolism process, glucose transmembrane transporter activity, 3. asparagine catabolism, cellular response to nitrogen starvation, localized in cell wall-bounded periplasmic space, 4. siderophore transport, 5. response to copper ion, cadmium ion binding and 6. L-iditol 2-dehydrogenase activity. Distillery yeasts are diploid. Gene ontology overrepresentation profiles are species-specific Saccharomyces cerevisiae
-

Synonyms

Synonyms Comment Organism
Sor1
-
Saccharomyces cerevisiae
Sor2
-
Saccharomyces cerevisiae
sorbitol dehydrogenase 1
-
Saccharomyces cerevisiae
sorbitol dehydrogenase 2
-
Saccharomyces cerevisiae

General Information

General Information Comment Organism
additional information comprehensive evaluation of genomic features of distillery strains, overview. Naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the Saccharomyces bayanus group of distillery yeast strains Saccharomyces bayanus
additional information comprehensive evaluation of genomic features of distillery strains, overview. Naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the Saccharomyces bayanus group of distillery yeast strains Saccharomyces paradoxus
additional information comprehensive evaluation of genomic features of distillery strains, overview. Naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the Saccharomyces bayanus group of distillery yeast strains Saccharomyces kudriavzevii
additional information comprehensive evaluation of genomic features of distillery strains, overview. Naturally occurring diversity in the YRF1 gene copy number may promote genetic stability in the Saccharomyces bayanus group of distillery yeast strains Saccharomyces cerevisiae