Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
-
5 sulfur + 2 O2 + 2 H2O + 4 H+ = sulfite + thiosulfate + 2 sulfide
-
-
bacillithiol persulfide + O2 = bacillithiol + sulfite
-
-
CoASSH + O2 = CoA + sulfite
-
-
S-sulfanyl-L-cysteine + O2 = L-cysteine + sulfite
-
-
S-sulfanylglutathione + O2 = glutathione + sulfite
-
-
S-sulfanylglutathione + O2 = sulfite + glutathione + H+
-
sulfur + O2 + H2O = sulfite
-
-
3-sulfocatechol + O2 + H2O = (2E,4Z)-2-hydroxymuconate + bisulfite + H+
-
-
S + O2 = SO32- + S2O32- + H2S
-
-
S + O2 + H2O = HSO3- + H2S + H+
-
-
S + OH- + O2 = HSO3- + S2O32- + HS- + H+
-
-
1,3-dioxo-2-isoindolineethanesulfonic acid + 2-oxoglutarate + O2 = sulfite + ? + succinate + CO2
-
-
2-oxoglutarate + 2-methylaminoethane-1-sulfonic acid + O2 = methylaminoacetaldehyde + succinate + sulfite + CO2
-
-
butanesulfonic acid + 2-oxoglutarate + O2 = sulfite + butanal + succinate + CO2
-
-
hexanesulfonic acid + 2-oxoglutarate + O2 = sulfite + hexanal + succinate + CO2
-
-
hexyl sulfate + 2-oxoglutarate + O2 = hexanal + sulfite + succinate + CO2
-
-
MOPS + 2-oxoglutarate + O2 = sulfite + ? + succinate + CO2
-
-
N-methyltaurine + 2-oxoglutarate + O2 = CO2 + succinate + sulfite + methylaminoacetaldehyde
-
-
pentanesulfonic acid + 2-oxoglutarate + O2 = sulfite + pentanal + succinate + CO2
-
-
taurine + 2-oxoglutarate + O2 = CO2 + succinate + sulfite + aminoacetaldehyde
-
-
taurine + 2-oxoglutarate + O2 = succinate + CO2 + aminoethanol + sulfite
-
-
taurine + 2-oxoglutarate + O2 = sulfite + aminoacetaldehyde + succinate + CO2
-
-
taurine + alpha-ketoadipate + O2 = sulfite + aminoacetaldehyde + pentan-1,5-dioic acid + CO2
-
4-sulfobenzoate + NADH + O2 = 3,4-dihydroxybenzoate + sulfite + NAD+
-
-
methanesulfonate + NADH + H+ + O2 = formaldehyde + NAD+ + sulfite + H2O
-
-
CH3SO3- + O2 + NADH + H+ = formaldehyde + HSO3- + NAD+ + H2O
-
-
ethanesulfonate + FMNH2 + O2 = acetaldehyde + FMN + sulfite + H2O
-
-
isethionate + FMNH2 + O2 = hydroxyacetaldehyde + FMN + sulfite + H2O
-
-
methanesulfonate + FMNH2 + O2 = formaldehyde + FMN + sulfite + H2O
-
-
morpholinepropanesulfonic acid + FMNH2 + O2 = 3-(morpholin-4-yl)propanal + FMN + sulfite + H2O
-
-
pentanesulfonate + FMNH2 + O2 = pentanal + FMN + sulfite + H2O
-
-
1,3-dioxo-2-isoindolineethanesulfonic acid + FMNH2 + O2 = (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetaldehyd + FMN + sulfite + H2O
-
-
4-phenyl-1-butanesulfonic acid + FMNH2 + O2 = 4-phenylbutanol + FMN + sulfite + H2O
-
-
an alkanesulfonate + FMNH2 + O2 = an aldehyde + FMN + sulfite + H2O
-
-
an alkansulfonate + FMNH2 + O2 = an aldehyde + FMN + sulfite + H2O
-
-
butanesulfonic acid + FMNH2 + O2 = butanal + FMN + sulfite + H2O
-
-
decanesulfonic acid + FMNH2 + O2 = decanal + FMN + sulfite + H2O
-
-
hexanesulfonic acid + FMNH2 + O2 = hexanal + FMN + sulfite + H2O
-
-
N-phenyltaurine + FMNH2 + O2 = anilinoacetaldehyde + FMN + sulfite + H2O
-
-
octanesulfonate + FMNH2 + O2 = octanal + FMN + sulfite + H2O
-
-
octanesulfonic acid + FMNH2 + O2 = octanal + FMN + sulfite + H2O
-
pentanesulfonic acid + FMNH2 + O2 = pentaldehyde + FMN + sulfite + H2O
-
R-CH2-SO3H + FMNH2 + O2 = R-CHO + FMN + sulfite + H2O
-
-
hydrogen sulfide + 3 NADP+ + 3 H2O = sulfite + 3 NADPH + 3 H+
-
hydrogen sulfide + 3 NADP+ + 3 H2O = sulfite + 3 NADPH + 3 H+
-
hydrogen sulfide + NADP+ + H2O = sulfite + NADPH + H+
-
hydrogen sulfide + NADP+ + H2O = sulfite + NADPH + H+
-
thiosulfate + 2 ferrocytochrome c3 = sulfite + hydrogen sulfide + 2 ferricytochrome c3
-
thiosulfate + 2 ferrocytochrome c3 = sulfite + hydrogen sulfide + 2 ferricytochrome c3
-
thiosulfate + 2 ferrocytochrome c3 = sulfite + hydrogen sulfide + 2 ferricytochrome c3
-
thiosulfate + reduced methyl viologen = sulfite + hydrogen sulfide + oxidized methyl viologen
-
thiosulfate + reduced methyl viologen = sulfite + hydrogen sulfide + oxidized methyl viologen
-
thiosulfate + reduced methyl viologen = sulfite + hydrogen sulfide + oxidized methyl viologen
-
thiosulfate + 2 ferrocytochrome c3 = sulfite + hydrogen sulfide + 2 ferricytochrome c3
-
-
thiosulfate + reduced benzyl viologen = sulfite + hydrogen sulfide + oxidized benzyl viologen
-
-
thiosulfate + reduced methyl viologen = sulfite + hydrogen sulfide + oxidized methyl viologen
-
5'-adenylyl sulfate + glutathione = AMP + sulfite + glutathione disulfide
-
5'-adenylyl sulfate + reduced dithiothreitol = AMP + sulfite + oxidized dithiothreitol
-
5'-adenylyl sulfate + thioredoxin = AMP + sulfite + thioredoxin disulfide
-
-
adenosine 5'-phosphosulfate + thioredoxin = AMP + sulfite + thioredoxin disulfide
-
-
adenylyl sulfate + thioredoxin = AMP + sulfite + thioredoxin disulfide
-
-
3'-adenylyl-sulfate + thioredoxin = adenosine 3',5'-bisphosphate + thioredoxin disulfide + sulfite
-
-
3'-phosphoadenylyl sulfate + glutaredoxin 1 = adenosine 3',5'-bisphosphate + sulfite + glutaredoxin 1 disulfide
-
-
3'-phosphoadenylyl sulfate + glutaredoxin Grx = adenosine 3',5'-bisphosphate + sulfite + glutaredoxin Grx disulfide
-
-
3'-phosphoadenylyl sulfate + glutaredoxin Grx1 = adenosine 3',5'-bisphosphate + sulfite + glutaredoxin Grx1 disulfide
-
-
3'-phosphoadenylyl sulfate + glutaredoxin mutant 1C14S = adenosine 3',5'-bisphosphate + sulfite + glutaredoxin mutant 1C14S disulfide
-
-
3'-phosphoadenylyl sulfate + thioredoxin 1 = adenosine 3',5'-bisphosphate + sulfite + thioredoxin 1 disulfide
-
-
3'-phosphoadenylyl sulfate + thioredoxin 2 = adenosine 3',5'-bisphosphate + sulfite + thioredoxin 2 disulfide
-
-
3'-phosphoadenylyl sulfate + thioredoxin = adenosine 3',5'-bisphosphate + sulfite + thioredoxin disulfide
-
-
3'-phosphoadenylyl sulfate + thioredoxin hTrx1 = adenosine 3',5'-bisphosphate + sulfite + thioredoxin hTrx1 disulfide
-
-
3'-phosphoadenylyl sulfate + thioredoxin Trx1 = adenosine 3',5'-bisphosphate + sulfite + thioredoxin Trx1 disulfide
-
-
3'-phosphoadenylyl sulfate + thioredoxin Trx2 = adenosine 3',5'-bisphosphate + sulfite + thioredoxin Trx2 disulfide
-
-
3'-phosphoadenylyl sulfate + thioredoxin TrxH1 = adenosine 3',5'-bisphosphate + sulfite + thioredoxin TrxH1 disulfide
-
-
3'-phosphoadenylyl sulfate + thioredoxin TrxH2 = adenosine 3',5'-bisphosphate + sulfite + thioredoxin TrxH2 disulfide
-
-
3'-phosphoadenylyl sulfate + thioredoxin TrxH3 = adenosine 3',5'-bisphosphate + sulfite + thioredoxin TrxH3 disulfide
-
-
3'-phosphoadenylyl sulfate + thioredoxin TrxH4 = adenosine 3',5'-bisphosphate + sulfite + thioredoxin TrxH4 disulfide
-
-
3'-phosphoadenylyl-sulfate + glutaredoxin = adenosine 3',5'-bisphosphate + glutaredoxin disulfide + sulfite
-
-
3'-phosphoadenylyl-sulfate + thioredoxin = adenosine 3',5'-bisphosphate + thioredoxin disulfide + sulfite
-
5-Phosphoadenosine 3-phosphosulfate + reduced thioredoxin = adenosine-3',5'-bisphosphate + oxidized thioredoxin + sulfite
-
-
adenosine 5'-phosphosulfate + thioredoxin = AMP + sulfite + oxidized thioredoxin
-
-
adenosine 5'-phosphosulfate + thioredoxin I = AMP + sulfite + oxidized thioredoxin I
-
-
3'-phosphoadenosine 5'-phosphosulfate + glutathione = adenosine 3',5'-diphosphate + sulfite + oxidized glutathione
-
-
3'-phosphoadenosine-5'-phosphosulfate + glutathione = adenosine 3',5'-bisphosphate + sulfite + oxidized glutathione
-
-
3'-phosphoadenosine-5'-phosphosulfate + glutathione = adenosine 3',5'-diphosphate + sulfite + oxidized glutathione
-
-
5'-adenylyl sulfate + glutathione = AMP + sulfite + glutathione disulfide
-
-
5'-adenylyl sulfate + thioredoxin = AMP + sulfite + thioredoxin disulfide
-
-
5'-adenylylsulfate + dithioerythritol = adenosine 5'-monophosphate + sulfite + oxidized dithioerythritol
-
-
5'-adenylylsulfate + dithiothreitol = adenosine 5'-monophosphate + sulfite + oxidized dithiothreitol
-
-
5'-adenylylsulfate + glutathione + glutathione = adenosine monophosphate + sulfite + oxidized glutathione
-
-
5'-adenylylsulfate + glutathione = adenosine monophosphate + sulfite + oxidized glutathione
-
-
adenylyl sulfate + glutathione = AMP + sulfite + glutathione disulfide
-
-
thiosulfate + menaquinol = sulfite + hydrogen sulfide + menaquinone
-
-
hydrogen sulfide + oxidized ferredoxin + H2O = sulfite + reduced ferredoxin + H+
-
-
hydrogen sulfide + oxidized methyl viologen + H2O = sulfite + reduced methyl viologen + H+
-
-
5'-adenylylsulfate + dithioerythritol = adenosine 5'-monophosphate + sulfite + oxidized dithioerythritol
-
5'-adenylylsulfate + dithiothreitol = adenosine 5'-monophosphate + sulfite + oxidized dithiothreitol
-
adenylyl sulfate + cofactor sulfide = AMP + sulfite + cofactor disulfide
-
adenylyl sulfate + dithioerythritol = AMP + sulfite + ?
-
adenylyl sulfate + dithioerythritol = AMP + sulfite + oxidized dithioerythritol
-
adenylyl sulfate + dithionite = AMP + sulfite + ?
-
adenylyl sulfate + dithiothreitol = AMP + sulfite + ?
-
adenylyl sulfate + ferrocytochrome c3 = AMP + sulfite + ferricytochrome
-
adenylyl sulfate + GSH = AMP + sulfite + GSSG
-
adenylyl sulfate + reduced acceptor = AMP + sulfite + acceptor
-
adenylyl sulfate + reduced glutaredoxin 1 = AMP + sulfite + oxidized glutaredoxin 1
adenylyl sulfate + reduced methyl viologen = AMP + sulfite + methyl viologen
-
adenylyl sulfate + reduced riboflavin = AMP + sulfite + oxidized riboflavin
-
adenylyl sulfate + reduced thioredoxin 1 = AMP + sulfite + oxidized thioredoxin 1
-
adenylyl sulfate + reduced thioredoxin = AMP + sulfite + oxidized thioredoxin
-
adenylylsulfate + thioredoxin = AMP + sulfite + ?
-
guanylyl sulfate + reduced methyl viologen = GMP + methyl viologen + sulfite
-
hydrogen sulfide + a [DsrC protein]-disulfide + acceptor + H2O = sulfite + a [DsrC protein]-dithiol + reduced acceptor + H+
-
-
2-sulfoacetaldehyde + phosphate = acetyl phosphate + sulfite
-
-
4-aminobutyrate + 2-oxoglutarate = L-glutamate + acetaldehyde + sulfite
-
-
thiosulfate + 2 glutathione = sulfite + glutathione disulfide + sulfide
-
thiosulfate + cyanide = sulfite + thiocyanate
-
thiosulfate + glutathione = sulfite + glutathione disulfide
-
thiosulfate + sulfite = sulfite + thiosulfate
-
4-(dimethylamino)-4'-azobenzene sulfinate + thiosulfate = 4-(dimethylamino)-4'-azobenzene thiosulfonate + SO32-
-
5-dimethylamino-1-naphthalene sulfinate + thiosulfate = 5-dimethylamino-1-naphthalene thiosulfonate + SO32-
-
thiosulfate + cyanide = sulfite + thiocyanate
-
thiosulfate + cyanide = sulfite + thiocyanate
-
thiosulfate + glutathione = sulfite + glutathione disulfide
-
thiosulfate + glutathione = sulfite + glutathione disulfide
-
thiosulfate + cyanide = SO32- + thiocyanate
-
thiosulfate + cyanide = SO32- + thiocyanate
-
thiosulfate + cyanide = sulfite + thiocyanate
-
thiosulfate + glutathione = sulfite + glutathione disulfide + sulfide
-
thiosulfate + 2 dithioerythritol = sulfite + dithioerythritol disulfide + sulfide
-
-
thiosulfate + 2 dithiothreitol = sulfite + dithiothreitol disulfide + sulfide
-
-
thiosulfate + dithiothreitol = sulfite + oxidized dithiothreitol + sulfide
-
-
thiosulfate + menaquinol = sulfite + oxidized menaquinol + sulfide
-
thiosulfate + NAD(P)H = H2S + NAD(P)+ + sulfite
-
-
thiosulfate + NADH = H2S + NAD+ + sulfite
-
L-cysteine sulfinic acid = L-alanine + sulfite
-
-
adenosine 5'-phosphosulfate + dithioerythritol = sulfite + ?
-
-
adenosine 5'-phosphosulfate + dithiothreitol = sulfite + ?
-
-
adenosine 5'-phosphosulfate + glutathione = SO32- + ?
-
-
4-sulfomuconolactone + H2O = maleylacetate + sulfite
-
-
2'-hydroxybiphenyl-2-sulfinate + H2O = 2-hydroxybiphenyl + sulfite
-
-
2-(2'-hydroxyphenyl)benzenesulfinate + H2O = 2-hydroxybiphenyl + sulfite
-
-
2-phenylbenzenesulfinate + H2O = biphenyl + sulfite
-
-
UDP-alpha-D-sulfoquinovopyranose + H2O = UDP-alpha-D-glucose + sulfite
-
2'-hydroxybiphenyl-2-sulfinate + H2O = 2-hydroxybiphenyl + sulfite
-
2-(2'-hydroxyphenyl)benzenesulfinate + H2O = 2-hydroxybiphenyl + sulfite
-
2-(2'-hydroxyphenyl)ethene-1-sulfinate + H2O = o-hydroxystyrene + sulfite
-
-
2-(2-hydroxyphenyl)benzenesulfinate + H2O = 2-hydroxybiphenyl + sulfite
-
2-phenylbenzenesulfinate + H2O = biphenyl + sulfite
-
-
3-sulfinopropanoyl-CoA + H2O = propanoyl-CoA + sulfite
-
-
3-sulfinopropionyl-CoA + H2O = propionyl-CoA + sulfite
-
-
(2R)-3-sulfolactate = pyruvate + bisulfite
-
-
3-sulfolactate = pyruvate + bisulfite
-
-
L-cysteate + H2O = pyruvate + bisulfite + NH3
-
-
(S)-cysteate + H2O = HSO3- + pyruvate + NH3
-
-
2-hydroxyethane-1-sulfonate = acetaldehyde + H+ + sulfite
-
-
isethionate = acetaldehyde + H+ + sulfite
-
-
isethionate = acetaldehyde + sulfite
-
-
(2S)-2,3-dihydroxypropane-1-sulfonate = hydroxyacetone + sulfite
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
modified enzyme that contains an additional covalent bond between residues Tyr303 and Gln360, pH 7.0, 20°C
0.023
-
unmodified enzyme, pH 7.0, 20°C
0.039
-
cosubstrate reduced methyl viologen
65
-
25°C, 20 mM Tris acetate buffer, pH 10.0, mutant Y236F
88.8
-
25°C, 20 mM Tris acetate buffer, pH 10.0, wild-type enzyme
2
3.7
25°C, 20 mM Tris acetate buffer, pH 5.8, mutant R55M
70.5
-
25°C, 20 mM Tris acetate buffer, pH 6.0, mutant H57A
238.8
-
25°C, 20 mM Tris acetate buffer, pH 6.0, mutant Y236F
36.8
-
25°C, 20 mM Tris acetate buffer, pH 6.0, wild-type enzyme
63.5
-
25°C, 20 mM Tris acetate buffer, pH 6.2, mutant R55M
64
-
25°C, 20 mM Tris acetate buffer, pH 6.5, mutant H57A
226.5
-
25°C, 20 mM Tris acetate buffer, pH 6.5, mutant Y236F
41.6
-
25°C, 20 mM Tris acetate buffer, pH 6.5, wild-type enzyme
86.2
-
25°C, 20 mM Tris acetate buffer, pH 6.6, mutant R55M
64
-
25°C, 20 mM Tris acetate buffer, pH 7.0, mutant H57A
214.5
-
25°C, 20 mM Tris acetate buffer, pH 7.0, mutant R55M
66.3
-
25°C, 20 mM Tris acetate buffer, pH 7.0, mutant Y236F
51.8
-
25°C, 20 mM Tris acetate buffer, pH 7.0, wild-type enzyme
158.8
-
25°C, 20 mM Tris acetate buffer, pH 7.5, mutant H57A
220.5
-
25°C, 20 mM Tris acetate buffer, pH 7.5, mutant R55M
68.3
-
25°C, 20 mM Tris acetate buffer, pH 7.5, mutant Y236F
48.3
-
25°C, 20 mM Tris acetate buffer, pH 7.5, wild-type enzyme
293.4
-
25°C, 20 mM Tris acetate buffer, pH 7.9, mutant R55M
73.4
-
25°C, 20 mM Tris acetate buffer, pH 8.0, mutant H57A
214.6
-
25°C, 20 mM Tris acetate buffer, pH 8.0, mutant Y236F
53.4
-
25°C, 20 mM Tris acetate buffer, pH 8.0, wild-type enzyme
345.3
-
25°C, 20 mM Tris acetate buffer, pH 8.5, mutant H57A
222.4
-
25°C, 20 mM Tris acetate buffer, pH 8.5, mutant Y236F
58.3
-
25°C, 20 mM Tris acetate buffer, pH 8.5, wild-type enzyme
410
-
25°C, 20 mM Tris acetate buffer, pH 9.0, mutant H57A
192.5
-
25°C, 20 mM Tris acetate buffer, pH 9.0, mutant Y236F
64
-
25°C, 20 mM Tris acetate buffer, pH 9.0, wild-type enzyme
519
-
25°C, 20 mM Tris acetate buffer, pH 9.5, mutant H57A
148.4
-
25°C, 20 mM Tris acetate buffer, pH 9.5, mutant Y236F
52.7
-
25°C, 20 mM Tris acetate buffer, pH 9.5, wild-type enzyme
431
-
mutant enzyme P105A, in 20 mM Tris acetate, pH 8.0, at 25°C
39
-
mutant enzyme P105A/P111A, in 20 mM Tris acetate, pH 8.0, at 25°C
46
-
mutant enzyme P111A, in 20 mM Tris acetate, pH 8.0, at 25°C
50
-
mutant enzyme Y236F, in 20 mM bis-Tris-acetate buffer pH 6.0
0.8
-
mutant enzyme Y236F, in 20 mM bis-Tris-acetate buffer pH 6.0
36.19
-
mutant enzyme Y236F, in 20 mM Tris-acetate buffer pH 8.0
0.4
-
mutant enzyme Y236F, in 20 mM Tris-acetate buffer pH 8.0
52.51
-
mutant enzyme Y236F, in 20 mM bis-Tris-acetate buffer pH 6.0
mutant enzyme Y236F, in 20 mM Tris-acetate buffer pH 8.0
recombinant enzyme
10880
-
tether deletion mutant enzyme DELTAKVA, in 20 mM Tris acetate, pH 8.0, at 25°C
40
-
tether deletion mutant enzyme DELTAKVAT, in 20 mM Tris acetate, pH 8.0, at 25°C
35
-
tether deletion mutant enzyme DELTAKVATV, in 20 mM Tris acetate, pH 8.0, at 25°C
10.6
-
wild type enzyme, in 20 mM bis-Tris-acetate buffer pH 6.0
33.51
-
wild type enzyme, in 20 mM Tris acetate, pH 8.0, at 25°C
26.9
-
wild type enzyme, in 20 mM Tris-acetate buffer pH 8.0
333.7
-
-
0.4
-
25°C, pH 10.0, 100 mM buffer, mutant enzyme Y343F
8.21
-
25°C, pH 10.0, 20 mM buffer, mutant enzyme Y343F
8.51
-
25°C, pH 6.0, 20 mM buffer, mutant enzyme Y343F
3.11
-
25°C, pH 6.0, 20 mM buffer, wild-type enzyme
13.2
-
25°C, pH 6.5, 20 mM buffer, mutant enzyme Y343F
4.14
-
25°C, pH 6.5, 20 mM buffer, wild-type enzyme
17.7
-
25°C, pH 7.0, 100 mM buffer, mutant enzyme Y343F
2.06
-
25°C, pH 7.0, 100 mM buffer, wild-type enzyme
12.1
-
25°C, pH 7.0, 20 mM buffer, mutant enzyme Y343F
4.59
-
25°C, pH 7.0, 20 mM buffer, wild-type enzyme
24.2
-
25°C, pH 7.5, 100 mM buffer, mutant enzyme Y343F
3.26
-
25°C, pH 7.5, 100 mM buffer, wild-type enzyme
17.2
-
25°C, pH 7.5, 20 mM buffer, mutant enzyme Y343F
6.35
-
25°C, pH 7.5, 20 mM buffer, wild-type enzyme
24.7
-
25°C, pH 8.0, 100 mM buffer, mutant enzyme Y343F
7.17
-
25°C, pH 8.0, 100 mM buffer, wild-type enzyme
25
-
25°C, pH 8.0, 20 mM buffer, mutant enzyme Y343F
8.59
-
25°C, pH 8.0, 20 mM buffer, wild-type enzyme
25.9
-
25°C, pH 8.25, 100 mM buffer, mutant enzyme Y343F
8.72
-
25°C, pH 8.25, 100 mM buffer, wild-type enzyme
27
-
25°C, pH 8.25, 20 mM buffer, mutant enzyme Y343F
9.08
-
25°C, pH 8.25, 20 mM buffer, wild-type enzyme
24.8
-
25°C, pH 8.5, 100 mM buffer, mutant enzyme Y343F
9.2
-
25°C, pH 8.5, 100 mM buffer, wild-type enzyme
26.9
-
25°C, pH 8.5, 20 mM buffer, mutant enzyme Y343F
9.24
-
25°C, pH 8.5, 20 mM buffer, wild-type enzyme
26.9
-
25°C, pH 8.75, 20 mM buffer, wild-type enzyme
23.6
-
25°C, pH 9.0, 100 mM buffer, mutant enzyme Y343F
9.99
-
25°C, pH 9.0, 100 mM buffer, wild-type enzyme
28.1
-
25°C, pH 9.0, 20 mM buffer, mutant enzyme Y343F
9.47
-
25°C, pH 9.0, 20 mM buffer, wild-type enzyme
25.7
-
25°C, pH 9.5, 100 mM buffer, mutant enzyme Y343F
10.5
-
25°C, pH 9.5, 100 mM buffer, wild-type enzyme
24.6
-
25°C, pH 9.5, 20 mM buffer, mutant enzyme Y343F
9.63
-
25°C, pH 9.5, 20 mM buffer, wild-type enzyme
26.3
-
25°C, pH 9.75, 20 mM buffer, mutant enzyme Y343F
9.92
-
mutant D342K, pH 7.6, 25°C
23
-
mutant enzyme A208D in 20 mM Tris at pH 6.0
0.15
-
mutant enzyme A208D in 20 mM Tris at pH 8.5
0.75
-
mutant enzyme G473A in 20 mM Tris at pH 6.0
4.15
-
mutant enzyme G473A in 20 mM Tris at pH 8.5
28.4
-
mutant enzyme G473A, pH 10.0
15.1
-
mutant enzyme G473A, pH 6.0
4.15
-
mutant enzyme G473A, pH 7.0
15.9
-
mutant enzyme G473A, pH 7.4
21.6
-
mutant enzyme G473A, pH 8.0
26.2
-
mutant enzyme G473A, pH 8.5
28.4
-
mutant enzyme G473A, pH 9.1
31.9
-
mutant enzyme G473D in 20 mM Tris at pH 6.0
0.14
-
mutant enzyme G473D in 20 mM Tris at pH 8.5
0.54
-
mutant enzyme G473D, pH 6.0
0.14
-
mutant enzyme G473D, pH 6.5
0.28
-
mutant enzyme G473D, pH 7.0
0.5
-
mutant enzyme G473D, pH 7.5
0.57
-
mutant enzyme G473D, pH 8.0
0.58
-
mutant enzyme G473D, pH 8.5
0.54
-
mutant enzyme G473D, pH 9.1
0.42
-
mutant enzyme G473W in 20 mM Tris at pH 6.0
0.6
-
mutant enzyme G473W in 20 mM Tris at pH 8.5
2.48
-
mutant enzyme G473W, pH 6.0
0.6
-
mutant enzyme G473W, pH 7.0
1.8
-
mutant enzyme G473W, pH 8.5
2.48
-
mutant enzyme G473W, pH 9.0
1.35
-
mutant F57A, pH 8.0, 25°C
16
-
mutant F57Y, pH 8.0, 25°C
19
-
mutant F79A, pH 8.0, 25°C
13
-
mutant H90F, pH 8.0, 25°C
19
-
mutant H90Y, pH 8.0, 25°C
42
-
mutant R472D, pH 6.5, 25°C
5.7
-
mutant R472D, pH 7.6, 25°C
14.1
-
mutant R472D/D342K, pH 7.6, 25°C
47
-
mutant R472K, pH 7.6, 25°C
18.5
-
mutant R472M, 25°C, pH 10.0
0.46
-
mutant R472M, 25°C, pH 6.0
5
-
mutant R472M, 25°C, pH 7.0
3.6
-
mutant R472M, 25°C, pH 8.0
3.5
-
mutant R472M, 25°C, pH 8.5
3.8
-
mutant R472M, 25°C, pH 9.0
3.45
-
mutant R472M, 25°C, pH 9.5
1.8
-
mutant R472M, pH 7.6, 25°C
27
-
mutant R472Q, 25°C, pH 10.0
0.52
-
mutant R472Q, 25°C, pH 6.0
8.2
-
mutant R472Q, 25°C, pH 7.0
5.8
-
mutant R472Q, 25°C, pH 8.0
9.3
-
mutant R472Q, 25°C, pH 8.5
4.6
-
mutant R472Q, 25°C, pH 9.0
4.24
-
mutant R472Q, 25°C, pH 9.5
1.7
-
mutant R472Q, pH 7.6, 25°C
26.6
-
mutant V474M, 25°C, pH 10.0
12.4
-
mutant V474M, 25°C, pH 6.0
5.96
-
mutant V474M, 25°C, pH 7.0
11.4
-
mutant V474M, 25°C, pH 8.0
17.8
-
mutant V474M, 25°C, pH 8.5
15.8
-
mutant V474M, 25°C, pH 9.0
19.6
-
mutant V474M, 25°C, pH 9.5
17.1
-
mutant Y322N/R450M, 25°C, pH 7.0
4.83
-
mutant Y322N/R450M, 25°C, pH 8.5
2.52
-
mutant Y343F/R472Q, 25°C, pH 10.0
2.96
-
mutant Y343F/R472Q, 25°C, pH 6.0
1.44
-
mutant Y343F/R472Q, 25°C, pH 7.0
1.73
-
mutant Y343F/R472Q, 25°C, pH 8.0
2.05
-
mutant Y343F/R472Q, 25°C, pH 8.5
2.25
-
mutant Y343F/R472Q, 25°C, pH 9.0
2.3
-
mutant Y343F/R472Q, 25°C, pH 9.5
4.9
-
mutant Y343N, 25°C, pH 10.0
4.38
-
mutant Y343N, 25°C, pH 6.0
3.17
-
mutant Y343N, 25°C, pH 7.0
12.8
-
mutant Y343N, 25°C, pH 8.0
13.75
-
mutant Y343N, 25°C, pH 8.5
16.9
-
mutant Y343N, 25°C, pH 9.0
15.5
-
mutant Y343N, 25°C, pH 9.5
8.1
-
mutant Y343N/R472M/V474M, 25°C, pH 10.0
2.8
-
mutant Y343N/R472M/V474M, 25°C, pH 6.0
1.9
-
mutant Y343N/R472M/V474M, 25°C, pH 7.0
3.4
-
mutant Y343N/R472M/V474M, 25°C, pH 8.0
3.58
-
mutant Y343N/R472M/V474M, 25°C, pH 8.5
3.9
-
mutant Y343N/R472M/V474M, 25°C, pH 9.0
5.6
-
mutant Y343N/R472M/V474M, 25°C, pH 9.5
5.23
-
mutant Y343N/R472Q, 25°C, pH 6.0
1.35
-
mutant Y343N/R472Q, 25°C, pH 7.0
1.13
-
mutant Y343N/R472Q, 25°C, pH 8.0
1.33
-
mutant Y343N/R472Q, 25°C, pH 8.5
1.42
-
mutant Y343N/R472Q, 25°C, pH 9.0
1.13
-
mutant Y343N/R472Q, 25°C, pH 9.5
0.97
-
mutant Y83A, pH 8.0, 25°C
7
-
mutant Y83F, pH 8.0, 25°C
3
6
wild type enzyme in 20 mM Tris at pH 6.0
13.2
-
wild type enzyme in 20 mM Tris at pH 8.5
26.9
-
wild type enzyme, pH 6.0
13.2
-
wild type enzyme, pH 6.5
17.7
-
wild type enzyme, pH 7.0
24.2
-
wild type enzyme, pH 7.5
24.7
-
wild type enzyme, pH 8.0
25.9
-
wild type enzyme, pH 8.5
26.9
-
wild type enzyme, pH 9.0
25.7
-
wild type enzyme, pH 9.5
26.3
-
wild-type, 25°C, pH 10.0
13
-
wild-type, 25°C, pH 6.0
13.2
-
wild-type, 25°C, pH 7.0
24.2
-
wild-type, 25°C, pH 7.0
36.1
-
wild-type, 25°C, pH 8.0
25.9
-
wild-type, 25°C, pH 8.5
26.9
-
wild-type, 25°C, pH 8.5
73
-
wild-type, 25°C, pH 9.0
25.7
-
wild-type, 25°C, pH 9.5
26.3
-
wild-type, pH 8.0, 25°C
26.9
-
wild-type, pH 8.0, 25°C
27
-
with ferricanide, pH 6.0, 25°C, recombinant mutant C242S/C253S/C260S/C451S
9.4
-
with ferricanide, pH 6.0, 25°C, recombinant selenomethionine-labeled mutant C242S/C253S/C260S/C451S
26.1
-
with ferricanide, pH 6.0, 25°C, recombinant wild-type enzyme
13.9
-
with ferricanide, pH 7.1, 25°C, recombinant mutant C242S/C253S/C260S/C451S
19.8
-
with ferricanide, pH 7.1, 25°C, recombinant selenomethionine-labeled mutant C242S/C253S/C260S/C451S
37.7
-
with ferricanide, pH 7.1, 25°C, recombinant selenomethionine-labeled mutant C242S/C253S/C260S/C451S
46.6
-
with ferricanide, pH 7.1, 25°C, recombinant wild-type enzyme
16.2
-
with ferricanide, pH 7.1, 25°C, recombinant wild-type enzyme
20.8
-
with ferricanide, pH 7.1, 25°C, recombinant selenomethionine-labeled mutant C242S/C253S/C260S/C451S
with ferricanide, pH 7.1, 25°C, recombinant wild-type enzyme
with ferricanide, pH 8.4, 25°C, recombinant mutant C242S/C253S/C260S/C451S
25.8
-
with ferricanide, pH 8.4, 25°C, recombinant selenomethionine-labeled mutant C242S/C253S/C260S/C451S
41.2
-
with ferricanide, pH 8.4, 25°C, recombinant wild-type enzyme
32.4
-
with ferricanide, pH 8.9, 25°C, recombinant mutant C242S/C253S/C260S/C451S
36.2
-
with ferricanide, pH 8.9, 25°C, recombinant selenomethionine-labeled mutant C242S/C253S/C260S/C451S
31.8
-
with ferricanide, pH 8.9, 25°C, recombinant wild-type enzyme
27.3
-
cosubstrates sulfide, ubiquinone-1, pH 7.5, 25°C
368
-
with coenzyme Q and sulfide as cosubstrates, at pH 8.0 and 25°C
368
-
enzyme in nanodiscs, at pH 6.8 and 25°C
650
-
solubilized enzyme, at pH 6.8 and 25°C
382
-
mutant G212S/L213T/Y214L/S217C/C220I/S221N, pH not specified in the publication, temperature not specified in the publication
0.133
-
truncated protein, residues 19-731, pH not specified in the publication, temperature not specified in the publication
1.93
-
truncated protein, residues 76-679, pH not specified in the publication, temperature not specified in the publication
0.078
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
in 0.1 M K+-phosphate buffer, at pH 7.0 and 30°C
60
-
-
0.0043
0.0074
within a sulfite concentration range of 0.0014-0.3 mM and with a fixed reduced F420 concentration of 0.04 mM
0.0122
-
-
0.007
-
25°C, 20 mM Tris acetate buffer, pH 10.0, mutant Y236F
15.49
-
25°C, 20 mM Tris acetate buffer, pH 10.0, wild-type enzyme
3.39
-
25°C, 20 mM Tris acetate buffer, pH 5.8, mutant R55M
0.812
-
25°C, 20 mM Tris acetate buffer, pH 6.0, mutant H57A
0.667
-
25°C, 20 mM Tris acetate buffer, pH 6.0, mutant Y236F
0.000004
-
25°C, 20 mM Tris acetate buffer, pH 6.0, wild-type enzyme
0.0006
-
25°C, 20 mM Tris acetate buffer, pH 6.2, mutant R55M
1.087
-
25°C, 20 mM Tris acetate buffer, pH 6.5, mutant H57A
0.29
-
25°C, 20 mM Tris acetate buffer, pH 6.5, mutant Y236F
0.000007
-
25°C, 20 mM Tris acetate buffer, pH 6.5, wild-type enzyme
0.0011
-
25°C, 20 mM Tris acetate buffer, pH 6.6, mutant R55M
1.63
-
25°C, 20 mM Tris acetate buffer, pH 7.0, mutant H57A
0.189
-
25°C, 20 mM Tris acetate buffer, pH 7.0, mutant R55M
1.95
-
25°C, 20 mM Tris acetate buffer, pH 7.0, mutant Y236F
0.026
-
25°C, 20 mM Tris acetate buffer, pH 7.0, wild-type enzyme
0.0037
-
25°C, 20 mM Tris acetate buffer, pH 7.5, mutant H57A
0.22
-
25°C, 20 mM Tris acetate buffer, pH 7.5, mutant R55M
3.62
-
25°C, 20 mM Tris acetate buffer, pH 7.5, mutant Y236F
0.042
-
25°C, 20 mM Tris acetate buffer, pH 7.5, wild-type enzyme
0.0071
-
25°C, 20 mM Tris acetate buffer, pH 7.9, mutant R55M
8.17
-
25°C, 20 mM Tris acetate buffer, pH 8.0, mutant H57A
0.27
-
25°C, 20 mM Tris acetate buffer, pH 8.0, mutant Y236F
0.114
-
25°C, 20 mM Tris acetate buffer, pH 8.0, wild-type enzyme
0.022
-
25°C, 20 mM Tris acetate buffer, pH 8.5, mutant H57A
0.452
-
25°C, 20 mM Tris acetate buffer, pH 8.5, mutant Y236Fyme
0.332
-
25°C, 20 mM Tris acetate buffer, pH 8.5, wild-type enzyme
0.086
-
25°C, 20 mM Tris acetate buffer, pH 9.0, mutant H57A
1.46
-
25°C, 20 mM Tris acetate buffer, pH 9.0, mutant Y236F
1.155
-
25°C, 20 mM Tris acetate buffer, pH 9.0, wild-type enzyme
0.324
-
25°C, 20 mM Tris acetate buffer, pH 9.5, mutant H57A
12.2
-
25°C, 20 mM Tris acetate buffer, pH 9.5, mutant Y236F
4.456
-
25°C, 20 mM Tris acetate buffer, pH 9.5, wild-type enzyme
1.66
-
at pH 7.7 and 294 mV
0.012
-
at pH 7.7 and 360 mV
0.0125
-
at pH 8.0 and 264 mV
0.063
-
at pH 8.0 and 345 mV
0.054
-
at pH 8.5 and 283 mV
0.283
-
at pH 8.5 and 345 mV
0.269
-
mutant enzyme G473A, pH 7.0, using ferricyanide as the electron acceptor
0.00605
-
mutant enzyme G473A, pH 8.5, using ferricyanide as the electron acceptor
0.191
-
mutant enzyme G473D, pH 7.0, using ferricyanide as the electron acceptor
26.5
-
mutant enzyme G473D, pH 8.5, using ferricyanide as the electron acceptor
41.4
-
mutant enzyme G473W, pH 7.0, using ferricyanide as the electron acceptor
21.2
-
mutant enzyme G473W, pH 8.5, using ferricyanide as the electron acceptor
24
-
mutant enzyme P105A, in 20 mM Tris acetate, pH 8.0, at 25°C
0.006
-
mutant enzyme P105A/P111A, in 20 mM Tris acetate, pH 8.0, at 25°C
0.032
-
mutant enzyme P111A, in 20 mM Tris acetate, pH 8.0, at 25°C
0.033
-
pH 6.5, reaction with cytochrome c
0.002
-
pH 8.0, reaction with cytochrome c
0.04
-
reaction with cytochrome c
0.06
-
reaction with cytochrome c
0.58
-
reaction with ferricyanide
0.54
-
reaction with ferricyanide
1
-
reaction with cytochrome c
reaction with ferricyanide
reaction with yeast ferricytochrome c
0.01
-
recombinant enzyme
0.032
-
tether deletion mutant enzyme DELTAKVA, in 20 mM Tris acetate, pH 8.0, at 25°C
0.042
-
tether deletion mutant enzyme DELTAKVAT, in 20 mM Tris acetate, pH 8.0, at 25°C
0.026
-
tether deletion mutant enzyme DELTAKVATV, in 20 mM Tris acetate, pH 8.0, at 25°C
0.0026
-
wild type enzyme, in 20 mM Tris acetate, pH 8.0, at 25°C
0.0111
-
wild type enzyme, pH 7.0, using ferricyanide as the electron acceptor
0.00456
-
wild type enzyme, pH 8.6, using ferricyanide as the electron acceptor
0.0149
-
-
0.001
-
25°C, pH 10.0, 100 mM buffer, mutant enzyme Y343F
1.54
-
25°C, pH 10.0, 20 mM buffer, mutant enzyme Y343F
0.00851
-
25°C, pH 6.0, 20 mM buffer, mutant enzyme Y343F
0.00311
-
25°C, pH 6.0, 20 mM buffer, wild-type enzyme
0.00129
-
25°C, pH 6.5, 20 mM buffer, mutant enzyme Y343F
0.00414
-
25°C, pH 6.5, 20 mM buffer, wild-type enzyme
0.00162
-
25°C, pH 7.0, 100 mM buffer, mutant enzyme Y343F
0.00352
-
25°C, pH 7.0, 100 mM buffer, wild-type enzyme
0.00362
-
25°C, pH 7.0, 20 mM buffer, mutant enzyme Y343F
0.00459
-
25°C, pH 7.0, 20 mM buffer, wild-type enzyme
0.00272
-
25°C, pH 7.5, 100 mM buffer, mutant enzyme Y343F
0.00423
-
25°C, pH 7.5, 100 mM buffer, wild-type enzyme
0.00367
-
25°C, pH 7.5, 20 mM buffer, mutant enzyme Y343F
0.00635
-
25°C, pH 7.5, 20 mM buffer, wild-type enzyme
0.00339
-
25°C, pH 8.0, 100 mM buffer, mutant enzyme Y343F
0.0158
-
25°C, pH 8.0, 100 mM buffer, wild-type enzyme
0.00612
-
25°C, pH 8.0, 20 mM buffer, mutant enzyme Y343F
0.00859
-
25°C, pH 8.0, 20 mM buffer, wild-type enzyme
0.00435
-
25°C, pH 8.25, 100 mM buffer, mutant enzyme Y343F
0.0319
-
25°C, pH 8.25, 100 mM buffer, wild-type enzyme
0.00728
-
25°C, pH 8.25, 20 mM buffer, mutant enzyme Y343F
0.00908
-
25°C, pH 8.25, 20 mM buffer, wild-type enzyme
0.00503
-
25°C, pH 8.5, 100 mM buffer, mutant enzyme Y343F
0.0557
-
25°C, pH 8.5, 100 mM buffer, wild-type enzyme
0.011
-
25°C, pH 8.5, 20 mM buffer, mutant enzyme Y343F
0.00924
-
25°C, pH 8.5, 20 mM buffer, wild-type enzyme
0.00825
-
25°C, pH 8.75, 20 mM buffer, wild-type enzyme
0.00959
-
25°C, pH 9.0, 100 mM buffer, mutant enzyme Y343F
0.147
-
25°C, pH 9.0, 100 mM buffer, wild-type enzyme
0.026
-
25°C, pH 9.0, 20 mM buffer, mutant enzyme Y343F
0.00947
-
25°C, pH 9.0, 20 mM buffer, wild-type enzyme
0.0221
-
25°C, pH 9.5, 100 mM buffer, mutant enzyme Y343F
0.59
1
25°C, pH 9.5, 100 mM buffer, wild-type enzyme
0.0536
-
25°C, pH 9.5, 20 mM buffer, mutant enzyme Y343F
0.00963
-
25°C, pH 9.5, 20 mM buffer, wild-type enzyme
0.0671
-
25°C, pH 9.75, 20 mM buffer, mutant enzyme Y343F
0.00992
-
mutant D342K, pH 7.6, 25°C
0.012
-
mutant enzyme A208D in 20 mM Tris at pH 6.0
0.0692
-
mutant enzyme A208D in 20 mM Tris at pH 8.5
1.39
-
mutant enzyme G473A in 20 mM Tris at pH 6.0
0.00453
-
mutant enzyme G473A in 20 mM Tris at pH 8.5
0.107
-
mutant enzyme G473A, pH 10.0
3.684
-
mutant enzyme G473A, pH 6.0
0.00453
-
mutant enzyme G473A, pH 7.0
0.00536
-
mutant enzyme G473A, pH 7.4
0.0172
-
mutant enzyme G473A, pH 8.0
0.0487
-
mutant enzyme G473A, pH 8.5
0.107
-
mutant enzyme G473A, pH 9.1
0.774
-
mutant enzyme G473D in 20 mM Tris at pH 6.0
1.66
-
mutant enzyme G473D in 20 mM Tris at pH 8.5
2.04
-
mutant enzyme G473D, pH 6.0
1.66
-
mutant enzyme G473D, pH 6.5
0.99
-
mutant enzyme G473D, pH 7.0
0.623
-
mutant enzyme G473D, pH 7.5
1.063
-
mutant enzyme G473D, pH 8.0
1.223
-
mutant enzyme G473D, pH 8.5
2.04
-
mutant enzyme G473D, pH 9.1
25.88
-
mutant enzyme G473W in 20 mM Tris at pH 6.0
1.91
-
mutant enzyme G473W in 20 mM Tris at pH 8.5
2.03
-
mutant enzyme G473W, pH 6.0
1.91
-
mutant enzyme G473W, pH 7.0
0.33
-
mutant enzyme G473W, pH 8.5
2.034
-
mutant enzyme G473W, pH 9.0
10.41
-
mutant F57A, pH 8.0, 25°C
0.013
-
mutant F57Y, pH 8.0, 25°C
0.008
-
mutant F79A, pH 8.0, 25°C
0.0038
-
mutant H90F, pH 8.0, 25°C
0.0028
-
mutant H90Y, pH 8.0, 25°C
0.0039
-
mutant R472D, pH 6.5, 25°C
0.051
-
mutant R472D, pH 7.6, 25°C
0.023
-
mutant R472D/D342K, pH 7.6, 25°C
0.023
-
mutant R472K, pH 7.6, 25°C
0.0032
-
mutant R472M, 25°C, pH 10.0
0.0969
-
mutant R472M, 25°C, pH 6.0
0.0019
-
mutant R472M, 25°C, pH 7.0
0.0025
-
mutant R472M, 25°C, pH 8.0
0.0047
-
mutant R472M, 25°C, pH 8.5
0.094
-
mutant R472M, 25°C, pH 9.0
0.021
-
mutant R472M, 25°C, pH 9.5
0.0537
-
mutant R472M, pH 7.6, 25°C
0.042
-
mutant R472Q, 25°C, pH 10.0
0.181
-
mutant R472Q, 25°C, pH 6.0
0.0023
-
mutant R472Q, 25°C, pH 7.0
0.0035
-
mutant R472Q, 25°C, pH 8.0
0.013
-
mutant R472Q, 25°C, pH 8.5
0.016
-
mutant R472Q, 25°C, pH 9.0
0.045
-
mutant R472Q, 25°C, pH 9.5
0.0967
-
mutant R472Q, pH 7.6, 25°C
0.022
-
mutant V474M, 25°C, pH 10.0
0.04
-
mutant V474M, 25°C, pH 6.0
0.00046
-
mutant V474M, 25°C, pH 7.0
0.00134
-
mutant V474M, 25°C, pH 8.0
0.0032
-
mutant V474M, 25°C, pH 8.5
0.0354
-
mutant V474M, 25°C, pH 9.0
0.0144
-
mutant V474M, 25°C, pH 9.5
0.0319
-
mutant Y322N/R450M, 25°C, pH 7.0
8.6
-
mutant Y322N/R450M, 25°C, pH 8.5
11.73
-
mutant Y343F/R472Q, 25°C, pH 10.0
59.6
-
mutant Y343F/R472Q, 25°C, pH 6.0
0.0614
-
mutant Y343F/R472Q, 25°C, pH 7.0
0.0877
-
mutant Y343F/R472Q, 25°C, pH 8.0
0.2827
-
mutant Y343F/R472Q, 25°C, pH 8.5
0.712
-
mutant Y343F/R472Q, 25°C, pH 9.0
3.34
-
mutant Y343F/R472Q, 25°C, pH 9.5
39.9
-
mutant Y343N, 25°C, pH 10.0
12
-
mutant Y343N, 25°C, pH 6.0
0.0953
-
mutant Y343N, 25°C, pH 7.0
0.0947
-
mutant Y343N, 25°C, pH 8.0
0.297
-
mutant Y343N, 25°C, pH 8.5
0.85
-
mutant Y343N, 25°C, pH 9.0
2.46
-
mutant Y343N, 25°C, pH 9.5
9.37
-
mutant Y343N/R472M, 25°C, pH 6.0
16.8
-
mutant Y343N/R472M, 25°C, pH 7.0
4.64
-
mutant Y343N/R472M, 25°C, pH 8.0
19.28
-
mutant Y343N/R472M, 25°C, pH 8.5
42.99
-
mutant Y343N/R472M, 25°C, pH 9.0
85.64
-
mutant Y343N/R472m, 25°C, pH 9.5
208
-
mutant Y343N/R472M/V474M, 25°C, pH 10.0
418
-
mutant Y343N/R472M/V474M, 25°C, pH 6.0
1.1
-
mutant Y343N/R472M/V474M, 25°C, pH 7.0
1.42
-
mutant Y343N/R472M/V474M, 25°C, pH 8.0
2.14
-
mutant Y343N/R472M/V474M, 25°C, pH 8.5
14
-
mutant Y343N/R472M/V474M, 25°C, pH 9.0
55.5
-
mutant Y343N/R472M/V474M, 25°C, pH 9.5
111
-
mutant Y83A, pH 8.0, 25°C
0.0017
-
mutant Y83F, pH 8.0, 25°C
0.012
-
pH not specified in the publication, temperature not specified in the publication
0.0214
-
using ferricyanide as electron acceptor
0.0226
-
using ferricyanide as electron acceptor
0.0338
-
using ferricyanide as electron acceptor
wild type enzyme in 20 mM Tris at pH 6.0
0.00129
-
wild type enzyme in 20 mM Tris at pH 8.5
0.00825
-
wild type enzyme, pH 6.0
0.00129
-
wild type enzyme, pH 6.5
0.00162
-
wild type enzyme, pH 7.0
0.00272
-
wild type enzyme, pH 7.5
0.00339
-
wild type enzyme, pH 8.0
0.00435
-
wild type enzyme, pH 8.5
0.00825
-
wild type enzyme, pH 9.0
0.0221
-
wild type enzyme, pH 9.5
0.0671
-
wild-type, 25°C, pH 10.0
0.0529
-
wild-type, 25°C, pH 6.0
0.0013
-
wild-type, 25°C, pH 7.0
0.00133
-
wild-type, 25°C, pH 7.0
0.0027
-
wild-type, 25°C, pH 8.0
0.0043
-
wild-type, 25°C, pH 8.5
0.008
-
wild-type, 25°C, pH 8.5
0.0083
-
wild-type, 25°C, pH 9.0
0.022
-
wild-type, 25°C, pH 9.5
0.067
-
wild-type, pH 8.0, 25°C
0.011
-
with ferricanide, pH 6.0, 25°C, recombinant mutant C242S/C253S/C260S/C451S
0.0096
-
with ferricanide, pH 6.0, 25°C, recombinant selenomethionine-labeled mutant C242S/C253S/C260S/C451S
0.019
-
with ferricanide, pH 6.0, 25°C, recombinant wild-type enzyme
0.0121
-
with ferricanide, pH 7.1, 25°C, recombinant mutant C242S/C253S/C260S/C451S
0.0048
-
with ferricanide, pH 7.1, 25°C, recombinant mutant C242S/C253S/C260S/C451S
0.0062
-
with ferricanide, pH 7.1, 25°C, recombinant selenomethionine-labeled mutant C242S/C253S/C260S/C451S
0.0079
-
with ferricanide, pH 7.1, 25°C, recombinant selenomethionine-labeled mutant C242S/C253S/C260S/C451S
0.0082
-
with ferricanide, pH 7.1, 25°C, recombinant wild-type enzyme
0.004
-
with ferricanide, pH 7.1, 25°C, recombinant wild-type enzyme
0.0042
-
with ferricanide, pH 7.1, 25°C, recombinant mutant C242S/C253S/C260S/C451S
with ferricanide, pH 7.1, 25°C, recombinant selenomethionine-labeled mutant C242S/C253S/C260S/C451S
with ferricanide, pH 7.1, 25°C, recombinant wild-type enzyme
with ferricanide, pH 8.4, 25°C, recombinant mutant C242S/C253S/C260S/C451S
0.0107
-
with ferricanide, pH 8.4, 25°C, recombinant selenomethionine-labeled mutant C242S/C253S/C260S/C451S
0.0146
-
with ferricanide, pH 8.4, 25°C, recombinant wild-type enzyme
0.0166
-
with ferricanide, pH 8.9, 25°C, recombinant mutant C242S/C253S/C260S/C451S
0.0288
-
with ferricanide, pH 8.9, 25°C, recombinant selenomethionine-labeled mutant C242S/C253S/C260S/C451S
0.0174
-
with ferricanide, pH 8.9, 25°C, recombinant wild-type enzyme
0.0196
-
cosubstrates sulfide, ubiquinone-1, pH 7.5, 25°C
0.174
-
with coenzyme Q and sulfide as cosubstrates, at pH 8.0 and 25°C
0.174
-
at pH 7.4 and 37°C
0.22
-
enzyme in nanodiscs, at pH 6.8 and 25°C
0.26
-
solubilized enzyme, at pH 6.8 and 25°C
0.19
-
-
0.0087
-
63K enzyme, ferredoxin als electeron donor
0.021
-
63K enzyme, reduced methyl viologen as electron donor
0.011
-
69K enzyme, ferredoxin as electron donor
0.025
-
69K enzyme, reduced methyl viologen as electron donor
0.012
-
mutant G212S/L213T/Y214L/S217C/C220I/S221N, pH not specified in the publication, temperature not specified in the publication
0.0064
-
truncated protein, residues 19-731, pH not specified in the publication, temperature not specified in the publication
0.028
-
truncated protein, residues 76-679, pH not specified in the publication, temperature not specified in the publication
0.009
-
within a sulfite concentration range of 0.0014-0.3 mM and with a fixed reduced coenzyme F420 concentration of 0.04 mM
0.0122
-
pH 7.0, temperature not specified in the publication
0.012
-
-
0.13
-
reaction with cytochrome c
0.017
-
reaction with cytochrome c
0.071
-
reaction with cytochrome c
0.093
-
reaction with ferricyanide
0.073
-
reaction with ferricyanide
1.3
-
reaction with ferricyanide
1.5
-
reaction with ferricyanide
2.5
-
reaction with cytochrome c
reaction with ferricyanide
pH 6.0, temperature not specified in the publication
3.1
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Sulphur metabolism in Paracoccus denitrificans. Purification, properties and regulation of cysteinyl- and methionyl-tRNA synthetase
1977
Burnell, J.N.; Whatley, F.R.
Biochim. Biophys. Acta
481
266-278
Adenylosuccinate synthetase from Azotobacter vinelandii: purification, properties and steady-state kinetics
1977
Markham, G.D.; Reed, G.H.
Arch. Biochem. Biophys.
184
24-35
Enzymatic oxalate dcarboxylase in Aspergillus niger. II. Hydrogen peroxide formation and other characteristics of the oxalate decarboxylase
1968
Emiliani, E.; Riera, B.
Biochim. Biophys. Acta
167
414-421
-
Acetoacetate decarboxylase and a peptide with similar activity produced by Bacillus polymyxa
1986
Kimura, Y.; Yasuda, N.; Tanigaki-Nagae, H.; Nakabayashi, T.; Matsunga, H.M; Kimura, M.; Matsuoka, A.
Agric. Biol. Chem.
50
2509-2516
-
Acetoacetate decarboxylase from Clostridium acetobutylicum
1969
Westheimer, F.H.
Methods Enzymol.
14
231-241
Shingolipid base metabolism
1976
Shimojo, T.; Akino, T.; Miura, Y.; Schroepfer, G.J
J. Biol. Chem.
251
4448-4457
The beta-replacement-specific pyridoxal-P-dependent lyases
1984
Braunstein, A.E.; Goryachenkova, E.V.
Adv. Enzymol. Relat. Areas Mol. Biol.
56
1-89
Photoactivation of urocanase in Pseudomonas putida
1978
Hug, D.H.; O'Donnell, P.S.; Hunter, J.K.
J. Biol. Chem.
253
7622-7629
Thioglycolate, competitive inhibitor of urocanase
1978
Hug, D.H.; O'Donnell, P.S.; Hunter, J.K.
Biochem. Biophys. Res. Commun.
81
1435-1442
The purification and properties of urocanase from Pseudomonas testosteroni
1978
Hacking, A.J.; Bell, M.V.; Hassall, H.
Biochem. J.
171
41-50
Sulfhydryl groups in urocanase: Relationship to nicotinamide adenine dinucleotide binding
1980
O'Donnell, P.S.; Hug, D.H.; Hunter, J.K.
Arch. Biochem. Biophys.
202
242-249
Roles of cysteine sulfinate and transaminase on in vivo dark reversion of urocanase in Pseudomonas putida
1982
Hug, D.H.; Hunter, J.K.
J. Bacteriol.
151
813-818
Evidence against a temperature-dependent conformational change in urocanase from Pseudomonas putida
1985
Hug, D.H.; O'Donnell, P.S.
Biochim. Biophys. Acta
830
101-104
Proposal for the mechanism of action of urocanase. Interference from the inhibition by 2-methylurocanate
1987
Gerlinger, E.; Retey, J.
Z. Naturforsch. C
42
349-352
Photo- and thermal-activation of bovine liver urocanase
1988
Hug, D.H.; Hunter, J.K.; Bedell, B.A.
Photochem. Photobiol.
48
763-766
Thermal activation of photoactivatable urocanase from Pseudomonas putida
1989
O'Donnell, P.S.; Hug, D.H.
J. Photochem. Photobiol. B, Biol.
3
429-435
-
Activation and inhibition of bovine carbonic anhydrase III by dianions
1961
Rowlett, R.S.; Gargiulo III, N.J.; Santoli, F.A.; Jackson, J.M.; Corbett, A.H.
J. Biol. Chem.
266
93s-941
Purification and properties of glycerol dehydrase
1970
Schneider, Z.; Larsen, E.G.; Jacobson, G.; Johnson, B.C.; Pawelkiewicz, J.
J. Biol. Chem.
245
3388-3396
-
Histidine ammonia-lyase (Pseudomonas)
1971
Rechler, M.M.; Tabor, H.
Methods Enzymol.
17B
63-69
1-amino-2-imidazol-4 -ylethylphosphonic acid is a potent reversible inhibitor of Pseudomonas putida histidine ammonia-lyase
1994
Hernandez, D.; Phillips, A.T.; Zon, J.
Biochem. Mol. Biol. Int.
32
189-194
Ser-143 is an essential active site residue in histidine ammonia-lyase of Pseudomonas putida
1994
Hernandez, D.; Phillips, A.T.
Biochem. Biophys. Res. Commun.
201
1433-1438
The pyridoxal-phosphate-dependent enzymes exclusively catalyzing reactions of beta-replacement
1976
Braunstein, A.E.; Goryachenkova, E.V.
Biochimie
58
5-17
Reactions catalysed by cysteine lyase from the yolk sac of chicken embryo
1969
Tolosa, E.A.; Chepurnova, N.K.; Khomutov, R.M.; Severin, E.S.
Biochim. Biophys. Acta
171
369-371
Sulphur metabolism in Paracoccus denitrificans. Purification, properties and regulation of serine transacetylase, O-acetylserine sulphydrylase and beta-cystathionase
1977
Burnell, J.N.; Whatley, F.R.
Biochim. Biophys. Acta
481
246-265
-
Streptococcal proteinase
1971
Liu, T.Y.; Elliott, S.D.
The Enzymes, 3rd Ed. (Boyer, P. D. , ed. )
3
609-647
On the mechanism of action of streptococcal proteinase. I. Active-site titration
1973
Kortt, A.A.; Liu, T.Y.
Biochemistry
12
320-327
Yeast PAPS reductase: properties and requirements of the purified enzyme
1988
Schwenn, J.D.; Krone, F.A.; Husmann, K.
Arch. Microbiol.
150
313-319
Reaction mechanism of thioredoxin:3'-phospho-adenylylsulfate reductase investigated by site-directed mutagenesis
1995
Berendt, U.; Haverkamp, T.; Prior, A.; Schwenn, J.D.
Eur. J. Biochem.
233
347-356
Bovine milk acid phosphatase. I. Some kinetic studies and other properties using a partially purified preparation
1973
Andrews, A.T.; Pallavicini, C.
Biochim. Biophys. Acta
321
197-209
Natural killer cell cytolytic granule-associated enzymes. I. Purification, characterization, and analyis of function of an enzyme with sulfatase activity
1991
Amoscato, A.A.; Brumfield, A.M.; Sansoni, S.B.; Herberman, R.B.; Chambers, W.H.
J. Immunol.
147
950-958
N-Acetylglucosamine-6-sulfate sulfatase from human urine
1979
Basner, R.; Kresse, H.; von Figura, K.
J. Biol. Chem.
254
1151-1158
Purification and properties of N-acetylgalactosamine 6-sulphate sulphatase from human placenta
1979
Gloessl, J.; Truppe, W.; Kresse, H.
Biochem. J.
181
37-46
Isolation and characterization of a new enzyme choline sulfatase
1961
Takebe, I.
J. Biochem.
50
245-255
Regulation of choline sulphatase synthesis and activity in Aspergillus nidulans
1968
Scott, J.M.; Spencer, B.
Biochem. J.
106
471-477
Arylsulfatases A and B from human liver
1978
Fluharty, A.L.; Edmond, J.
Methods Enzymol.
50
537-547
Purification and properties of arylsulphatase A from chicken brain
1972
Farooqui, A.A.; Bachhawat, B.K.
Biochem. J.
126
1025-1033
Sulphatases, lysosomes and disease
1976
Roy, A.B.
Aust. J. Exp. Biol. Med. Sci.
54
111-135
S-Adenosylhomocysteine hydrolase from rat liver. Purification and some properties
1981
Fujioka, M.; Takata, Y.
J. Biol. Chem.
256
1631-1635
A glucosamine O,N-disulfate O-sulfohydrolase with a probable role in mammalian catabolism of heparan sulfate
1980
Weissmann, B.; Chao, H.; Chow, P.
Biochem. Biophys. Res. Commun.
97
827-833
Regulation of AMP nucleosidase in Azotobacter vinelandii
1967
Yoshino, M.; Ogasawara, N.; Suzuki, N.; Kotake, Y.
Biochim. Biophys. Acta
146
620-622
Enzymes of vitamin B6 degradation. Purification and properties of two N-acetylamidohydrolases
1985
Huynh, M.S.; Snell, E.E.
J. Biol. Chem.
260
2379-2383
Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968)
1997
Oldfield, C.; Pogrebinsky, O.; Simmonds, J.; Olson, E.S.; Kulpa, C.F.
Microbiology
143
2961-2973
-
Kinetic properties of cytosine deaminase from Serratia marcescens
1976
Yu, T.; Sakai, T.; Omata, S.
Agric. Biol. Chem.
40
543-549
Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1F0-type enzyme
1994
Reidlinger, J.; Muller, V.
Eur. J. Biochem.
223
275-283
An Na+-pumping V1V0-ATPase complex in the thermophilic bacterium Clostridium fervidus
1997
Höner zu Bentrup, K.; Ubbink-Kok, T.; Lolkema, J.S.; Konings, W.N.
J. Bacteriol.
179
1274-1279
Interaction of mono- and dianions with cyanase: evidence for apparent half-site binding
1987
Anderson, P.M.; Johnson, W.V.; Endrizzi, J.A.; Little, R.M.; Korte, J.J.
Biochemistry
26
3938-3943
The enzyme cleavage of the carbon-phosphorous bond: purification and properties of phosphonatase
1970
La Nauze, J.M.; Rosenberg, H.; Shaw, D.C.
Biochim. Biophys. Acta
212
332-350
-
Malate dehydrogenases
1975
Banaszak, L.J.; Bradshaw, R.A.
The Enzymes, 3rd Ed. (Boyer, P. D. , ed. )
11
369-396
Purification and properties of mitochondrial malate dehydrogenase from unfertilized eggs of the sea urchin, Anthocidaris crassispina
1984
Okabayashi, K.; Nakano, E.
J. Biochem.
95
1625-1632
Malate dehydrogenase in Zea mays: properties and inhibition by sulfite
1974
Ziegler, I.
Biochim. Biophys. Acta
364
28-37
Purification and characterization of a TPN-dependent pyridoxol dehydrogenase from brewers yeast
1961
Holzer, H.; Schneider, S.
Biochim. Biophys. Acta
48
71-76
The metabolism of acetol phosphate. II. 1,2-Propanediol-1-phosphate dehydrogenase
1959
Sellinger, O.Z.; Miller, O.N.
J. Biol. Chem.
234
1641-1646
-
1,2-Propanediol phosphate (PDP) dehydrogenase
1966
Miller, O.N.
Methods Enzymol.
9
336-338
-
Metal-containing flavoprotein dehydrogenases
1976
Hatefi, Y.; Stiggall, D.L.
The Enzymes, 3rd Ed. (Boyer, P. D. , ed. )
13
175-297
Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88
2001
Costas, A.M.G.; White, A.K.; Metcalf, W.W.
J. Biol. Chem.
276
17429-17436
-
Action of sulphite on the substrate kinetics of chloroplastic NADP-dependent glyceraldehyde-3-phosphate dehydrogenase
1976
Ziegler, I.; Marewa, A.; Schoepe, E.
Phytochemistry
15
1627-1632
-
delta1-piperideine-6-carboxylic acid and alpha-aminoadipic acid delta-semialdehyde
1971
Rodwell, V.W.
Methods Enzymol.
17B
188-199
Metabolism of pipecolic acid in a Pseudomonas species. 3. L-alpha-aminoadipate delta-semialdehyde:nicotinamide adenine dinucleotide oxidoreductase
1966
Calvert, A.F.; Rodwell, V.W.
J. Biol. Chem.
241
409-414
Nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum: purification and properties
1974
Andreesen, J.R.; Ljungdahl, L.G.
J. Bacteriol.
120
6-14
Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough
2000
Pereira, I.A.C.; LeGall, J.; Xavier, A.V.; Teixeira, M.
Biochim. Biophys. Acta
1481
119-130
Structural and kinetic properties of adenylyl sulfate reductase from Catharanthus roseus cell cultures
1999
Prior, A.; Uhrig, J.F.; Heins, L.; Wiesmann, A.; Lillig, C.H.; Stoltze, C.; Soll, J.; Schwenn, J.D.
Biochim. Biophys. Acta
1430
25-38
Purification and properties of adenosine 5'-phosphosulphate sulphotransferase from Euglena
1991
Li, J.; Schiff, J.A.
Biochem. J.
274
355-360
Kinetic and crystallographic studies on the active site Arg289Lys mutant of flavocytochrome b2 (yeast L-lactate dehydrogenase)
2000
Mowat, C.G.; Beaudoin, I.; Durley, R.C.; Barton, J.D.; Pike, A.D.; Chen, Z.W.; Reid, G.A.; Chapman, S.K.; Mathews, F.S.; Lederer, F.
Biochemistry
39
3266-3275
The catalytic role of tyrosine 254 in flavocytochrome b2 (L-lactate dehydrogenase from baker's yeast). Comparison between the Y254F and Y254L mutant proteins
2001
Gondry, M.; Duboist, J.; Terrier, M.; Lederer, F.
Eur. J. Biochem.
268
4918-4927
Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway
1998
Magnuson, J.K.; Stern, R.V.; Gossett, J.M.; Zinder, S.H.; Burris, D.R.
Appl. Environ. Microbiol.
64
1270-1275
Biosynthesis of ascorbate in yeast. Purification of L-galactono-1,4-lactone oxidase with properties different from mammalian L-gulonolactone oxidase
1982
Bleeg, H.S.; Christensen, F.
Eur. J. Biochem.
127
391-396
Purification and properties of nitrite reductase from Escherichia coli K12
1978
Coleman, K.J.; Cornish-Bowden, A.; Cole, J.A.
Biochem. J.
175
483-493
Preparation and some properties of homogeneous Neurospora crassa assimilatory NADPH-nitrite reductase
1978
Greenbaum, P.; Prodouz, K.N.; Garrett, R.H.
Biochim. Biophys. Acta
526
52-64
Characterization of the flavoprotein moieties of NADPH-sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH-cytochrome P-450 reductase
1989
Ostrowski, J.; Barber, M.J.; Rueger, D.C.; Miller, B.E.; Siegel, L.M.; Kredich, N.M.
J. Biol. Chem.
264
15796-15808
Studies on yeast sulfite reductase. IV. Structure and steady-state kinetics
1982
Kobayashi, K.; Yoshimoto, A.
Biochim. Biophys. Acta
705
348-356
Escherichia coli sulfite reductase hemoprotein subunit. Prosthetic groups, catalytic parameters, and ligand complexes
1982
Siegel, L.M.; Rueger, D.C.; Barber, M.J.; Krueger, R.J.; Orme-Johnson, N.R.; Orme-Johnson, W.H.
J. Biol. Chem.
257
6343-6350
-
Sulfite formation by wine yeasts III. Properties of sulfite reductase.
1976
Dott, W.; Truper, H.G.
Arch. Microbiol.
108
99-104
Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria. 3. The Escherichia coli hemoflavoprotein: catalytic parameters and the sequence of electron flow
1974
Siegel, L.M.; Davis, P.S.; Kamin, H.
J. Biol. Chem.
249
1572-1586
-
TPNH-Sulfite reductase (Escherichia coli)
1971
Siegel, L.M.; Kamin, H.
Methods Enzymol.
17B
539-545
-
Sulfite reductase (bakers¦ yeast)
1971
Yoshimoto, A.; Naiki, N.; Sato, R.
Methods Enzymol.
17B
520-528
Studies on yeast sulfite reductase. I. Purification and characterization
1968
Yoshimoto, A.; Sato, R.
Biochim. Biophys. Acta
153
555-575
Sulfite oxidase from chicken liver. Further characterization of the role of carboxyl groups in the reaction with cytochrome c
1988
Ritzman, M.; Bosshard, H.R.
Eur. J. Biochem.
172
377-381
Effect of sulfite on the energy metabolism of mammalian tissues in correlation to sulfite oxidase activity
1985
Beck-Speier, I.; Hinze, H.; Hozer, H.
Biochim. Biophys. Acta
841
81-89
Comparative immunochemical studies of sulfite oxidases of vertebrate livers
1982
Kuwahara, T.; Yoshimoto, I.; Ito, A.
J. Biochem.
92
1925-1931
Sulfite oxidase from Merluccius productus
1980
Onoue, Y.
Biochim. Biophys. Acta
615
48-58
Studies on the composition of the mitochondrial sulfite oxidase system
1980
Shibuya, A.; Horie, S.
J. Biochem.
87
1773-1784
The domains of rat liver sulfite oxidase. Proteolytic separation and characterization
1978
Southerland, W.M.; Winge, D.R.; Rajagopalan, K.V.
J. Biol. Chem.
253
8747-8752
Distribution of hepatic sulfite oxidase among subcellular organelles and its intraorganelle localization
1977
Ito, A.; Kuwahara, T.; Mitsunari, Y.; Omura, T.
J. Biochem.
81
1531-1541
The properties of sulfite oxidation in perfused rat liver; interaction of sulfite oxidase with the mitochondrial respiratory chain
1975
Oshino, N.; Chance, B.
Arch. Biochem. Biophys.
170
514-528
-
Molybdenum iron-sulfur flavin hydroxylases and related enzymes
1975
Bray, R.C.
The Enzymes, 3rd Ed. (Boyer, P. D. , ed. )
12
299-419
Hepatic sulfite oxidase. Congruency in mitochondria of prosthetic groups and activity
1972
Cohen, H.J.
J. Biol. Chem.
247
7759-7766
Purification and properties of sulfite oxidase from chicken liver. Presence of molybdenum in sulfite oxidase from diverse sources
1972
Kessler, D.L.; Rajagopalan, K.V.
J. Biol. Chem.
247
6566-6573
Hepatic sulfite oxidase. Purification and properties
1971
Cohen, H.J.; Fridovich, I.
J. Biol. Chem.
246
359-366
Purification and properties of hepatic sulfite oxidase
1961
MacLeod, R.M.; Farkas, W.; Fridovich, I.; Handler, P.
J. Biol. Chem.
236
1841-1846
Chicken liver sulfite oxidase. Kinetics of reduction by laser-photoreduced flavins and intramolecular electron transfer
1988
Kipke, C.A.; Cusanovich, M.A.; Tolin, G.; Sunde, R.A.; Enemark, J.H.
Biochemistry
27
2918-2926
-
Isolation, purification and partial characterization of sulfite oxidase from Malva sylvestris
1997
Ganai, B.A.; Masood, A.; Baig, M.A.
Phytochemistry
45
879-880
-
Evidence for sulfite oxidase activity in spinach leaves
1995
Jolivet, P.; Bergeron, E.; Meunier, J.C.
Phytochemistry
40
667-672
-
Electrochemical study of the rate of activation of the molybdoheme protein sulfite oxidase by organic electron acceptors
1993
Coury, L.A., Jr.; Yang, L.; Murray, R.W.
Anal. Chem.
65
242-246
Human sulfite oxidase R160Q: identification of the mutation in a sulfite oxidase-deficient patient and expression characterization of the mutant enzyme
1998
Garrett, R.M.; Johnson, J.L.; Graf, T.N.; Feigenbaum, A.; Rajagopalan, K.V.
Proc. Natl. Acad. Sci. USA
95
6394-6398
Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase: a new player in plant sulfur metabolism
2001
Eilers, T.; Schwarz, G.; Brinkmann, H.; Witt, C.; Richter, T.; Nieder, J.; Koch, B.; Hille, R.; Hansch, R.; Mendel, R.R.
J. Biol. Chem.
276
46989-46994
Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro
2001
Sanda, S.; Leustek, T.; Theisen, M.J.; Garavito, R.M.; Benning, C.
J. Biol. Chem.
276
3941-3946
Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sufolipid headgroup donor UDP-sulfoquinovose
1999
Mulichak, A.M.; Theisen, M.J.; Essigmann, B.; Benning, C.; Garavito, R.M.
Proc. Natl. Acad. Sci. USA
96
13097-13102
Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliane
1998
Essigmann, B.; Guler, S.; Narang, R.A.; Linke, D.; Benning, C.
Proc. Natl. Acad. Sci. USA
95
1950-1955
Prediction of the active-site structure and NAD+ binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis
1999
Essigmann, B.; Hespenheide, B.M.; Kuhn, L.A.; Benning, C.
Arch. Biochem. Biophys.
369
30-41
Purification and characterization of alpha-amylase from Bacillus licheniformis CUMC305
1983
Krishnan, T.; Chandra, A.K.
Appl. Environ. Microbiol.
46
430-437
Immunological cross-reactivities of adenosine-5'-phosphate reductases from sulfate-reducing and sulfide-oxidizing bacteria
1991
Odom, J.M.; Jessie, K.; Knodel, E.; Emptage, M.
Appl. Environ. Microbiol.
57
727-733
The active centers of adenylylsulfate reductase from Desulfovibrio gigas. Characterization and spectroscopic studies
1990
Lampreia, J.; Moura, I.; Teixeira, M.; Peck, H.D.; LeGall, J.; Huynh, B.H.; Moura, J.J.G.
Eur. J. Biochem.
188
653-664
-
Thermotolerance of adenylsulfate reductase from Thiobacillus denitrificans
1989
Taylor, B.F.
FEMS Microbiol. Lett.
59
351-354
-
Adenylylsulphate reductase in a dissimilatory sulphate-reducing archaebacterium
1988
Speich, N.; Trueper, H.G.
J. Gen. Microbiol.
134
1419-1425
-
Adenylylsulfate reductase in some new sulfate-reducing bacteria
1984
Stille, W.; Trueper, H.G.
Arch. Microbiol.
137
145-150
-
Substrate phosphorylation in Chlorobium vibrioforme f. sp. thiosulfatophilum
1983
Khanna, S.; Nicholas, D.J.D.
J. Gen. Microbiol.
129
1365-1370
Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-A resolution
2002
Fritz, G.; Roth, A.; Schiffer, A.; Buchert, T.; Bourenkov, G.; Bartunik, H.D.; Huber, H.; Stetter, K.O.; Kroneck, P.M.H.; Ermler, U.
Proc. Natl. Acad. Sci. USA
99
1836-1841
-
APS-reductase activity in the chromophores of Chromatium vinosum strain D
1979
Schwenn, J.D.; Biere, M.
FEMS Microbiol. Lett.
6
19-22
A study on the reaction mechanism of adenosine 5'-phosphosulfate reductase from Thiobacillus thioparus, an iron-sulfur flavoprotein
1977
Adachi, K.; Suzuki, I.
Can. J. Microbiol.
55
91-98
Some physical and kinetic properties of adenylyl sulfate reductase from Desulfovibrio vulgaris
1975
Bramlett, R.N.; Peck, H.D.
J. Biol. Chem.
250
2979-2986
-
Adenylylsulfate reductase of Chlorobium limicola
1974
Kirchhoff, J.; Trueper, H.G.
Arch. Microbiol.
100
115-120
On the mechanism of adenylyl sulfate reductase for the sulfate-reducing bacterium , Desulfovibrio vulgaris
1972
Peck, H.D.; Bramlett, R.; DerVartanian, D.V.
Z. Naturforsch. B
27
1084-1086
Purification and properties of adenylyl sulfate reductase from phototrophic sulfur bacterium, Thiocapsa roseopersicina
1971
Trueper, H.G.; Rogers, L.A.
J. Bacteriol.
108
1112-1121
Identification of a new class of 5'-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria
2000
Bick, J.A.; Dennis, J.J.; Zylstra, G.J.; Nowack, J.; Leustek, T.
J. Bacteriol.
182
135-142
The function of the [4Fe-4S] clusters and FAD in bacterial and archaeal adenylylsulfate reductases: evidence for flavin-catalyzed reduction of adenosine 5'-phosphosulfate
2002
Fritz, G.; Buchert, T.; Kroneck, P.M.H.
J. Biol. Chem.
277
26066-26073
Sulfite reductase and APS reductase from Archaeoglobus fulgidus
2001
Dahl, C.; Truper, H.G.
Methods Enzymol.
331
427-441
-
Adenylylsulfate reductases from thiobacilli
1994
Taylor, B.F.
Methods Enzymol.
243
393-400
-
Adenylylsulfate reductases from sulfate-reducing bacteria
1994
Lampreia, J.; Pereira, A.S.; Moura, J.J.G.
Methods Enzymol.
243
241-260
Preparation of labeled adensosine 5'-phosphosulfate using APS reductase from Thiobacillus denitrificans
1971
Adams, C.A.; Warnes, G.M.; Nicholas, D.J.D.
Anal. Biochem.
42
207-213
Characterization of a dissimilatory-type sulfite reductase, desulfoviridin, from Desulfovibrio africanus Benghazi
1985
Seki, Y.; Nagai, Y.; Ishimoto, M.
J. Biochem.
98
1535-1543
Characterization of a new type of dissimilatory sulfite reductase present in Thermodesulfobacterium commune
1983
Hatchikian, E.C.; Zeikus, J.G.
J. Bacteriol.
153
1211-1220
Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough). Purification, characterization, kinetics and EPR studies
1994
Wolfe, B.M.; Lui, S.M.; Cowan, J.A.
Eur. J. Biochem.
223
79-89
-
Properties and role of sulphite:cytochrome c oxidoreductase purified from Thiobacillus versutus (A2)
1984
Lu, W.P.; Kelly, D.P.
J. Gen. Microbiol.
130
1683-1692
-
Purification and some properties of two principal enzymes of the thiosulphate-oxidizing multi-enzyme system from Thiobacillus A2
1983
Lu, W.P.; Kelly, D.P.
J. Gen. Microbiol.
129
3549-3564
-
Partial purification and resolution of a thiosulfate-oxidizing system from Thiobacillus A2
1983
Lu, W.P.; Kelly, D.P.
J. Gen. Microbiol.
129
1673-1681
-
Resolution of a membrane-associated thiosulfate-oxidizing complex of Thiobacillus novellus
1977
Oh, J.K.; Suzuki, I.
J. Gen. Microbiol.
99
413-423
-
A comparative study on the redox reactions of cytochrome c with certain enzymes
1975
Yamanaka, T.
J. Biochem.
77
493-499
-
Purification and properties of sulfite:cytochrome c oxidoreductase from Thiobacillus novellus
1966
Charles, A.M.; Suzuki, I.
Biochim. Biophys. Acta
128
522-534
-
Properties of an enzymatic complex active in sulfite and thiosulfate oxidation by Rhodotorula sp.
1985
Kurek, E.J.
Arch. Microbiol.
143
277-282
Purification of Thiobacillus novellus sulfite oxidase. Evidence for the presence of heme and molybdenum
1983
Toghrol, F.; Southerland, W.M.
J. Biol. Chem.
258
6762-6766
Mechanism of thiosulfate oxidation by Thiobacillus novellus
1966
Charles, A.M.; Suzuki, I.
Biochim. Biophys. Acta
128
510-521
Enzymes involved in the metabolism of thiosulfate by Thiobacillus thioparus. I. Survey of enzymes and properties of sulfite: cytochrome c oxidoreductase
1970
Lyric, R.M.; Suzuki, I.
Can. J. Biochem.
48
334-343
The sulfite oxidase of Thiobacillus ferrooxidans (Ferrobacillus ferrooxidans)
1971
Vestal, J.R.; Lundgren, D.G.
Can. J. Biochem.
49
1125-1130
-
Purification of sulphite-cytochrome c reductase of Thiobacillus novellus and reconstitution of its sulphite oxidase system with the purified constituents
1981
Yamanaka, T.; Yoshioka, T.; Kimura, K.
Plant Cell Physiol.
22
613-622
Characterization of a new type of sulfite dehydrogenase from Paracoccus pantotrophus GB17
2000
Quentmeier, A.; Kraft, R.; Kostka, S.; Klockenkamper, R.; Friedrich, C.G.
Arch. Microbiol.
173
117-125
Sulfite:cytochrome c oxidoreductase from Thiobacillus novellus. Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family
2000
Kappler, U.; Bennett, B.; Rethmeier, J.; Schwarz, G.; Deutzmann, R.; McEwan, A.G.; Dahl, C.
J. Biol. Chem.
275
13202-13212
Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation
1997
Wodara, C.; Bardischewsky, F.; Friedrich, C.G.
J. Bacteriol.
179
5014-5023
Enzymology and molecular biology of prokaryotic sulfite oxidation
2001
Kappler, U.; Dahl, C.
FEMS Microbiol. Lett.
203
1-9
-
Purification and properties of membrane-bound sulfite dehydrogenase from Thiobacillus thiooxidans JCM7814
1995
Nakamura, K.; Yoshikawa, H.; Okubo, S.; Kurosawa, H.; Amano, Y.
Biosci. Biotechnol. Biochem.
59
11-15
Partial purification and characterization of thiosulfate oxidase from Pseudomonas aeruginosa
1979
Schook, L.B.; Berk, R.S.
J. Bacteriol.
140
306-308
-
A high potential nonheme iron protein (HiPIP)-Linked, thiosulfate-oxidizing enzyme derived from Chromatium vinosum
1979
Fukumori, Y.; Yamanaka, T.
Curr. Microbiol.
3
117-120
Metabolism of thiosulfate and tetrathionate by heterotrophic bacteria from soil
1967
Trudinger, P.A.
J. Bacteriol.
93
550-559
Mechanisms of inorganic oxidation and energy coupling
1974
Suzuki, I.
Annu. Rev. Microbiol.
28
85-101
Thiosulfate oxidase from an Alcaligenes grown on mercaptosuccinate
1972
Hall, M.R.; Berk, R.S.
Can. J. Microbiol.
18
235-245
Enzymes involved in the metabolism of thiosulfate by Thiobacillus thioparus. 3. Properties of thiosulfate-oxidizing enzyme and proposed pathway of thiosulfate oxidation
1970
Lyric, R.M.; Suzuki, I.
Can. J. Biochem.
48
355-363
-
Purification and partial characterization of thiosulfate dehydrogenase from Thiobacillus acidophilus
1993
Meulenberg, R.; Pronk, J.T.; Hazeu, W.; van Dijken, J.P.; Frank, J.; Bos, P.; Kuenen, J.G.
J. Gen. Microbiol.
139
2033-2039
Purification and characterization of a periplasmic thiosulfate dehydrogenase from the obligately autotrophic Thiobacillus sp. W5
1996
Visser, J.M.; De Jong, G.A.H.; Robertson, L.A.; Kuenen, J.G.
Arch. Microbiol.
166
372-378
Purification and some properties of the nitrite reductase from the cyanobacterium Phormidium laminosum
1990
Arizmendi, J.M.; Serra, J.L.
Biochim. Biophys. Acta
1040
237-244
A pyridine nucleotide-hydroxylamine reductase from Neurospora
1955
Zucker, M.; Nason, A.
J. Biol. Chem.
213
463-478
Characterization of the sulfite and hydroxylamine reductases of Neurospora crassa
1965
Siegel, L.M.; Leinweber, F.J.; Monty, K.J.
J. Biol. Chem.
240
2705-2711
Purification and characterization of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum
1984
Harrison, G.; Curle, C.; Laishley, E.J.
Arch. Microbiol.
138
72-78
Nitrate reductase from Achromobacter fischeri. Purification and properties: Function of flavines and cytochrome
1957
Sadana, J.C.; McElroy, W.D.
Arch. Biochem. Biophys.
67
16-34
-
Isolation and partial characterization of homogeneous ferredoxin-sulfite reductase from a red alga, Porphyra yezoensis
1989
Koguchi, O.; Tamura, G.
Agric. Biol. Chem.
53
1653-1662
-
Purification and partial characterization of ferredoxin-sulfite reductase from rape leaves
1988
Koguchi, O.; Takahashi, H.; Tamura, G.
Agric. Biol. Chem.
52
1867-1868
-
Ferredoxin-sulfite reductase from a cyanobacterium, Spirulina platensis
1988
Koguchi, O.; Tamura, G.
Agric. Biol. Chem.
52
373-380
-
Ferredoxin-sulfite reductase from spinach
1980
Aketagawa, J.; Tamura, G.
Agric. Biol. Chem.
44
2371-2378
Localization of enzymes of assimilatory sulfate reduction in pea roots
1989
Brunold, C.; Suter, M.
Planta
179
228-234
-
Reduction of S-sulfoglutathione by cyanobacterial ferredoxin-sulfite reductase
1989
Koguchi, O.; Tamura, G.
Agric. Biol. Chem.
53
783-788
-
The interaction of ferredoxin-linked sulfite reductase with ferredoxin
1987
Hirasawa, M.; Boyer, J.M.; Gray, K.A.; Davis, D.J.; Knaff, D.B.
FEBS Lett.
221
343-348
Spinach siroheme enzymes: Isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductase
1982
Krueger, R.J.; Siegel, L.M.
Biochemistry
21
2892-2904
EPR spectroscopy of the iron-sulphur cluster and sirohaem in the dissimilatory sulphite reductase (desulphoviridin) from Desulphovibrio gigas
1979
Hall, M.H.; Prince, R.H.; Cammack, R.
Biochim. Biophys. Acta
581
27-33
-
The occurrence of ferredoxin-sulfite reductase in barley roots
1979
Tamura, G.; Hosoi, T.
Agric. Biol. Chem.
43
1601-1602
-
Ferredoxin-dependent sulfite reductase fron spinach leaves
1978
Tamura, G.; Hosoi, T.; Aketagawa, J.
Agric. Biol. Chem.
42
2165-2167
-
Methyl viologen- and ferredoxin-linked sulfite reductase (spinach)
1971
Asada, K.; Tamura, G.; Bandurski, R.S.
Methods Enzymol.
17B
528-539
A ferredoxin-linked sulfite reductase from Clostridium pasteurianum
1971
Laishley, L.E.J.; Lin, P.M.; Peck, H.D.
Can. J. Microbiol.
17
889-895
-
Purification and characterization of ferredoxin-sulfite reductases from leek (Allium tuberosum) leaves
1996
Takahashi, S.; Yoshida, Y.; Tamura, G.
J. Plant Res.
109
45-52
-
Ferredoxin-linked sulfite reductase from turnip roots
1996
Takahashi, S.; Sakata, T.; Tamura, G.
Biosci. Biotechnol. Biochem.
60
142-144
Purification and characterization of ferredoxin-sulfite reductase from turnip (Brassica rapa) leaves and comparison of properties with ferredoxin-sulfite reductase from turnip roots
1997
Takahashi, S.; Yip, W.C.; Tamura, G.
Biosci. Biotechnol. Biochem.
61
1486-1490
Comparison of the electrostatic binding sites on the surface of ferredoxin for two ferredoxin-dependent enzymes, ferredoxin-NADP+ reductase and sulfite reductase
1999
Akashi, T.; Matsumura, T.; Ideguchi, T.; Iwakiri, K.I.; Kawakatsu, T.; Taniguchi, I.; Hase, T.
J. Biol. Chem.
274
29399-29405
Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs of maize
2000
Yonekura-Sakakibara, K.; Onda, Y.; Ashikari, T.; Tanaka, Y.; Kusumi, T.; Hase, T.
Plant Physiol.
122
887-894
The DNA-compacting protein DCP68 from soybean chloroplasts is ferredoxin:sulfite reductase and co-localizes with the organellar nucleoid
2002
Chi-Ham, C.L.; Keaton, M.A.; Cannon, G.C.; Heinhorst, S.
Plant Mol. Biol.
49
621-631
The irreversible inactivation of two copper-dependent monooxygenases by sulfite: peptidylglycine alpha-amidating enzyme and dopamine beta-monooxygenase
1995
Merkler, D.J.; Kulathila, R.; Francisco, W.A.; Ash, D.E.; Bell, J.
FEBS Lett.
366
165-169
Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli
1999
Eichhorn, E.; van der Ploeg, J.R.; Leisinger, T.
J. Biol. Chem.
274
26639-26646
4-Sulphobenzoate 3,4-dioxygenase. Purification and properties of a desulphonative two-component enzyme system from Comamonas testosteroni T-2
1991
Locher, H.H.; Leisinger, T.; Cook, A.M.
Biochem. J.
274
833-842
-
Evidence for the existence of a sulfur oxygenase in Sulfolobus brierleyi
1986
Emmel, T.; Sand, W.; König, W.; Bock, E.
J. Gen. Microbiol.
132
3415-3420
-
Metabolic changes in Thiobacillus denitrificans accompanying the transition from aerobic to anaerobic growth in continuous chemostat culture
1978
Justin, P.; Kelly, D.P.
J. Gen. Microbiol.
107
131-137
The initial product and properties of the sulfur-oxidizing enzyme of thiobacilli
1966
Suzuki, I.; Silver, M.
Biochim. Biophys. Acta
122
22-33
-
Inhibition of sulfur oxidizing activity by nickel ion in Thiobacillus thiooxidans NB1-3 isolated from the corroded concrete
1997
Nogami, Y.; Maeda, T.; Negishi, A.; Sugio, T.
Biosci. Biotechnol. Biochem.
61
1373-1375
The exotoxin P. aeruginosa: a proenzyme having an unusual mode of activation
1978
Leppla, S.H.; Martin, O.C.; Muehl, L.A.
Biochem. Biophys. Res. Commun.
81
532-538
Reduction of adenosine-5'-phosphosulfate instead of 3'-phosphoadenosine-5'-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae
1999
Abola, A.P.; Willits, M.G.; Wang, R.C.; Long, S.R.
J. Bacteriol.
181
5280-5287
5'-Adenosinephosphosulfate lies at a metabolic branch point in mycobacteria
2002
Williams, S.J.; Senaratne, R.H.; Mougous, J.D.; Riley, L.W.; Bertozzi, C.R.
J. Biol. Chem.
277
32606-32615
Purification and properties of sulfoactetate sulfo-lyase, a thiamine pyrophosphate-dependent enzyme forming sulfite and acetate
1975
Kondo, H.; Ishimoto, M.
J. Biochem.
78
317-325
Studies on the nature of the enzymic conversion of 6,7-dimethyl-8-ribityllumazine to riboflavin
1963
Plaut, G.W.E.
J. Biol. Chem.
238
2225-2243
Riboflavin synthases of Bacillus subtilis. Purification and properties
1980
Bacher, A.; Baur, R.; Eggers, U.; Harders, H.D.; Otto, M.K.; Schnepple, H.
J. Biol. Chem.
255
632-637
Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes
2002
Graham, D.E.; Xu, H.; White, R.H.
J. Biol. Chem.
277
13421-13429
Properties of pyrophosphate:D-fructose-6-phosphate phosphotransferase from endosperm of developing wheat (Triticum aestivum L.) grains
1989
Mahajan, R.; Singh, R.
Plant Physiol.
91
421-426
-
Creatine kinase
1983
Gerhardt, W.
Methods Enzym. Anal. ,3rd Ed. (Bergmeyer,H. U. ,ed. )
3
508-510
Regulation of inorganic sulfate activation in filamentous fungi. Allosteric inhibition of ATP sulfurylase by 3-phosphoadenosine-5-phosphosulfate
1990
Renosto, F.; Martin, R.L.; Wailes, L.M.; Daley, L.A.; Segel, I.H.
J. Biol. Chem.
265
10300-10308
Rhodanese
1973
Westley, J.
Adv. Enzymol. Relat. Areas Mol. Biol.
39
327-368
Thiosulfate: cyanide sulfurtransferase (rhodanese)
1981
Westley, J.
Methods Enzymol.
77
285-291
Inhibition of rat liver rhodanese by di-, tricarboxylic, and alpha-keto acids
1975
Oi, S.
J. Biochem.
78
825-834
Purification and characterization of rhodanese from Acinetobacter calcoaceticus
1980
Vandenbergh, P.A.; Berk, R.S.
Can. J. Microbiol.
26
281-286
-
Properties of a soluble thiosulfate sulfur transferase (rhodanese) of the marine methanogen Methanosarcina frisia
1991
Turkowsky, A.; Blotevogel, K.H.; Fischer, U.
FEMS Microbiol. Lett.
81
251-256
Isolation and characterization of a prokaryotic sulfurtransferase
1987
Aird, B.A.; Heinrikson, R.L.; Westley, J.
J. Biol. Chem.
262
17327-17335
Mitochondrial and cytosolic rhodanese from liver of DAB-treated mice. III. Inhibition kinetic studies
1997
Vazquez, E.; Gazzaniga, S.; Polo, C.; Batlle, A.
Cancer Biochem. Biophys.
15
285-293
Purification and steady-state kinetic analysis of yeast thiosulfate reductase
1979
Uhteg, L.; Westley, J.
Arch. Biochem. Biophys.
195
211-222
Improved purification and sulfhydryl analysis of thiosulfate reductase
1983
Chauncey, T.R.; Westley, J.
Biochim. Biophys. Acta
744
304-311
The catalytic mechanism of yeast thiosulfate reductase
1983
Chauncey, T.R.; Westley, J.
J. Biol. Chem.
258
15037-15045
Isolation and characterization of thiosulfate reductases from the green alga Chlorella fusca
1984
Schmidt, A.; Erdle, I.; Gamon, B.
Planta
162
243-249
-
Thiosulfate and trithionate reductases
1994
Akagi, J.M.; Drake, H.L.; Kim, J.H.; Gevertz, D.
Methods Enzymol.
243
260-270
-
Thiosulfate reductase from a moderately thermophilic iron-oxidizing bacterium, strain TI-1: purification and characterization
1997
Sugio, T.; Kishimoto, K.; Oda, K.
Biosci. Biotechnol. Biochem.
61
470-474
Gene cloning, purification, and characterization of two cyanobacterial NifS homologs driving iron-sulfur cluster formation
2000
Kato, S.; Mihara, H.; Kurihara, T.; Yoshimura, T.; Esaki, N.
Biosci. Biotechnol. Biochem.
64
2412-2419
Interaction of inhibitors with phosphoenolpyruvate mutase: implications for the reaction mechanism and the nature of the active site
1994
Seidel, H.M.; Knowles, J.R.
Biochemistry
33
5641-5646
2-(2'-Hydroxyphenyl)benzene sulfinate desulfinase from the thermophilic desulfurizing bacterium Paenibacillus sp. strain A11-2: purification and characterization
2003
Konishi, J.; Maruhashi, K.
Appl. Microbiol. Biotechnol.
62
356-361
Native uridine 5'-diphosphate-sulfoquinovose synthase, SQD1, from spinach purified as a 250-kDa complex
2003
Shimojima, M.; Benning, C.
Arch. Biochem. Biophys.
413
123-130
Purification and characterization of the aromatic desulfinase, 2-(2'-hydroxyphenyl)benzenesulfinate desulfinase
2003
Watkins, L.M.; Rodriguez, R.; Schneider, D.; Broderick, R.; Cruz, M.; Chambers, R.; Ruckman, E.; Cody, M.; Mrachko, G.T.
Arch. Biochem. Biophys.
415
14-23
A novel enzyme, 2'-hydroxybiphenyl-2-sulfinate desulfinase (DszB), from a dibenzothiophene-desulfurizing bacterium Rhodococcus erythropolis KA2-5-1: gene overexpression and enzyme characterization
2002
Nakayama, N.; Matsubara, T.; Ohshiro, T.; Moroto, Y.; Kawata, Y.; Koizumi, K.; Hirakawa, Y.; Suzuki, M.; Maruhashi, K.; Izumi, Y.; Kurane, R.
Biochim. Biophys. Acta
1598
122-130
The Na(+) cycle in Acetobacterium woodii: identification and characterization of a Na(+) translocating F(1)F(0)-ATPase with a mixed oligomer of 8 and 16 kDa proteolipids
2001
Muller, V.; Aufurth, S.; Rahlfs, S.
Biochim. Biophys. Acta
1505
108-120
Effects of inorganic anions on the activation of acid sialidases
2003
Nagaoka, M.; Shiraishi, T.; Furuhata, K.; Uda, Y.
Biol. Pharm. Bull.
26
295-298
A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase
2004
Zhang, X.; Vincent, A.S.; Halliwell, B.; Wong, K.P.
J. Biol. Chem.
279
43035-43045
Purification and characterization of Escherichia coli sulfite reductase and its application in surimi processing
2002
Yin, L.J.; Lin, H.Y.; Jiang, S.T.
J. Food Sci.
67
3329-3334
Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase
2004
Muller, F.H.; Bandeiras, T.M.; Urich, T.; Teixeira, M.; Gomes, C.M.; Kletzin, A.
Mol. Microbiol.
53
1147-1160
Sulphite oxidase gene expression in human brain and in other human and rat tissues
2003
Woo, W.H.; Yang, H.; Wong, K.P.; Halliwell, B.
Biochem. Biophys. Res. Commun.
305
619-623
Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene
2000
Kato, Y.; Nakamura, K.; Sakiyama, H.; Mayhew, S.G.; Asano, Y.
Biochemistry
39
800-809
Reactivity, secondary structure, and molecular topology of the Escherichia coli sulfite reductase flavodoxin-like domain
2002
Champier, L.; Sibille, N.; Bersch, B.; Brutscher, B.; Blackledge, M.; Coves, J.
Biochemistry
41
3770-3780
Inhibition and pH dependence of phosphite dehydrogenase
2005
Relyea, H.A.; Vrtis, J.M.; Woodyer, R.; Rimkus, S.A.; van der Donk, W.A.
Biochemistry
44
6640-6649
Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur
2003
Frederiksen, T.M.; Finster, K.
Biodegradation
14
189-198
Mechanism and applications of phosphite dehydrogenase
2005
Relyea, H.A.; van der Donk, W.A.
Bioorg. Chem.
33
171-189
A system for the heterologous expression of complex redox proteins in Rhodobacter capsulatus: characterisation of recombinant sulphite:cytochrome c oxidoreductase from Starkeya novella
2002
Kappler, U.; McEwan, A.G.
FEBS Lett.
529
208-214
Direct electrochemistry of a bacterial sulfite dehydrogenase
2003
Aguey-Zinsou, K.F.; Bernhardt, P.V.; Kappler, U.; McEwan, A.G.
J. Am. Chem. Soc.