Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
phenylpyruvate + NADPH + H+ + O2 = phenylacetate + NADP+ + H2O + CO2
-
phenylacetaldehyde + NAD+ + H2O = phenylacetate + NADH + H+
-
phenylacetaldehyde + NAD+ + H2O = phenylacetate + NADH + H+
-
phenylacetaldehyde + NAD+ + H2O = phenylacetate + NADH + H+
-
phenylacetaldehyde + NAD+ + H2O = phenylacetate + NADH + H+
-
phenylacetaldehyde + NAD+ + H2O = phenylacetate + NADH + 2 H+
-
phenylacetaldehyde + NAD+ + H2O = phenylacetate + NADH + H+
390293, 390296, 390299, 390300, 390298, 718, 390301, 0, 7426, 390294, 390292
-
phenylacetaldehyde + NADP+ + H2O = phenylacetate + NADPH + 2 H+
-
phenylacetaldehyde + NADP+ + H2O = phenylacetate + NADPH + H+
-
phenylacetaldehyde + NAD+ + H2O = phenylacetic acid + NADH + H+
-
phenylacetaldehyde + NAD+ + H2O = phenylacetate + NADH + H+
-
phenylacetaldehyde + NADP+ + H2O = phenylacetate + NADPH + H+
-
phenylacetaldehyde + NAD+ + H2O = phenylacetate + NADH + H+
-
phenylacetaldehyde + H2O + O2 = phenylacetate + H2O2
-
phenylacetaldehyde + H2O + O2 = phenylacetic acid + H2O2
-
phenylpyruvate + O2 = phenylacetate + CO2
-
phenylacetaldehyde + O2 = phenylacetate + H2O
-
phenylacetaldehyde + H2O + 2 NAD+ = phenylacetate + 2 NADH + 2 H+
-
phenylacetaldehyde + H2O + 2 oxidized benzyl viologen = phenylacetate + 2 H+ + 2 reduced benzyl viologen
-
phenylacetaldehyde + H2O + oxidized benzyl viologen = phenylacetate + H+ + reduced benzyl viologen
-
phenylacetaldehyde + H2O + oxidized ferredoxin = phenylacetate + H+ + reduced ferredoxin
-
Phenylacetaldehyde + benzyl viologen = Phenylacetate + reduced benzyl viologen
-
phenylacetaldehyde + benzyl viologen = phenylacetic acid + reduced benzyl viologen
-
2-phenylacetaldehyde + H2O + 2,6-dichlorophenol-indophenol = 2-phenylacetate + reduced 2,6-dichlorophenol-indophenol
-
phenylacetaldehyde + H2O + benzylviologen = phenylacetate + reduced benzylviologen
-
L-phenylglycine + H2O + O2 = phenylacetate + NH3 + H2O2
-
2-phenylethylamine + 2 H2O + 2 acceptor = 2-phenylacetic acid + NH3 + 2 reduced acceptor
-
penicillin G + H2O = 6-aminopenicillanic acid + phenylacetic acid
phenylacetylthiocholine + H2O = thiocholine + phenylacetate
-
methyl phenylacetate + H2O = methanol + phenylacetate
-
phenylacetyl-CoA + H2O = CoA + phenylacetate
-
phenylacetyl-CoA + H2O = phenylacetate + CoA
-
phenylacetyl-CoA + H2O = phenylacetate + CoA
-
hippuryl-DL-beta-phenylacetic acid + H2O = hippuric acid + DL-phenylacetic acid
-
benzyloxycarbonyl 4-nitrophenyl ester + H2O = benzyl formate + 4-nitrophenol
-
ethyl 2-phenylacetate + H2O = 2-phenylacetate + ethanol
ethyl 2-phenylacetate + H2O = 2-phenylacetate + ethanol
ethyl 2-phenylacetate + H2O = 2-phenylacetate + ethanol
penicillin G + H2O = 6-aminopenicillanic acid + phenyl acetic acid
penicillin G + H2O = 6-aminopenicillanic acid + phenyl acetic acid
penicillin G + H2O = 6-aminopenicillanic acid + phenyl acetic acid
penicillin G + H2O = phenyl acetic acid + 6-aminopenicillanate
penicillin G + H2O = phenyl acetic acid + 6-aminopenicillanate
penicillin G + H2O = phenyl acetic acid + 6-aminopenicillanate
2-nitro-5-phenylacetamidobenzoic acid + H2O = phenylacetate + 2-aminobenzoic acid
2-nitro-5-phenylacetamidobenzoic acid + H2O = phenylacetate + 2-aminobenzoic acid
2-nitro-5-phenylacetamidobenzoic acid + H2O = phenylacetate + 2-aminobenzoic acid
2-phenyl-N-(4-sulfamoylphenyl)acetamide + H2O = phenylacetate + 2-amino-4-sulfamoylphenol
2-phenyl-N-(4-sulfamoylphenyl)acetamide + H2O = phenylacetate + 2-amino-4-sulfamoylphenol
2-phenyl-N-(4-sulfamoylphenyl)acetamide + H2O = phenylacetate + 2-amino-4-sulfamoylphenol
2-phenylacetamidobenzoic acid + H2O = phenylacetate + 2-aminobenzoic acid
2-phenylacetamidobenzoic acid + H2O = phenylacetate + 2-aminobenzoic acid
2-phenylacetamidobenzoic acid + H2O = phenylacetate + 2-aminobenzoic acid
3-phenylacetamidobenzoic acid + H2O = phenylacetate + 3-aminobenzoic acid
3-phenylacetamidobenzoic acid + H2O = phenylacetate + 3-aminobenzoic acid
3-phenylacetamidobenzoic acid + H2O = phenylacetate + 3-aminobenzoic acid
4-phenylacetamidobenzoic acid + H2O = phenylacetate + 4-aminobenzoic acid
4-phenylacetamidobenzoic acid + H2O = phenylacetate + 4-aminobenzoic acid
4-phenylacetamidobenzoic acid + H2O = phenylacetate + 4-aminobenzoic acid
5-nitro-3-[(phenylacetyl)amino]benzoic acid + H2O = phenylacetate + 3-amino-5-nitro-benzoic acid
5-nitro-3-[(phenylacetyl)amino]benzoic acid + H2O = phenylacetate + 3-amino-5-nitro-benzoic acid
5-nitro-3-[(phenylacetyl)amino]benzoic acid + H2O = phenylacetate + 3-amino-5-nitro-benzoic acid
6-nitro-3-(phenylacetamido)-benzoic acid + H2O = 3-amino-6-nitrobenzoic acid + phenylacetate
6-nitro-3-(phenylacetamido)-benzoic acid + H2O = 3-amino-6-nitrobenzoic acid + phenylacetate
6-nitro-3-(phenylacetamido)-benzoic acid + H2O = 3-amino-6-nitrobenzoic acid + phenylacetate
6-nitro-3-phenylacetamide benzoic acid + H2O = 3-amino-6-nitrobenzoic acid + phenylacetate
6-nitro-3-phenylacetamide benzoic acid + H2O = 3-amino-6-nitrobenzoic acid + phenylacetate
6-nitro-3-phenylacetamide benzoic acid + H2O = 3-amino-6-nitrobenzoic acid + phenylacetate
ethyl 4-[(phenylacetyl)amino] benzoate + H2O = phenylacetate + 4-amino-ethylbenzoate
ethyl 4-[(phenylacetyl)amino] benzoate + H2O = phenylacetate + 4-amino-ethylbenzoate
ethyl 4-[(phenylacetyl)amino] benzoate + H2O = phenylacetate + 4-amino-ethylbenzoate
N,2-diphenylacetamide + H2O = phenylacetate + ?
N,2-diphenylacetamide + H2O = phenylacetate + ?
N,2-diphenylacetamide + H2O = phenylacetate + ?
N-(4-acetylphenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-acetylphenol
N-(4-acetylphenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-acetylphenol
N-(4-acetylphenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-acetylphenol
N-(4-bromophenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-bromophenol
N-(4-bromophenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-bromophenol
N-(4-bromophenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-bromophenol
N-(4-cyanophenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-cyanophenol
N-(4-cyanophenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-cyanophenol
N-(4-cyanophenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-cyanophenol
N-(4-methoxyphenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-methoxyphenol
N-(4-methoxyphenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-methoxyphenol
N-(4-methoxyphenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-methoxyphenol
N-(4-methylphenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-methylphenol
N-(4-methylphenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-methylphenol
N-(4-methylphenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-methylphenol
N-(4-nitrophenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-nitrophenol
N-(4-nitrophenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-nitrophenol
N-(4-nitrophenyl)-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-nitrophenol
N-(5-nitro-2-pyridyl)-phenylacetamide + H2O = phenylacetate + 5-nitropyridin-2-amine
N-(5-nitro-2-pyridyl)-phenylacetamide + H2O = phenylacetate + 5-nitropyridin-2-amine
N-(5-nitro-2-pyridyl)-phenylacetamide + H2O = phenylacetate + 5-nitropyridin-2-amine
N-phenylacetyl-alpha-homophenylalanine + H2O = homophenylalanine + phenylacetate
N-phenylacetyl-alpha-homophenylalanine + H2O = homophenylalanine + phenylacetate
N-phenylacetyl-alpha-homophenylalanine + H2O = homophenylalanine + phenylacetate
N-phenylacetyl-alpha-isoleucine + H2O = isoleucine + phenylacetate
N-phenylacetyl-alpha-isoleucine + H2O = isoleucine + phenylacetate
N-phenylacetyl-alpha-isoleucine + H2O = isoleucine + phenylacetate
N-phenylacetyl-alpha-leucine + H2O = leucine + phenylacetate
N-phenylacetyl-alpha-leucine + H2O = leucine + phenylacetate
N-phenylacetyl-alpha-leucine + H2O = leucine + phenylacetate
N-phenylacetyl-alpha-phenylalanine + H2O = phenylalanine + phenylacetate
N-phenylacetyl-alpha-phenylalanine + H2O = phenylalanine + phenylacetate
N-phenylacetyl-alpha-phenylalanine + H2O = phenylalanine + phenylacetate
N-phenylacetyl-alpha-tert-leucine + H2O = tert-leucine + phenylacetate
N-phenylacetyl-alpha-tert-leucine + H2O = tert-leucine + phenylacetate
N-phenylacetyl-alpha-tert-leucine + H2O = tert-leucine + phenylacetate
N-phenylacetyl-beta-homoleucine + H2O = beta-homoleucine + phenylacetate
N-phenylacetyl-beta-homoleucine + H2O = beta-homoleucine + phenylacetate
N-phenylacetyl-beta-homoleucine + H2O = beta-homoleucine + phenylacetate
N-phenylacetyl-beta-leucine + H2O = beta-leucine + phenylacetate
N-phenylacetyl-beta-leucine + H2O = beta-leucine + phenylacetate
N-phenylacetyl-beta-leucine + H2O = beta-leucine + phenylacetate
N-phenylacetyl-DL-tert-leucine + H2O = L-tert-leucine + phenylacetate
N-phenylacetyl-DL-tert-leucine + H2O = L-tert-leucine + phenylacetate
N-phenylacetyl-DL-tert-leucine + H2O = L-tert-leucine + phenylacetate
N-[4-(methylsulfonyl)phenyl]-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-(methylsulfonyl)phenol
N-[4-(methylsulfonyl)phenyl]-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-(methylsulfonyl)phenol
N-[4-(methylsulfonyl)phenyl]-2-phenylacetamide + H2O = phenylacetate + 2-amino-4-(methylsulfonyl)phenol
penicillin G + H2O = phenylacetate + 6-aminopenicillanate
penicillin G + H2O = phenylacetate + 6-aminopenicillanate
penicillin G + H2O = phenylacetate + 6-aminopenicillanate
phenylacetamide + H2O = phenylacetate + NH3
phenylacetamide + H2O = phenylacetate + NH3
phenylacetamide + H2O = phenylacetate + NH3
phenylacetic hydrazide + H2O = phenylacetate + hydrazine
phenylacetic hydrazide + H2O = phenylacetate + hydrazine
phenylacetic hydrazide + H2O = phenylacetate + hydrazine
phenylacetyl-2-naphthylamide + H2O = phenylacetate + 2-naphthylamine
phenylacetyl-2-naphthylamide + H2O = phenylacetate + 2-naphthylamine
phenylacetyl-2-naphthylamide + H2O = phenylacetate + 2-naphthylamine
phenylacetyl-7-amido-4-methylcoumarin + H2O = phenylacetate + 7-amino-4-methylcoumarin
phenylacetyl-7-amido-4-methylcoumarin + H2O = phenylacetate + 7-amino-4-methylcoumarin
phenylacetyl-7-amido-4-methylcoumarin + H2O = phenylacetate + 7-amino-4-methylcoumarin
phenylacetylanthranilic acid + H2O = phenylacetate + 2-aminobenzoic acid
phenylacetylanthranilic acid + H2O = phenylacetate + 2-aminobenzoic acid
phenylacetylanthranilic acid + H2O = phenylacetate + 2-aminobenzoic acid
2-nitro-5-[(phenylacetyl)amino]-benzoic acid + H2O = phenylacetic acid + 5-amino-2-nitrobenzoic acid
2-nitro-5-[(phenylacetyl)amino]-benzoic acid + H2O = phenylacetic acid + 5-amino-2-nitrobenzoic acid
2-nitro-5-[(phenylacetyl)amino]-benzoic acid + H2O = phenylacetic acid + 5-amino-2-nitrobenzoic acid
2-nitro-5-[(phenylacetyl)amino]benzoic acid + H2O = phenylacetic acid + 5-amino-2-nitrobenzoic acid
2-nitro-5-[(phenylacetyl)amino]benzoic acid + H2O = phenylacetic acid + 5-amino-2-nitrobenzoic acid
2-nitro-5-[(phenylacetyl)amino]benzoic acid + H2O = phenylacetic acid + 5-amino-2-nitrobenzoic acid
6-nitro-3-(phenylacetamido)benzoic acid + H2O = phenylacetic acid + 5-amino-2-nitrobenzoic acid
6-nitro-3-(phenylacetamido)benzoic acid + H2O = phenylacetic acid + 5-amino-2-nitrobenzoic acid
6-nitro-3-(phenylacetamido)benzoic acid + H2O = phenylacetic acid + 5-amino-2-nitrobenzoic acid
6-nitro-3-phenylacetamide benzoic acid + H2O = 3-amino-6-nitrobenzoic acid + phenylacetic acid
6-nitro-3-phenylacetamide benzoic acid + H2O = 3-amino-6-nitrobenzoic acid + phenylacetic acid
6-nitro-3-phenylacetamide benzoic acid + H2O = 3-amino-6-nitrobenzoic acid + phenylacetic acid
6-nitro-3-[(phenylacetyl)amino]benzoic acid + H2O = 3-amino-6-nitrobenzoic acid + phenylacetic acid
6-nitro-3-[(phenylacetyl)amino]benzoic acid + H2O = 3-amino-6-nitrobenzoic acid + phenylacetic acid
6-nitro-3-[(phenylacetyl)amino]benzoic acid + H2O = 3-amino-6-nitrobenzoic acid + phenylacetic acid
benzylpenicillin + H2O = phenylacetic acid + 6-aminopenicillanate
benzylpenicillin + H2O = phenylacetic acid + 6-aminopenicillanate
benzylpenicillin + H2O = phenylacetic acid + 6-aminopenicillanate
cephalosporin G + H2O = 7-amino-desacetoxycephalosporanic acid + phenylacetic acid
cephalosporin G + H2O = 7-amino-desacetoxycephalosporanic acid + phenylacetic acid
cephalosporin G + H2O = 7-amino-desacetoxycephalosporanic acid + phenylacetic acid
cephalosporin G + H2O = 7-aminodeacetoxycephalosporanate + phenylacetic acid
cephalosporin G + H2O = 7-aminodeacetoxycephalosporanate + phenylacetic acid
cephalosporin G + H2O = 7-aminodeacetoxycephalosporanate + phenylacetic acid
cephalosporin G + H2O = phenylacetic acid + 7-aminodeacetoxycephalosporanate
cephalosporin G + H2O = phenylacetic acid + 7-aminodeacetoxycephalosporanate
cephalosporin G + H2O = phenylacetic acid + 7-aminodeacetoxycephalosporanate
D-2-nitro-5-[(phenylacetyl)amino]benzoic acid + H2O = phenylacetic acid + 5-amino-2-nitrobenzoic acid
D-2-nitro-5-[(phenylacetyl)amino]benzoic acid + H2O = phenylacetic acid + 5-amino-2-nitrobenzoic acid
D-2-nitro-5-[(phenylacetyl)amino]benzoic acid + H2O = phenylacetic acid + 5-amino-2-nitrobenzoic acid
N-(phenylacetyl)glycine + H2O = phenylacetic acid + glycine
N-(phenylacetyl)glycine + H2O = phenylacetic acid + glycine
N-(phenylacetyl)glycine + H2O = phenylacetic acid + glycine
N-phenylacetyl-Asp + H2O = phenylacetic acid + Asp
N-phenylacetyl-Asp + H2O = phenylacetic acid + Asp
N-phenylacetyl-Asp + H2O = phenylacetic acid + Asp
N-phenylacetyl-Asp-Phe methyl ester + H2O = phenylacetic acid + Asp-Phe methyl ester
N-phenylacetyl-Asp-Phe methyl ester + H2O = phenylacetic acid + Asp-Phe methyl ester
N-phenylacetyl-Asp-Phe methyl ester + H2O = phenylacetic acid + Asp-Phe methyl ester
N-phenylacetyl-Glu + H2O = phenylacetic acid + Glu
N-phenylacetyl-Glu + H2O = phenylacetic acid + Glu
N-phenylacetyl-Glu + H2O = phenylacetic acid + Glu
N-phenylacetyl-Leu + H2O = phenylacetic acid + Leu
N-phenylacetyl-Leu + H2O = phenylacetic acid + Leu
N-phenylacetyl-Leu + H2O = phenylacetic acid + Leu
N-phenylacetyl-Phe + H2O = phenylacetic acid + Phe
N-phenylacetyl-Phe + H2O = phenylacetic acid + Phe
N-phenylacetyl-Phe + H2O = phenylacetic acid + Phe
N2-phenylacetyl-2'-deoxyguanosine + H2O = phenylacetic acid + 2'-deoxyguanosine
N2-phenylacetyl-2'-deoxyguanosine + H2O = phenylacetic acid + 2'-deoxyguanosine
N2-phenylacetyl-2'-deoxyguanosine + H2O = phenylacetic acid + 2'-deoxyguanosine
N6-phenylacetyl-2'-deoxyadenosine + H2O = phenylacetic acid + 2'-deoxyadenosine
N6-phenylacetyl-2'-deoxyadenosine + H2O = phenylacetic acid + 2'-deoxyadenosine
N6-phenylacetyl-2'-deoxyadenosine + H2O = phenylacetic acid + 2'-deoxyadenosine
penicillin G + H2O = 6-aminopenicillanate + phenylacetic acid
penicillin G + H2O = 6-aminopenicillanate + phenylacetic acid
penicillin G + H2O = 6-aminopenicillanate + phenylacetic acid
penicillin G + H2O = 6-aminopenicillanic acid + phenylacetic acid
penicillin G + H2O = 6-aminopenicillanic acid + phenylacetic acid
penicillin G + H2O = 6-aminopenicillanic acid + phenylacetic acid
penicillin G + H2O = phenylacetic acid + 6-aminopenicillanate
penicillin G + H2O = phenylacetic acid + 6-aminopenicillanate
penicillin G + H2O = phenylacetic acid + 6-aminopenicillanate
penicillin G + H2O = phenylacetic acid + 6-aminopenicillanic acid
penicillin G + H2O = phenylacetic acid + 6-aminopenicillanic acid
penicillin G + H2O = phenylacetic acid + 6-aminopenicillanic acid
penicillin-G + H2O = 6-aminopenicillanic acid + phenylacetic acid
penicillin-G + H2O = 6-aminopenicillanic acid + phenylacetic acid
penicillin-G + H2O = 6-aminopenicillanic acid + phenylacetic acid
phenylacetate 4-nitroanilide + H2O = phenylacetic acid + 4-nitrolaniline
phenylacetate 4-nitroanilide + H2O = phenylacetic acid + 4-nitrolaniline
phenylacetate 4-nitroanilide + H2O = phenylacetic acid + 4-nitrolaniline
phenylacetyl-4-aminobenzoic acid = 4-aminobenzoic acid + phenylacetic acid
phenylacetyl-4-aminobenzoic acid = 4-aminobenzoic acid + phenylacetic acid
phenylacetyl-4-aminobenzoic acid = 4-aminobenzoic acid + phenylacetic acid
phenylacetyl-Gly + H2O = phenylacetic acid + glycine
phenylacetyl-Gly + H2O = phenylacetic acid + glycine
phenylacetyl-Gly + H2O = phenylacetic acid + glycine
phenylacetyl-L-asparagine + H2O = L-asparagine + phenylacetic acid
phenylacetyl-L-asparagine + H2O = L-asparagine + phenylacetic acid
phenylacetyl-L-asparagine + H2O = L-asparagine + phenylacetic acid
phenylacetylaspartame + H2O = phenylacetic acid + aspartame
phenylacetylaspartame + H2O = phenylacetic acid + aspartame
phenylacetylaspartame + H2O = phenylacetic acid + aspartame
N-(2-nitrophenyl)phenylacetamide + H2O = N-(2-nitrophenyl)aniline + phenylacetate
-
N6-phenylacetyl-L-lysine + H2O = L-lysine + phenylacetate
-
phenylacetamide + H2O = phenylacetate + NH3
-
phenylacetamide = phenylacetic acid + NH3
-
penicillin G + H2O = 6-aminopenicillanic acid + phenylacetic acid
-
N-Phenylacetyl-D-Phe + H2O = Phenylacetate + D-Phe
-
2-phenylacetamide + H2O = 2-phenylacetate + NH3
-
phenylacetamide + H2O = phenylacetate + NH3
-
2 phenylacetonitrile + H2O = 2-phenylacetate + NH3
-
2-phenylacetonitrile + 2 H2O = 2-phenylacetic acid + NH3
-
2 phenylacetonitrile + 3 H2O = phenylacetamide + phenylacetate + NH3
-
2-phenylacetonitrile + 2 H2O = phenylacetate + NH3
-
phenylacetonitrile + 2 H2O = phenylacetate + NH3
-
2 2-phenylacetonitrile + 3 H2O = phenylacetic acid + 2-phenylacetamide + NH3
-
3-phenylpropanenitrile + H2O = phenylacetic acid + NH3
-
benzyl cyanide + 2 H2O = phenylacetic acid + NH3
-
phenylacetonitrile + 2 H2O = phenylacetic acid + NH3
-
phenylacetonitrile + 2 H2O = phenylacetate + NH3
-
benzylcyanide + H2O = phenylacetic acid + NH3
-
phenylacetonitrile + 2 H2O = phenylacetic acid + NH3
-
phenylacetonitrile + 2 H2O = phenylacetate + NH3
-
phenylacetonitrile + 2 H2O = phenylacetic acid + NH3
-
2,4-diketo-4-phenylbutyrate + H2O = pyruvate + phenylacetate
-
L-phenylalanine = phenylacetic acid + CO2
-
2-phenylmalonate = 2-phenylacetate + CO2
2-phenylmalonate = phenylacetate + CO2
Phenylmalonate = Phenylacetate + CO2
phenylacetonitrile + 2 H2O = phenylacetic acid + NH3
-
ADP + phosphate + phenylacetyl-CoA = ATP + phenylacetate + CoA
-
ADP + phosphate + phenylacetyl-CoA = ATP + phenylacetate + CoA
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus
1996
Mai, X.; Adams, M.W.W.
J. Bacteriol.
178
5897-5903
Anaerobic metabolism of L-phenylalanine via benzoyl-CoA in the denitrifying bacterium Thauera aromatica
1997
Schneider, S.; Mohamed, M.E.S.; Fuchs, G.
Arch. Microbiol.
168
310-320
Kinetics and mechanism of benzoylformate decarboxylase using 13C and solvent deuterium isotope effects on benzoylformate and benzoylformate analogues
1988
Weiss, P.M.; Garcia, G.A.; Kenyon, G.L.; Cleland, W.W.; Cook, P.F.
Biochemistry
27
2197-2205
Cloning and heterologous expression of a novel arylmalonate decarboxylase gene from Alcaligenes bronchisepticus KU 1201
1992
Miyamoto, K.; Ohta, H.
Appl. Microbiol. Biotechnol.
38
234-248
-
Catabolism of DL-alpha-phenylhydracrylic, phenylacetic and 3- and 4-hydroxyphenylacetic acid via homogentisic acid in a Flavobacterium sp.
1988
Van den Tweel, W.J.J.; Smits, J.P.; de Bont, J.A.M.
Arch. Microbiol.
149
207-213
A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Purification and characterization
1990
Nagasawa, T.; Mauger, J.; Yamada, H.
Eur. J. Biochem.
194
765-772
-
Bovine procarboxypeptidase and carboxypeptidase A
1970
Petra, P.H.
Methods Enzymol.
19
460-503
Kinetics of carboxypeptidase A. II. Inhibitors of the hydrolysis of oligopeptides
1970
Auld, D.S.; Vallee, B.L.
Biochemistry
9
602-609
A simplified determination of penicillin amidase from E. coli
1971
Bauer, K.; Kaufmann, W.; Ludwig, S.A.
Hoppe-Seyler's Z. Physiol. Chem.
352
1723-1724
The isolation and kinetics of penicillin amidase from Escherichia coli
1972
Balasingham, K.; Warburton, O.; Dunnil, P.; Lilly, M.D.
Biochim. Biophys. Acta
276
250-256
The preparation and kinetics of immobilised penicillin amidase from Escherichia coli
1972
Warburton, D.; Balasingham, K.; Dunnil, P.; Lilly, M.D.
Biochim. Biophys. Acta
284
278-284
Penicillin acylase (bacterial)
1975
Savidge, T.A.; Cole, M.
Methods Enzymol.
43
705-721
Properties of penicillin amidase immobilized by copolymerization with acrylamide
1979
Szewczuk, A.; Ziomek, E.; Mordarski, M.; Siewinski, M.; Wieczorek, J.
Biotechnol. Bioeng.
21
1543-1552
Colorimetric assay of penicillin amidase activity using phenylacetyl-aminobenzoic acid as substrate
1980
Szewczuk, A.; Siewinski, M.; Slowinska, R.
Anal. Biochem.
103
166-169
Substrate specificity of penicillin amidase from E. coli
1980
Morgolin, A.L.; Svedas, V.K.; Berezin, I.V.
Biochim. Biophys. Acta
616
283-289
-
Kinetics of the enzymatic synthesis of benzylpenicillin
1980
Svedas, V.K.; Margolin, A.L.; Borisov, I.L.; Berezin, I.V.
Enzyme Microb. Technol.
2
313-317
-
Enzymatic acylation of 6-aminopenicillanic acid
1982
McDougall, B.; Dunnill, P.; Lilly, M.D.
Enzyme Microb. Technol.
4
114-115
Improvement of the catalytic properties of penicillin G acylase from Escherichia coli ATCC 11105 by selection of a new substrate specificity
1995
Niersbach, H.; Kuhne, A.; Tischer, W.; Weber, M.; Wedekind F.; Plapp, R.
Appl. Microbiol. Biotechnol.
43
679-684
-
Stability and stabilisation of penicillin acylase
1999
Azevedo, A.M.; Fonseca, L.P.; Prazeres, D.M.F.
J. Chem. Technol. Biotechnol.
74
1110-1116
Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-arylpropionamides
1996
Hirrlinger, B.; Stolz, A.; Knackmuss, H.J.
J. Bacteriol.
178
3501-3507
Characterization of an inducible amidase from Pseudomonas acidovorans AE1
1975
Alt, J.; Heymann, E.; Krisch, K.
Eur. J. Biochem.
53
357-369
-
Enzymatic nitrile hydrolysis in low water systems
1998
Layh, N.; Willetts, A.
Biotechnol. Lett.
20
329-331
Mechanistic and structural studies on Rhodococcus ATCC 39484 nitrilase
1992
Stevenson, D.E.; Feng, R.; Dumas, F.; Groleau, D.; Mihoc, A.; Storer, A.C.
Biotechnol. Appl. Biochem.
15
283-302
-
Asymmetric hydrolysis of alpha-aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34
1992
Bhalla, T.C.; Miura, A.; Wakamoto, A.; Ohba, Y.; Furuhashi, K.
Appl. Microbiol. Biotechnol.
37
184-190
Mandelic acid racemase from Pseudomonas putida. Purification and properties of the enzyme
1970
Hegeman, G.D.; Rosenberg, E.Y.; Kenyon, G.L.
Biochemistry
9
4029-4036
Reaction intermediate analogues for mandelate racemase: interaction between Asn 197 and the alpha-hydroxyl of the substrate promotes catalysis
2000
ST.Maurice, M.; Bearne, S.L.
Biochemistry
39
13324-13335
An overview of gamma-hydroxybutyrate catabolism: the role of the cytosolic NADP+-dependent oxidoreductase EC 1.1.1.19 and of a mitochondrial hydroxyacid-oxoacid transhydrogenase in the initial, rate-limiting step in this pathway
1991
Kaufman, E.E.; Nelson, T.
Neurochem. Res.
16
965-974
The catabolism of L-tyrosine by an Arthrobacter sp.
1977
Blakley, E.R.
Can. J. Microbiol.
23
1128-1139
Enzymatic hydrolysis of 2,4-diketo acids
1948
Meister, A.; Greenstein, J.P.
J. Biol. Chem.
175
573-588
Branched-chain alpha-keto acid dehydrogenase and its kinase from rabbit liver and heart
1988
Paxton, R.
Methods Enzymol.
166
313-320
Method for enzymatic determination of imidazole acetic acid
1983
Watanabe, T.; Kambe, H.; Imamura, I.; Taguchi, Y.; Tamura, T.; Wada, H.
Anal. Biochem.
130
321-327
Studies on monooxygenases. II. Crystallization and some properties of imidazole acetate monooxygenase
1969
Maki, Y.; Yamamoto, S.; Nozaki, M.; Hayaishi, O.
J. Biol. Chem.
244
2942-2950
-
Metabolism of phenylalanine (Achromobacter eurydice)
1970
Fujioka, M.; Morino, Y.; Wada, H.
Methods Enzymol.
17A
585-596
Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase
1990
Hartmans, S.; van der Werf, M.J.; de Bont, J.A.M.
Appl. Environ. Microbiol.
56
1347-1351
Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X
1989
Hartmans, S.; Smits, J.P.; van der Werf, M.J.; Volkering, F.; de Bont, J.A.M.
Appl. Environ. Microbiol.
55
2850-2855
2-Phenylethylamine catabolism by Escherichia coli K12
1987
Parrott, S.; Jones, S.; Cooper, R.A.
J. Gen. Microbiol.
133
347-351
Enzymology of oxidation of tropic acid to phenylacetic acid in metabolism of atropine by Pseudomonas sp. strain AT3
1997
Long, M.T.; Bartholomew, B.A.; Smith, M.J.; Trudgill, P.W.; Hopper, D.J.
J. Bacteriol.
179
1044-1050
Molecular characterization of PadA, a phenylacetaldehyde dehydrogenase from Escherichia coli
1997
Ferrandez, A.; Prieto, M.A.; Garcia, J.L.; Diaz, E.
FEBS Lett.
406
23-27
2-Phenylethylamine catabolism by Escherichia coli K-12: gene organization and expression
1997
Hanlon, S.P.; Hill, T.K.; Flavell, M.A.; Stringfellow, J.M.; Cooper, R.A.
Microbiology
143
513-518
The effect of nutrient limitation on styrene metabolism in Pseudomonas putida CA-3
1996
O'Connor, K.; Duetz, W.; Wind, B.; Dobson, A.D.W.
Appl. Environ. Microbiol.
62
3594-3599
On the kinetics and mechanism of enoate reductase
1982
Buehler, M.; Simon, H.
Hoppe-Seyler's Z. Physiol. Chem.
363
609-625
-
Purification and characterization of the 4-hydroxyphenylacetic acid-3-hydroxylase from Pseudomonas putida U
1997
Fernandez-Medarde, A.; Luengo, J.M.
FEMS Microbiol. Lett.
157
47-53
A novel two-protein component flavoprotein hydroxylase. p-Hydroxyphenylacetate hydroxylase from Acinetobacter baumannii
2001
Chaiyen, P.; Suadee, C.; Wilairat, P.
Eur. J. Biochem.
268
5550-5561
Purification and some properties of component A of the 4-chlorophenylacetate 3,4-dioxygenase from Pseudomonas species strain CBS
1986
Markus, A.; Krekel, D.; Lingens, F.
J. Biol. Chem.
261
12883-12888
Partial identity of the 2-oxoglutarate and ascorbate binding sites of prolyl 4-hydroxylase
1986
Majamaa, K.; Gunzler, V.; Hanauske-Abel, H.M.; Myllylä, R.; Kivirikko, K.I.
J. Biol. Chem.
261
7819-7823
Oxidation and oxygenation of L-amino acids catalyzed by a L-phenylalanine oxidase (deaminating and decarboxylating) from Pseudomonas sp. P-501
1984
Koyama, H.
J. Biochem.
96
421-427
Purification and characterization of two manganese peroxidase isoenzymes from the white-rot basidiomycete Dichomitus squalens
1996
Perie, F.H.; Sheng, D.; Gold, M.H.
Biochim. Biophys. Acta
1297
139-148
Properties of a membrane-associated benzoate-4-hydroxylase from Rhodotorula graminis
1985
McNamee, C.; Durham, D.R.
Biochem. Biophys. Res. Commun.
129
485-492
Potent inhibitory effects of tyrosine metabolites on dihydropteridine reductase from human and sheep liver
1984
Shen, R.S.
Biochim. Biophys. Acta
785
181-185
On the possible mechanism of phenylacetate neurotoxicity: inhibition of choline acetyltransferase by phenylacetyl-CoA
1984
Potempska, A.; Loo, Y.H.; Wisniewski, M.M.
J. Neurochem.
42
1499-1501
-
1-Naphtalene acetic acid induces indole-3-ylacetylglucose synthase in Zea mays seedling tissue
2002
Kowalczyk, S.; Jakubowska, A.; Bandurski, R.S.
Plant Growth Regul.
38
127-134
-
Inhibitors of two enzymes which metabolize cytokinins
1986
Parker, C.W.; Entsch, B.; Letham, D.S.
Phytochemistry
25
303-310
Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum
1998
Gadda, G.; Fitzpatrick, P.F.
Biochemistry
37
6154-6164
Studies on the specificity of tyrosine-alpha-ketoglutarate transaminase
1964
Jacoby, G.A.; La Du, B.N.
J. Biol. Chem.
239
419-424
Clofibric acid, phenylpyruvate, and dichloroacetate inhibition of branched-chain alpha-ketoacid dehydrogenase kinase in vitro and in perfused rat heart
1984
Paxton, R.; Harris, R.A.
Arch. Biochem. Biophys.
231
58-66
Molecular specificity of aryl sulfotransferase IV (tyrosine-ester sulfotransferase) for xenobiotic substrates and inhibitors
1994
Duffel, M.W.
Chem. Biol. Interact.
92
3-14
Tubulinyl-tyrosine carboxypeptidase from chicken brain: properties and partial purification
1980
Argarana, C.E.; Barra, H.S.; Caputto, R.
J. Neurochem.
34
114-118
Nitrile hydratase and its application to industrial production of acrylamide
1996
Yamada, H.; Kobayashi, M.
Biosci. Biotechnol. Biochem.
60
1391-1400
Enzymes of anarobic metabolism pf phenolic compounds. 4-Hydroxybenzoate-CoA ligase from a denitrifying Pseudomonas species
1993
Biegert, T.; Altenschmidt, U.; Eckerskorn, C.; Fuchs, G.
Eur. J. Biochem.
213
555-561
Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida
1990
Martinez-Blanco, H.; Reglero, A.; Rodriguez-Aparicio, L.B.; Luengo, J.M.
J. Biol. Chem.
265
7084-7090
Fluorometric determination of phenylacetyl-CoA ligase from Pseudomonas putida: a very sensitive assay for a newly described enzyme
1991
Rodriguez-Aparacio, L.B.; Reglero, A.; Martinez-Blanco, H.; Luengo, J.M.
Biochim. Biophys. Acta
1073
431-433
Purification and characterization of phenylacetyl-coenzyme A ligase from a denitrifying Pseudomonas sp., an enzyme involved in the anaerobic degradation of phenylacetate
1993
El-Said Mohamed, M.; Fuchs, G.
Arch. Microbiol.
159
544-562 (c)
Biosynthesis of Penicillin in vitro: purification & properties of phenyl/phenoxyacetic acid activating enzyme
1982
Kogekar, R.G.; Desphpande, V.N.
Indian J. Biochem. Biophys.
19
257-261
Phenylacetate-coenzyme A ligase is induced during growth on phenylacetic acid in different bacteria of several genera
1993
Vitovski, S.
FEMS Microbiol. Lett.
108
1-5
Aerobic metabolism of phenylacetic acids in Azoarcus evansii
2002
Mohamed Mel, S.; Ismail, W.; Heider, J.; Fuchs, G.
Arch. Microbiol.
178
180-192
Molecular cloning and expression in different microbes of the DNA encoding Pseudomonas putida U phenylacetyl-CoA ligase. Use of this gene to improve the rate of benzylpenicillin biosynthesis in Penicillium chrysogenum
1996
Minambres, B.; Martinez-Blanco, H.; Olivera, E.R.; Garcia, B.; Diez, B.; Barredo, J.L.; Moreno, M.A.; Schleissner, C.; Salto, F.; Luengo, J.M.
J. Biol. Chem.
271
33531-33538
Biochemical and molecular characterization of phenylacetate-coenzyme A ligase, an enzyme catalyzing the first step in aerobic metabolism of phenylacetic acid in Azoarcus evansii
2000
Mohamed, M.E.S.
J. Bacteriol.
182
286-294
Purification and characterization of benzoate:coenzyme A ligase from Clarkia breweri
2002
Beuerle, T.; Pichersky, E.
ARCH. BIOCHEM. BIOPHYS.
400
258-264
-
Phenylacetyl group as enzyme-cleavable aminoprotection of purine nucleosides
1993
Dineva, M.A.; Gatunsky, B.; Kasche, V.; Petkov, D.D.
Bioorg. Med. Chem. Lett.
3
2781-2784
-
Genetic construction of catalytically active cross-species heterodimer penicillin G amidase
1994
Piotraschke, E.; Nurk, A.; Galunsky, B.; Kasche, V.
Biotechnol. Lett.
16
119-124
-
Proteolytic processing of penicillin amidase from Alcaligenes faecalis cloned in Escherichia coli yields several active forms
1998
Ignatova, Z.; Stoeva, S.; Galunsky, B.; Hörnle, C.; Nurk, A.; Piotraschke, E.; Voelter, W.; Kasche, V.
Biotechnol. Lett.
20
977-982
-
A new bacterial L-amino acid oxidase with a broad substrate specificity: purification and characterization
2002
Geueke, B.; Hummel, W.
Enzyme Microb. Technol.
31
77-87
Fragments of pro-peptide activate mature penicillin amidase of Alcaligenes faecalis
2003
Kasche, V.; Galunsky, B.; Ignatova, Z.
Eur. J. Biochem.
270
4721-4728
Novel type of ADP-forming acetyl coenzyme A synthetase in hyperthermophilic archaea: heterologous expression and characterization of isoenzymes from the sulfate reducer Archaeoglobus fulgidus and the methanogen Methanococcus jannaschii
2002
Musfeldt, M.; Schonheit, P.
J. Bacteriol.
184
636-644
Benzoate-coenzyme A ligase from Thauera aromatica: an enzyme acting in anaerobic and aerobic pathways
2003
Schuhle, K.; Gescher, J.; Feil, U.; Paul, M.; Jahn, M.; Schagger, H.; Fuchs, G.
J. Bacteriol.
185
4920-4929
Isolation, sequencing, and expression of a cDNA for the HXM-A form of xenobiotic/medium-chain fatty acid:CoA ligase from human liver mitochondria
2003
Vessey, D.A.; Lau, E.; Kelley, M.; Warren, R.S.
J. Biochem. Mol. Toxicol.
17
1-6
beta-Cell adaptation to insulin resistance. Increased pyruvate carboxylase and malate-pyruvate shuttle activity in islets of nondiabetic Zucker fatty rats
2002
Liu, Y.Q.; Jetton, T.L.; Leahy, J.L.
J. Biol. Chem.
277
39163-39168
Baculovirus-mediated expression and purification of human serum paraoxonase 1A
2001
Brushia, R.J.; Forte, T.M.; Oda, M.N.; La Du, B.N.; Bielicki, J.K.
J. Lipid Res.
42
951-958
-
Characterization and partial purification of an enantioselective arylacetonitrilase from Pseudomonas fluorescens DSM 7155
1998
Layh, N.; Parratt, J.; Willetts, A.
J. Mol. Catal. B
5
467-474
Phenylacetyl coenzyme A hydrolase
1975
Brian, S.
Methods Enzymol.
43
482-487
-
Comparative study of substrate- and stereospecificity of penicillin G amidases from different sources and hybrid isoenzymes
2000
Galunsky, B.; Lummer, K.; Kasche, V.
Monatsh. Chem.
131
623-632
Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N acyltransferase
2005
Lamas-Maceiras, M.; Vaca, I.; Rodriguez, E.; Casqueiro, J.; Martin, J.F.
Biochem. J.
395
147-155
Analysis of active-site amino-acid residues of human serum paraoxonase using competitive substrates
2005
Yeung, D.T.; Lenz, D.E.; Cerasoli, D.M.
FEBS J.
272
2225-2230
Arginine 165/arginine 277 pair in (S)-mandelate dehydrogenase from Pseudomonas putida: role in catalysis and substrate binding
2002
Xu, Y.; Dewanti, A.R.; Mitra, B.
Biochemistry
41
12313-12319
Structural and thermodynamic studies of simple aldose reductase-inhibitor complexes
2006
Brownlee, J.M.; Carlson, E.; Milne, A.C.; Pape, E.; Harrison, D.H.
Bioorg. Chem.
34
424-444
-
A novel penicillin acylase from the environmental gene pool with improved synthetic properties
2005
Gabor, E.M.; de Vries, E.J.; Janssen, D.B.
Enzyme Microb. Technol.
36
182-190
Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase
2006
Kumar, R.S.; Brannigan, J.A.; Prabhune, A.A.; Pundle, A.V.; Dodson, G.G.; Dodson, E.J.; Suresh, C.G.
J. Biol. Chem.
281
32516-32525
Structural and kinetic studies on ligand binding in wild-type and active-site mutants of penicillin acylase
2004
Alkema, W.B.; Hensgens, C.M.; Snijder, H.J.; Keizer, E.; Dijkstra, B.W.; Janssen, D.B.
Protein Eng. Des. Sel.
17
473-480
Serum arylesterase and paraoxonase activity in patients with chronic hepatitis
2005
Kilic, S.S.; Aydin, S.; Kilic, N.; Erman, F.; Celik, I.
World J. Gastroenterol.
11
7351-7354
Molecular cloning and functional identification of a novel phenylacetyl-CoA ligase gene from Penicillium chrysogenum
2007
Wang, F.Q.; Liu, J.; Dai, M.; Ren, Z.H.; Su, C.Y.; He, J.G.
Biochem. Biophys. Res. Commun.
360
453-458
Aspirin is a substrate for paraoxonase-like activity: implications in atherosclerosis
2007
Santanam, N.; Parthasarathy, S.
Atherosclerosis
191
272-275
(S)-Mandelate dehydrogenase from Pseudomonas putida: mechanistic studies with alternate substrates and pH and kinetic isotope effects
1999
Lehoux, I.E.; Mitra, B.
Biochemistry
38
5836-5848
Paraoxonase (PON1) polymorphism and activity as the determinants of sensitivity to organophosphates in human subjects
2007
Sirivarasai, J.; Kaojarern, S.; Yoovathaworn, K.; Sura, T.
Chem. Biol. Interact.
168
184-192
Purification and properties of penicillin amidase from Bacillus megaterium
1967
Chiang, C.; Bennett, R.E.
J. Bacteriol.
93
302-308
Characterization of a phenylacetate-CoA ligase from Penicillium chrysogenum
2008
Koetsier, M.J.; Jekel, P.A.; van den Berg, M.A.; Bovenberg, R.A.; Janssen, D.B.
Biochem. J.
417
467-476
Phenylacetate metabolism in thermophiles: characterization of phenylacetate-CoA ligase, the initial enzyme of the hybrid pathway in Thermus thermophilus
2008
Erb, T.J.; Ismail, W.; Fuchs, G.
Curr. Microbiol.
57
27-32
The role of pyruvate carboxylase in insulin secretion and proliferation in rat pancreatic beta cells
2008
Xu, J.; Han, J.; Long, Y.S.; Epstein, P.N.; Liu, Y.Q.
Diabetologia
51
2022-2030
Impaired anaplerosis and insulin secretion in insulinoma cells caused by small interfering RNA-mediated suppression of pyruvate carboxylase
2008
Hasan, N.M.; Longacre, M.J.; Stoker, S.W.; Boonsaen, T.; Jitrapakdee, S.; Kendrick, M.A.; Wallace, J.C.; MacDonald, M.J.
J. Biol. Chem.
283
28048-28059
The styrene-responsive StyS/StyR regulation system controls expression of an auxiliary phenylacetyl-coenzyme A ligase: implications for rapid metabolic coupling of the styrene upper- and lower-degradative pathways
2008
del Peso-Santos, T.; Shingler, V.; Perera, J.
Mol. Microbiol.
69
317-330
Simple strategy of reactivation of a partially inactivated penicillin g acylase biocatalyst in organic solvent and its impact on the synthesis of beta-lactam antibiotics
2009
Romero, O.; Vergara, J.; Fernandez-Lafuente, R.; Guisan, J.M.; Illanes, A.; Wilson, L.
Biotechnol. Bioeng.
103
472-479
Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate
2009
Bruning, M.; Berheide, M.; Meyer, D.; Golbik, R.; Bartunik, H.; Liese, A.; Tittmann, K.
Biochemistry
48
3258-3268
Engineering the substrate binding site of benzoylformate decarboxylase
2009
Yep, A.; McLeish, M.J.
Biochemistry
48
8387-8395
Influence of the hydrostatic pressure and pH on the asymmetric 2-hydroxyketone formation catalyzed by Pseudomonas putida benzoylformate decarboxylase and variants thereof
2010
Berheide, M.; Peper, S.; Kara, S.; Long, W.S.; Schenkel, S.; Pohl, M.; Niemeyer, B.; Liese, A.
Biotechnol. Bioeng.
106
18-26
Impact of perturbed pyruvate metabolism on adipocyte triglyceride accumulation
2009
Si, Y.; Shi, H.; Lee, K.
Metab. Eng.
11
382-390
Ampicillin synthesis using a two-enzyme cascade with both alpha-amino ester hydrolase and penicillin G acylase
2010
Blum, J.K.; Deaguero, A.L.; Perez, C.V.; Bommarius, A.S.
ChemCatChem
2
987-991
-
Reactivation of immobilized penicillin G acylase: Influence of cosolvents and catalytic modulators
2011
Miranda, V.; Wilson, L.; Cardenas, C.; Illanes, A.
J. Mol. Catal. B
68
77-82
Characterization of two members among the five ADP-forming acyl coenzyme A (acyl-CoA) synthetases reveals the presence of a 2-(imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis
2014
Awano, T.; Wilming, A.; Tomita, H.; Yokooji, Y.; Fukui, T.; Imanaka, T.; Atomi, H.
J. Bacteriol.
196
140-147
Acetate formation in the photoheterotrophic bacterium Chloroflexus aurantiacus involves an archaeal type ADP-forming acetyl-CoA synthetase isoenzyme I
2013
Schmidt, M.; Schoenheit, P.
FEMS Microbiol. Lett.
349
171-179
Cloning and characterization of a novel CoA-ligase gene from Penicillium chrysogenum
2011
Yu, Z.L.; Liu, J.; Wang, F.Q.; Dai, M.; Zhao, B.H.; He, J.G.; Zhang, H.
Folia Microbiol. (Praha)
56
246-252
3-Hydroxyphenylacetic acid induces the Burkholderia cenocepacia phenylacetic acid degradation pathway - toward understanding the contribution of aromatic catabolism to pathogenesis
2011
Imolorhe, I.A.; Cardona, S.T.
Front. Cell. Infect. Microbiol.
1
14
Defining a structural and kinetic rationale for paralogous copies of phenylacetate-CoA ligases from the cystic fibrosis pathogen Burkholderia cenocepacia J2315
2011
Law, A.; Boulanger, M.J.
J. Biol. Chem.
286
15577-15585
Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain alpha-ketoacid dehydrogenase kinase
2013
Tso, S.C.; Qi, X.; Gui, W.J.; Chuang, J.L.; Morlock, L.K.; Wallace, A.L.; Ahmed, K.; Laxman, S.; Campeau, P.M.; Lee, B.H.; Hutson, S.M.; Tu, B.P.; Williams, N.S.; Tambar, U.K.; Wynn, R.M.; Chuang, D.T.
Proc. Natl. Acad. Sci. USA
110
9728-9733
Reduced function of a phenylacetate-oxidizing cytochrome p450 caused strong genetic improvement in early phylogeny of penicillin-producing strains
2001
Rodriguez-Saiz, M.; Barredo, J.L.; Moreno, M.A.; Fernandez-Canon, J.M.; Penalva, M.A.; Diez, B.
J. Bacteriol.
183
5465-5471
Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction
1999
Mingot, J.; Peñalva, M.; Fernandez-Canon, J.
J. Biol. Chem.
274
14545-14550
Identification of p-hydroxybenzyl alcohol, tyrosol, phloretin and its derivate phloridzin as tyrosinase substrates
2015
Ortiz-Ruiz, C.V.; Berna, J.; Garcia-Molina, M.d.e.l. .M.; Tudela, J.; Tomas, V.; Garcia-Canovas, F.
Bioorg. Med. Chem.
23
3738-3746
Biochemical and kinetic characterization of the recombinant ADP-forming acetyl coenzyme A synthetase from the amitochondriate protozoan Entamoeba histolytica
2014
Jones, C.P.; Ingram-Smith, C.
Eukaryot. Cell
13
1530-1537
Characterization of two members among the five ADP-forming acyl coenzyme a (acyl-CoA) synthetases reveals the presence of a 2-(imidazol-4-yl)acetyl-CoA synthetase in Thermococcus kodakarensis
2014
Awano, T.; Wilming, A.; Tomita, H.; Yokooji, Y.; Fukui, T.; Imanaka, T.; Atomia, H.
J. Bacteriol.
196
140-147
Discovery of enzymes for toluene synthesis from anoxic microbial communities
2018
Beller, H.; Rodrigues, A.; Zargar, K.; Wu, Y.; Saini, A.; Saville, R.; Pereira, J.; Adams, P.; Tringe, S.; Petzold, C.; Keasling, J.
Nat. Chem. Biol.
14
451-457
In vitro characterization of phenylacetate decarboxylase, a novel enzyme catalyzing toluene biosynthesis in an anaerobic microbial community
2016
Zargar, K.; Saville, R.; Phelan, R.M.; Tringe, S.G.; Petzold, C.J.; Keasling, J.D.; Beller, H.R.
Sci. Rep.
6
31362
-
Modulation of the activity of succinate dehydrogenase by acetylation with chemicals, drugs, and microbial metabolites
2018
Fedotcheva, N.; Kondrashova, M.; Litvinova, E.; Zakharchenko, M.; Khunderyakova, N.; Beloborodova, N.
Biophysics
63
743-750